next up previous
Next: Even and Odd Functions Up: Fseries_1 Previous: General Fouries series

Example 6

Find the Fourier series representation of the following periodic function given on its one full period:



\begin{displaymath}
f(x) =
\left \{
\begin{array}{rl}
1, & 0 < x < 2 \\
-1, & ...
...\
0, & x = -2,  0  {\mbox and}  2.\\
\end{array}\right .
\end{displaymath}



Solution:

The function has period 4, and for our calculations we need the half-period $ L = 2$.



$ a_0 = \displaystyle{\frac{1}{L} \int_{-L}^L f(x)  dx  = \
\frac{1}{2} \int_{-2}^0 (-1)  dx  +  \frac{1}{2} \int_{0}^2 (1)  dx  =  -1 + 1  =  0
,}$



$ a_n = \displaystyle{\frac{1}{L} \int_{-L}^L f(x) \cos \frac{n\pi x}{L}  dx  ...
...  dx  + \
\frac{1}{2} \int_{0}^2 1 \cdot \cos \frac{n\pi x}{2}  dx  = \
}$



$ \displaystyle{  =  \biggl. \frac{1}{2} (-\frac{2}{n \pi}) \sin(\frac{n \pi x...
...c{1}{2} \frac{1}{2n \pi} \sin(\frac{n \pi x}{2}) \biggr\vert^{2}_{0}  =  0
,}$



and



$ b_n = \displaystyle{\frac{1}{L} \int_{-L}^L f(x) \sin \frac{n\pi x}{L}  dx  ...
...  dx  + \
\frac{1}{2} \int_{0}^2 1 \cdot \sin \frac{n\pi x}{2}  dx  = \
}$



$ \displaystyle{  =  \biggl. \frac{1}{2} \frac{2}{n \pi} \cos(\frac{n \pi x}{2...
...2}{n\pi}  - \
\frac{2}{n\pi} \cos (n \pi)  =  \frac{2}{n\pi}(1 - (-1)^n)
,}$



whence

\begin{displaymath}b_n = \displaystyle{
\left \{
\begin{array}{cl}
\displaystyl...
...
0 & {\mbox for}  n  {\mbox even.} \\
\end{array}\right .
}\end{displaymath}



The resulting Fourier series representation for $ f(x)$ is the following:



$ f(x) = \displaystyle{
\sum_{{\mbox n  odd}} \frac{4}{n\pi} \sin (\frac{n \pi ...
...\sin(\frac{\pi x}{2})  +  \frac{1}{3} \sin(\frac{3\pi x}{2})  +  \ldots)
.}$



Matthias Neufang 2002-09-18