next up previous
Next: Example 6 Up: Fseries_1 Previous: Note:

General Fouries series

So far we have considered periodic functions of period $ 2\pi $ and their Fourier series. Similar formulae can be obtained for a piecewise continuous periodic function $ f$ of an arbitrary period $ p$ ($ p > 0$). We consider the half-period $ L$, such that $ p = 2L$. Then we define the function $ g(u) = f(\displaystyle{\frac{L}{\pi} u})$, which is also periodic and has the period $ 2\pi $:

$\displaystyle \displaystyle{g(u + 2\pi) = f(\frac{L}{\pi}(u + 2\pi)) = f(\frac{L}{\pi} u + 2L) = f(\frac{L}{\pi} u + p) = f(\frac{L}{\pi} u) = g(u).}$ (10)

Assume that $ g$ can be written as

$\displaystyle g(u) = \frac{a_0}{2} + \sum_{n=1}^{\infty}(a_n \cos nu + b_n \sin nu),$ (11)

with $ a_0 = \displaystyle{\frac{1}{\pi} \int_{-\pi}^{\pi}} g(u)  du,   \
a_n = \...
... du, \\
b_n = \frac{1}{\pi} \displaystyle{\int_{-\pi}^{\pi}} g(u)\sin nu  du.$

Then we change variables by setting $ x = \displaystyle{\frac{L}{\pi} u}$, and therefore $ u = \displaystyle{\frac{\pi}{L} x}$,
so $ du = \displaystyle{\frac{\pi}{L}  dx}$, and

$\displaystyle f(x) = g(u) = g(\displaystyle{\frac{\pi}{L} x}) = \frac{a_0}{2} + \sum_{n=1}^{\infty}(a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L}).$ (12)

The Fourier coefficient $ a_n$ is calculated as follows:

$\displaystyle a_n = \frac{1}{\pi} \displaystyle{\int_{-\pi}^{\pi} g(u)\cos nu \...
...\pi x}{L}  dx  =  \frac{1}{L} \int_{-L}^L f(x) \cos \frac{n\pi x}{L}  dx .}$ (13)

Similarly,

$\displaystyle b_n = \displaystyle{\frac{1}{L} \int_{-L}^L f(x) \sin \frac{n\pi x}{L}  dx ,}$ (14)

$\displaystyle a_0 = \displaystyle{\frac{1}{L} \int_{-L}^L f(x)  dx .}$ (15)


next up previous
Next: Example 6 Up: Fseries_1 Previous: Note:
Matthias Neufang 2002-09-18