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Abstract

Markov chains, whose transition matrices reveal a certain type of block-structure, find many

applications in various areas. Examples include Markov chains of GI/M/1 type and M/G/1

type, and more generally Markov chains of Toeplitz type. Some Markov chains without a

block-repeating structure can be also included; for example, level-dependent-quasi-birth-

and-death (LDQBD) processes. In analyzing this type of Markov chains, one may find that

properties and/or probabilistic measures described or expressed by probability transition

blocks from level to level often play a dominating role, while detailed transitions between

states within the same level (block) are less important. In this paper, we introduce the con-

cept of block-monitonicity and apply this notion to dealing with Markov chains possessing

a block structure. A successful application in approximating stationary probability vectors

of an infinite-state Markov chain is provided. We also hope that more applications of this

concept can be exposed in the future.

AMS Subject Classification: 60J10, 60K25, 60E15

Key words and phrases: Stochastic ordering, block-monotonicity, block-augmentations,
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1 Introduction

Markov chains, whose transition matrices possess a certain type of block structures, have

been drawing people’s attention for about two decades because of the increasing importance

of their applications in many areas. In this area, the classical work on Markov chains of

GI/M/1 type and M/G/1 type by Neuts (for example, Neuts (1981, 1989)) has been well

recognized. Many other researchers have also made important contributions in this area.

Updated references could be found in Neuts (1998). The scope in studying structured

Markov chains has been broadened to including Markov chains of non-skip-free GI/M/1

and M/G/1 type, or GI/M/1 and M/G/1 type with multiple boundaries (Gail, Hantler

and Taylor (1996, 1997)), LDQBD processes (Bright and Taylor (1996)), Markov chains of

Toeplitz type (Zhao, Li and Braun (1998a, 1998b, 1999)). and block structured transition

matrices with infinite blocks (Neuts (1998)). It is well-known that Markov chains of GI/M/1

type and M/G/1 type can be considered as a natural generalization of the classical GI/M/1

queue and M/G/1 queue. The transition matrix of the embbeded Markov chains for both

GI/M/1 queue and M/G/1 queue is stochastic monotone. When a Markov chain has a

monotone transition matrix, it often leads to new properties or/and makes analysis of the

chain easier. For example, the discussion of approximating the stationary distribution of

infinite Markov chains becomes easier and unified (Gibson and Seneta (1987)).

Specifically, let us consider a discrete time Markov chain with state space N = {0, 1, 2, . . .}

and transition matrix P = (pi,j). Suppose that P is irreducible and positive recurrent. Let

π = {πi} be the unique stationary probability vector. In many situations, where the sta-

tionary distribution vector π of P is not analytically determined, numerical approximations

are needed to obtain π (see Wolf (1980), Gibson and Seneta (1987), Heyman (1991), Zhao

and Liu (1996), and the references therein). One of the ideas in computing the stationary

distribution is the following: We first truncate the original transition matrix P into a finite

matrix Pn by keeping all the (n + 1) × (n + 1) entries in the northwest corner of P . We

then add appropriate numbers to entries of Pn to make Pn stochastic in some convenient

way (this procedure is called augmentation). Denote the resulting matrix by P̃n say, and

solve the finite system π(n)P̃n = π(n) and
∑n

i=0 π
(n)
i = 1. Under certain conditions on the

Markov chain, the stationary distribution vector π can be approximated by {π(n), n ≥ 1}

in the sense that for each fixed i,

lim
n→∞

π
(n)
i = πi. (1.1)
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Seneta (1980) presented a necessary and sufficient condition for (1.1) to be true, that is,

for any augmentation P̃n, the sequence {π(n)} is tight (see later for a definition or 37 of

Billingsley (1969)) if and only if (1.1) holds. It was proved later in Gibson and Seneta

(1987) that if P is stochastic monotone (that is,
∑∞

j=n pi,j ≤
∑∞

j=n pi+1,j for any n and

i), then {π(n)} is tight. Therefore, (1.1) holds. This work provides us a unified treatment

for the convergence of a sequence of finite-state Markov chains to an infinite-state Markov

chain.

However, in many cases, P is not stochastic monotone, but it has a certain kind of

block property when P is partitioned properly into submatrices (blocks). For example,

the transition matrix P of a Markov chain of GI/M/1 type or M/G/1 type, including

the case with multiple boundaries, a Markov chain of Toeplitz type, and some of LDQBD

processes. For matrices with a block structure, it seems intuitively natural to augment

the truncated matrix block-wise and analyze the systems by treating blocks as entries. In

the literature, to deal with the convergence in approximations, either a scalar augmenta-

tion is used (Grassmann and Heyman (1993)), or the method is case sensitive (Latouche

(1993)), or some algorithm developed from the censored process (Latouche (1993), Grass-

mann and Heyman (1990), Bright and Taylor (1996), Zhao, Li and Braun (1998a,b)). The

motivation of writing this paper is to generalize the concept of stochastic monitonicity to

stochastic block-monotonicity, that will play a similar role in analyzing at least those matri-

ces mentioned above to that the usual stochastic monitonicity does in analyzing stochastic

monotone matrices. In this paper, we first introduce the notion of block-monitonicity and

provide an alternative or unified way of proving the convergence defined in (1.1) when P is

block-monotone.

The rest of this paper is organized as follows. In Section 2, we introduce the notion

of stochastic block-monotonicity. The main approximation result is given in Section 3.

Examples to show how to apply the main result on various queueing models, including

some queues with non-repeating block rows, are discussed in Section 4. Throughout this

paper, the terms ‘increasing’ and ‘decreasing’ mean ‘nondecreasing’ and ‘nonincreasing’

respectively.
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2 Block-Monotonicity Property of Stochastic Matrices

In this section, we first introduce a notion of stochastic block-ordering for vectors partitioned

into blocks. Based on this ordering, matrices partitioned into blocks might be compared.

We then introduce the concept of block-monitonicity and discuss properties of stochastic

block-monotone matrices.

Stochastic block-rodering is defined based on F-orderings (see, for example, Li and

Shaked (1994)). This definition includes enough stochastic matrices for study and also

leads to a mathematically tractable analysis. Throughout the paper, row vectors will be

denoted by lower case bold letters and column vectors by the transpose of row vectors.

For example, a is a row vector and aT is a column vector. A real function defined on

N = {0, 1, 2, . . . , } is writen as a row vector f = (f(0), f(1), . . .).

Definition 2.1 Let f i = (fi(1), . . . , fi(m)), i = 1, 2, . . ., be row vectors of size m. The

function f = (f1, f2, . . .) is said to be block-increasing with block size m if for each i =

1, 2, . . ., f i ≤ f i+1 element-wise, that is, fi(j) ≤ fi+1(j) for j = 1, . . . , m.

It is obvious from Definition 2.1 that f is a block-increasing function with block size m if

and only if (f1(j), f2(j), f3(j), . . . , ) is an increasing function for each of j = 1, . . . , m. For

example, let a = (2, 1) and b = (2, 3) be two sub-vectors of size 2, then f = (a, b, b, b, . . .) =

(2, 1, 2, 3, 2, 3, 2, 3, . . .) is a block-increasing function with block size 2. Note that f is not

an increasing function. It is obvious that every increasing function is block-increasing with

any block size m.

Let Fm be the set of all block-increasing functions with block size m. Note that F1 is

the set of all increasing functions defined on N . For a subclass F ⊆ Fm, we can generate

an ordering relation on P(N ), where P(N ) is the set of all probability measures on N =

{0, 1, 2, . . .}, expressed as row vectors p = (p(0), p(1), . . .).

Definition 2.2 Let F ⊆ Fm and let p and q be two probability vectors in P(N ). p is said

to be stochastically block-less than q with respect to F (denoted as p ≤F q) if

pfT =
∑

k∈N

p(k)f(k) ≤
∑

k∈N

q(k)f(k) = qfT , (2.1)

for all block-increasing functions f ∈ F .

3



Clearly, the relation ≤F defined by (2.1) is reflexive and transitive, but not necessarily a

partial order because the following property need not hold: p ≤F q and p ≥F q together

do not necessarily imply that p = q. The relation ≤F defined by (2.1) becomes a partial

order if F is a determining class (Billingsley 1968), which is not necessary to assume. We

do assume, however, that F satisfies some closure properties in Section 3.

Recall that p is less than q in the usual stochastic order, denoted as p ≤st q, if pfT ≤

qfT for all increasing functions f . Since each increasing function is block-increasing, the

usual stochastic comparison is a special case of the stochastic block-comparison.

Remark 2.3 In order to verify the stochastic block-comparison ≤Fm
defined in Definition

2.2, it is sufficient, as in the case of the usual stochastic order, that one only needs to verify

whether or not (2.1) holds for all nonnegative block-increasing functions. The reason for this

is the following. Suppose that pfT ≤ qfT for all nonnegative block-increasing functions

of block size m. For any block-increasing function f of block size m that is bounded from

below, or fi(k) ≤ M < ∞ for all i and k, f + α1 is nonnegative for some positive constant

α, where 1 is the vector of ones. Thus, p(f + α1)T ≤ q(f + α1)T , which implies that

pfT ≤ qfT . For any block-increasing function f of block size m, we can approximate f

element-wise by using a monotone sequence of block-increasing functions that are bounded

from below, and hence it follows from the Lebesgue convergence theorem that (2.1) holds

for any block-increasing function f ∈ Fm.

Example 2.4 Let F ⊆ Fm be a subclass of Fm and let p = (p1, p2, . . . ) be a probability

vector partitioned into sub-vectors pi of a common size m. 0 is the vector of zeros of size

m.

1. Define q = (
∑k

i=1 pi, pk+1, . . . ). For any block-increasing function f = (f1, f2, . . . , )

with block size m, (
∑k

i=1 pi)f
T
1 +

∑

j≥k+1 pjf
T
j−k+1 ≤

∑∞
i=1 pif

T
i . Thus, q ≤F p. In

particular, (
∑∞

i=1 pi,0, . . .) ≤F p.

2. For any block-increasing function f = (f1, f2, . . . , ) with block size m, and any k ≥ 1,

we have p1f
T
1 +. . .+pk−1f

T
k−1+(

∑

j≥k pj)f
T
k ≤

∑

j≥1 pjf
T
j . Therefore, for any k ≥ 1,

(p1, . . . ,pk−1,
∞
∑

j=k

pj ,0,0, . . .) ≤F p.
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3. Denote p[k] = (0, . . . ,0, p1, p2, . . . , ) where there are k vectors of zeros of size m before

p1. For any block-increasing function f = (f1, f2, . . . , ) with block size m, we have
∑

j≥k+1 pj−kf
T
j ≤

∑

j≥k+1 pj−kf
T
j+1, which implies that p[k] ≤F p[k+1] for any k ≥ 0.

We now define stochastic block-monotone matrices and introduce the notion of the

stochastic block-comparison for matrices.

Definition 2.5 Let F ⊆ Fm. Suppose that A = (Ai,j) is a stochastic matrix, where all

entries Ai,j are sub-matrices of size m × m. A is said to be stochastically block-monotone

with respect to F if p ≤F q implies that pA ≤F qA.

Corollary 2.6 Let F ⊆ Fm. For a stochastic matrix A, if AfT ∈ F for all f ∈ F , then A

is stochastically block-monotone with respect to F .

Proof: If p ≤F q then for AfT ∈ F , we have pAfT ≤ qAfT . This implies that

pA ≤F qA.

Definition 2.7 Let F ⊆ Fm, and let A and B be two stochastic matrices partitioned into

blocks of size m × m. A is said to be stochastically block-less than B with respect to F ,

denoted by A ≤F B, if ai ≤F bi for all i, where ai and bi are i-th row vectors of A and B

respectively.

Example 2.8 Let Ai, i = 0, 1, . . ., be non-negative matrices of size m × m. Assume that
∑∞

j=0 Aj is stochastic. Consider the following stochastic matrix

P =





























A0 + A1 A2 A3 A4 · · ·

A0 A1 A2 A3 · · ·

A0 A1 A2 · · ·

A0 A1 · · ·

A0 · · ·
. . .





























,

We show that P is block-monotone with respect to F by proving that PfT ∈ Fm for

all f ∈ Fm. For this, let Bj denote the jth block row of P , which is a matrix of size

m×∞. Using Example 2.4 (1), we have B1f
T ≤ B2f

T element-wise for all f ∈ Fm. From

Example 2.4 (3), it follows that for any j ≥ 2, Bjf
T ≤ Bj+1f

T element-wise for all f ∈ Fm.

Therefore, PfT is a block-increasing function with size m for all f ∈ Fm.
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In Example 2.8, we show that a certain stochastic matrix with repeating block rows is

stochastically block-monotone with respect to Fm. To establish stochastic monotonicity of

some stochastic matrices with non-repeating block rows, the following simple fact is useful

(see Section 4.2 for some applications).

Lemma 2.9 Let A = (A0, A1, A2, . . . , ) and B = (B0, B1, B2, . . . , ) be two m×∞ stochastic

matrices where Ai and Bi are m × m matrices, i ≥ 0. Let C be an m × m non-negative

matrix, such that for some j, every entry of Bj − C is non-negative and every entry of

Bj+1 + C is less than or equal to 1. If A ≤F B then

A ≤F (B0, B1, . . . , Bj − C, Bj+1 + C, Bj+2, . . . , ). (2.2)

Proof: In fact, (2.2) follows from the fact that
∑∞

i=0 Aif
T
i ≤

∑∞
i=0 Bif

T
i +C(f j+1−f j)

T

element-wise for any f = (f0, f1, f2, . . . , ) ∈ F ⊆ Fm. In particular,

(A0, A1, A2, . . . , ) ≤F (A0, A1, . . . , Aj − C, Aj+1 + C, Aj+2, . . . , ),

when Aj − C is non-negative element-wise.

From Definition 2.5, the following results are also immediate.

Proposition 2.10 Let F ⊆ Fm. If A and B are stochastically block-monotone with respect

to F , so are

1. αA + (1 − α)B, 0 ≤ α ≤ 1;

2. AB; and

3. Ak, k = 0, 1, 2, . . . .

Proposition 2.11 If A and B are stochastic matrices with A ≤F B, and either A or B is

stochastically block-monotone with respect to F , then Ak ≤F Bk for any positive integer

k.

Proof: Suppose that B is stochastically block-monotone, and Ak−1 ≤F Bk−1 for k > 1. It

follows from Definitions 2.5 and 2.7 that

Ak−1B ≤F Bk−1B = Bk.

On the other hand, since A ≤F B, we have AfT ≤ BfT for any f ∈ F . Therefore,

(pA)fT ≤ pBfT for any probability vector p. This implies that Ak = Ak−1A ≤F Ak−1B.

The case when A is stochastically block-monotone can be proved similarly.
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3 Approximation of the Stationary Distribution of an Infi-

nite Block-Monotone Stochastic Matrix

In this section and the next, we provide an useful application and interesting examples of

block-monotone matrices. We show that the stationary distribution of an infinite block-

monotone stochastic matrix can be approximated by the stationary distribution of a finite

block-augmented matrix. This generalizes the result of Gibson and Seneta (1987) to a much

wider class of Markov chains that arises naturally in stochastic modeling. The concepts of

block-monotonicity, block-augmentation, and the tightness of a set of probability measures

play a key role here.

To explain block-augmentations to a matrix, let us first discuss block augmentations of

a probability vector. Let a = (a1, a2, . . . , ) be a probability vector partitioned into blocks

ai of size m, where ai = (ai(1), . . . , ai(m)). Define (n)a = (a1, . . . ,an) to be the vector

formed from the first n blocks of a. A block-augmentation to (n)a is a probability vector

(n)ã = ((n)ã1, (n)ã2, . . . , (n)ãn) such that

(n)ã ≥ (n)a element-wise and
n
∑

i=1
(n)ãi(j) =

∞
∑

i=1

ai(j) (3.1)

for all j = 1, 2, . . . , m. Note that using Fatou’s lemma, (3.1) implies that (n)ã → a element-

wise as n → ∞. For example, the following linear block augmentation is a special case of

the above procedure, for 1 ≤ i ≤ n,

(n)ãi = ai + αi

∑

j>n

aj

where (α1, . . . , αn) is a probability vector.

We now introduce block-augmentations to a matrix. Let P = (Pi,j) be a stochastic

matrix on N , where entries Pi,j are sub-matrices of size m×m. For each n ≥ 1, we denote

by (n)P the northwest corner of P consisting of n × n blocks. A block-augmentation (n)P̃

of (n)P is a stochastic matrix such that each row of (n)P̃ is a block-augmentation of the

corresponding row vector of (n)P . In particular, let (n)Q = ((n)Qi,j) such that

(n)Qi,j = Pi,j for 1 ≤ i ≤ n, 1 ≤ j ≤ n − 1, and (n)Qi,n =
∞
∑

j=n

Pi,j for 1 ≤ i ≤ n. (3.2)

(n)Q is called the last column block-augmentation.
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The block-augmentation coincides the scalar one if the block size m = 1. When m > 1,

any block augmentation is also a scalar augmentation, but a scalar augmentation may not

be a block-augmentation.

To establish our main results, we require that F ⊆ Fm satisfies the following tightness

or/and the closure property.

Definition 3.1 Let F ⊆ Fm be a subclass of the block-monotone functions.

1. F is said to satisfy the tightness condition if F contains a sequence of infinitely many

standard block jump functions, where a function fn = (f1, f2, . . .) is standard block

jump if f i = 0 for i < n and f i = 1 for i ≥ n.

2. F is said to satisfy the closure property of block-monotonicity if for any n,

f = (f1, . . . ,fn, fn+1, . . .) ∈ F implies f̄n = (f1, . . . ,fn, fn, . . .) ∈ F . (3.3)

Note that Fm satisfies both properties described in Definition 3.1.

Recall that a set {πn, n ≥ 1} of probability measures on a metric space S is said to be

tight if for every positive ε there exists a compact subset K ⊆ S such that πn(K) > 1 − ε

for all n ≥ 1 (Page 37 of Billingsley 1968). If S is a Polish space (complete and separable

metric space), then the tightness of {πn, n ≥ 1} is equivalent to the relative compactness,

that is, any infinite subset of {πn, n ≥ 1} possesses an infinite subsequence of probability

measures converging weakly to a proper probability distribution. The tightness is a crucial

condition needed to establish the results on approximating the stationary distribution of an

infinite Markov chain, as showed by the following lemma.

Lemma 3.2 [Seneta 1980] Let π be the unique stationary distribution of the transition

matrix P of an infinite, irreducible and positive recurrent Markov chain, and let (n)π be a

stationary distribution of a scalar augmentation of the n × n northwest corner truncation

of P . Then (n)π → π element-wise as n → ∞ if and only if {(n)π, n ≥ 1} is tight.

Seneta (1980) proved Lemma 3.2 for the column augmentation (this is, augmenting some

specific column) of the n × n northwest corner truncation of P . It is easy to see that his

result holds for any scalar augmentation (also see Gibson and Seneta 1987).
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It is well known, and easy to verify that for a sequence of probability vectors {pn, n ≥ 0}

and a probability vector p, if pn ≤st p for any n, then {pn, n ≥ 0} is tight. For stochastic

block-comparisons, we have,

Lemma 3.3 Let F ⊆ Fm be a subclass of the block-monotone functions, and let {pn, n ≥

0} be a sequence of probability vectors. If F satisfies the tightness condition described in

Definition 3.1 (1), and for any n, pn ≤F p where p is a probability vector, then {pn, n ≥ 0}

is tight.

Proof. Since pn ≤F p for any n, we have pnfT ≤ pfT for any f ∈ F . Since F satisfies the

property of the tightness, F contains an infinite sequence of standard block jump functions.

Let {nm, m ≥ 1} be such a sequence. Then, for all n ≥ 1, and all m ≥ 1,

nm
∑

j=1

pn(j) ≥
nm
∑

j=1

p(j).

For any small positive ε, select a finite nk such that
∑nk

j=1 p(j) > 1 − ε. Therefore,
∑nk

j=1 pn(j) > 1 − ε for all n, which means that {pn, n ≥ 0} is tight.

Theorem 3.4 Let F ⊆ Fm. Suppose that P is positive recurrent and stochastically block-

monotone with respect to F and that (n)P̃ ≥ (n)P is any stochastic block-augmentation of

(n)P with n×n blocks of size m. Let (n)π be a stationary probability vector of (n)P̃ . Then

(n)π → π in the sense of (1.1) where π is the unique stationary probability vector of P .

Proof: Let (n)P̃i,j = ((n)P̃i,j), where (n)P̃i,j is a sub-matrix of size m×m for i, j = 1, . . . , n).

We extend the definition of (n)P̃ to a stochastic matrix on N by putting

(n)P̃i,1 =
∞
∑

j=1

Pi,j , for i > n, (3.4)

and zeros for all other block-enties not having been defined. The stationary probability

vector (n)π is extended to N by putting zeros for the elements beyond the n-th block.

The key is to show that (n)P̃ ≤F P . Let αk = ((n)ã1, (n)ã2, . . . , (n)ãn,0, . . .) be the

k-th row of (n)P̃ , and βk = (a1, a2, . . . ,an, an+1, . . .) be the k-th row of P , where (n)ãj ,

and aj are the row vectors of size m. For k > n, we have αk ≤F βk from Example 2.3

(1). Now consider k ≤ n. Let bi = (n)ãi − ai for i ≤ n. Since (n)ãi ≥ ai element-wise and
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∑n
i=1 (n)ãi(j) =

∑∞
i=1 ai(j), we have

∑n
i=1 bi(j) =

∑∞
i=n+1 ai(j). For any f = (f1, f2, . . .) ∈

F , we have
n
∑

i=1

bif
T
i ≤

n
∑

i=1

bif
T
n =

∞
∑

i=n+1

aif
T
n ≤

∞
∑

i=n+1

aif
T
i ,

which implies that αk ≤F βk. Therefore, (n)P̃ ≤F P with P being stochastically block-

monotone. Thus, by Proposition 2.11, (n)P̃
k ≤F P k for any k ≥ 1. Hence we have (n)π ≤F

π for any n. From Lemma 3.3, the sequence {(n)π} is tight. Therefore, (n)π −→ π element-

wise follows from Lemma 3.2.

If we in Theorem 3.4 only assume that P is a stochastic matrix and irreducible and

P ≤F R where R is positive recurrent and stochastically block-monotone with respect to

F , then the conclusion still holds. This is similar to the situation of the usual stochastic

monotonicity (Gibson and Seneta 1987).

For the scalar case, Gibson and Seneta (1987) showed that the best, in the stochastic

sense, approximation (n)π to π is obtained by the last column augmentation. To obtain a

similar result for stochastic block-monotonicity, we need the following lemma.

Lemma 3.5 Let F ⊆ Fm, and let p = (p1, p2, . . . ) and q = (q1, q2, . . . ) be probability

vectors with blocks of size m. If p ≤F q with F satisfying the closure property of block-

monotonicity (3.3), then for any n, we have,

(p1, . . . ,pn−1,
∞
∑

i=n

pi,0,0, . . .) ≤F (q1, . . . , qn−1,
∞
∑

i=n

qi,0,0, . . .). (3.5)

Theorem 3.6 Let π = (π1, π2, . . .) be the stationary distribution of P , and let (n)π =

((n)π1, (n)π2, . . .) be a stationary distribution of the block augmentation (n)P̃ of (n)P , where

Both π and (n)π are partitioned into blocks of size m. Suppose that F ⊆ Fm satisfies the

tightness condition and the closure property of block-monotonicity. Let P = (Pi,j) be

positive recurrent and stochastically block-monotone with respect to F , and let (n)Q be the

stochastic matrix formed from (n)P by augmenting the n-th block column (see (3.2)). If

(n)Q has a unique stationary distribution vector (n)ν = ((n)ν1, (n)ν2, . . .), then there exists

an infinite sequence 1 ≤ n1 ≤ n2 ≤ . . . such that

0 ≤
nk
∑

i=1

((n)νi − πi)1
T ≤

nk
∑

i=1

((n)πi − πi)1
T (3.6)

for every k, where 1 is the row vector of ones of size m. Therefore, (n)ν is at least as good

an approximation to π as any (n)π in the sense of (3.6).
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Proof. Let us first extend the definition of (n)P̃ = ((n)P̃i,j), i, j = 1, . . . , n, to a stochastic

matrix on N as did in (3.4). We also extend the definition of (n)Q = ((n)Qi,j), i, j = 1, . . . , n,

to a stochastic matrix on N by defining

(n)Qi,j =



















Pi,j , for i > n, j = 1, 2, . . . , n − 1
∑∞

k=n Pi,k, for i > n, j = n

0, for blocks not having been defined.

Thus, (n)QfT = P f̄
T
n where f̄n is defined by (3.3). The stationary probability vectors (n)π

and (n)ν are extended to N by making their entries beyond the n-th block zero. Since

P is stochastically block-monotone and F satisfies (3.3), (n)Q is also stochastically block-

monotone. From Theorem 3.4, (n)P̃ ≤F P , which implies that for any f ∈ F ,

(n)P̃fT =(n) P̃ f̄
T
n ≤ P f̄

T
n =(n) QfT

element-wise, where f̄n is defined by (3.3). Thus, (n)P̃ ≤F (n)Q. Also it follows from

Example 2.4 (2) that (n)Q ≤F P . Since (n)Q and P are both stochastically block-monotone,

it follows from Proposition 2.11 that (n)P̃
k ≤F (n)Q

k and (n)Q
k ≤F P k for any k ≥ 1. Hence

we have

(n)π ≤F (n)ν ≤F π. (3.7)

Since F contains an infinite sequence of standard block jump functions, there exists an

infinite sequence 1 ≤ n1 ≤ n2 ≤ . . . such that

nk
∑

i=1
(n)πi

1T ≥
nk
∑

i=1
(n)νi

1T ≥
nk
∑

i=1

πi1
T ,

which is equivalent to (3.6).

Note that if F contains all standard block jump functions of size m, then (3.6) becomes

0 ≤
k
∑

i=1

((n)νi − πi)1
T ≤

k
∑

i=1

((n)πi − πi)1
T (3.8)

for each k.

There are two special classes of block-monotone functions that are worth discussing

in more detail. First, consider the class Fm consisting of all block-increasing functions

with block size m. The relationship between the stochastic block-order ≤Fm
and the usual
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stochastic order ≤st can be best described in the following proposition. For this, consider

two probability vectors p = (p1, p2, . . .) and q = (q1, q2, . . .) partitioned into blocks with

pi = (pi(1), pi(2), . . . , pi(m)) and qi = (qi(1), qi(2), . . . , qi(m)) for i = 1, 2, . . .. Define, for

each j = 1, 2, . . . , m, the jth phase probability vectors for p and q, respectively, as

αj =

(

1 −
∞
∑

k=1

pk(j), p1(j), p2(j), . . .

)

and

βj =

(

1 −
∞
∑

k=1

qk(j), q1(j), q2(j), . . .

)

.

It is obvious that if p ≤Fm
q, then

∑∞
k=1 pk(j) =

∑∞
k=1 qk(j), where j = 1, 2, . . . , m. The

following result is easy to verify.

Proposition 3.7 p ≤Fm
q if and only if αj ≤st βj for all j = 1, 2, . . . , m.

Therefore, the order ≤Fm
means a (vector-wise) usual stochastic comparison of two blocks

of phase probability vectors.

To verify that a stochastic matrix A is a stochastically block monotone with respect to

Fm, the following characterization is useful.

Theorem 3.8 Let A = (Ai,j) be a stochastic matrix partitioned into sub-matrices Ai,j of

size m × m. The following statements are equivalent.

1. A is a stochastically block-monotone matrix with respect to Fm;

2. Af is block-increasing for any block-increasing function f .

Proof: (2) trivially implies (1). To prove that (1) implies (2), consider, for each fixed k,

the probability vector p
(k)
j partitioned into blocks of size m, in which the j−th element of

the k−th block is 1 (1 ≤ j ≤ m). Obviously, p
(k)
j ≤Fm

p
(k+1)
j for any 1 ≤ j ≤ m, so from

(1) we have p
(k)
j A ≤Fm

p
(k+1)
j A for all 1 ≤ j ≤ m. Therefore, for any k,

(Ak,1, Ak,2, . . . , ) ≤Fm
(Ak+1,1, Ak+1,2, . . . , ),

which means Af is block-increasing for any block-increasing function f .

Since clearly Fm satisfies the tightness condition and the closure property of block-

monotonicity, the stationary distribution vector of a stochastically Fm-block monotone

transition matrix can be approximated as described in Theorems 3.4 and 3.6.
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The other interesting case involves the following class of block-monotone functions:

F+ = {f = (a1, a2, . . . , ) ∈ Fm : ai = (ai, ai, . . . , ai), i ≥ 1}; that is, within each block of

size m, the values of the function are same. Obviously F+ satisfies the tightness condition

and the closure property of block-monotonicity, so the stationary distribution vector of a

stochastically F+-block-monotone transition matrix can also be approximated as described

in Theorems 3.4 and 3.6. It is interesting to notice that the stochastic F+-comparison of p

and q is equivalent to the usual stochastic comparison of two probability vectors formed by

adding up all the values in each block of p and q respectively.

Remark 3.9 We have so far discussed stochastic block-monotonicity for a stochastic matrix

partitioned into equaled size blocks. Using the similar idea, it is possible to study block-

monotone properties for certain transition matrix having different block sizes. For example,

consider, similar to F+, the class of block increasing functions with different block sizes

such that each block has the same function value. It is not difficult to see that by theorem-

to-theorem modification of the results in Sections 2 and 3, Theorem 3.4 and Theorem 3.6

still hold for this class.

4 Applications

In this section, we present some examples of transition probability matrices, which are

stochastically block-monotone, and some applications in stochastic modeling to illustrate

the usefulness of the results developed in previous sections. Notice that all the matrices in

these examples are not stochastically monotone in the usual sense, but they demonstrate

some natural block-monotone structures. For all examples discussed here, the convergence

of the block-augmented matrices has been established in the previous section. The block-

augmentations include some methods often used by other researchers in the literature.

For example, the last block-column augmentation and the block linear augmentation are

two, which are easy to implement. The last block-column augmentation provides the best

approximation in the sense of block-monitonicity. We also mention that in general, the

last block-column augmentation does not provide the best approximation in the sense of

l1 norm; the censored Markov chain does, Zhao and Liu (1996). Although the concept of

censoring is very useful in developing efficient algorithms (for example, the censored chain

in (9) of Bright and Taylor, 1996, and Grassmann and Heyman, 1990), the censored chain

itselt cannot be directly used as an approximation since the implementation is often difficult.
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Therefore, algorithms are often developed based on the concept of censoring; for example,

(17) and (18) in Bright and Taylor, 1996. (17) is the last block-column augmentation, and

(18) is one of the linear block-augmentation.

4.1 Quasi-Birth-and-Death Processes

Consider a quasi-birth-and-death (QBD) process on the state space E = {(i, j), i ≥ 0, 1 ≤

j ≤ m}. The embedded Markov chain has the following transition matrix:

P =























B0 A0

B1 A1 A0

A2 A1 A0

A2 A1 A0

. . .
. . .

. . .























,

where B0 + A0, B1 + A1 + A0 and A2 + A1 + A0 are stochastic matrices.

Example 4.1 Consider the GI/M/c queue in which the arrivals form a PH-renewal process

with interarrival time distribution of phase type with representation (α, T ) of order m (Page

88, Neuts (1981)). The service rate for each of c servers is denoted by µ. The GI/M/c

queue is a QBD process on the state space E = {(i, j), i ≥ 0, 1 ≤ j ≤ m} where i denotes

the number of customers in the system and j denotes the phase of the arrival process. The

generator of the Markov chain is given by

Q =



































T T 0A0

µI T − µI T 0A0

2µI T − 2µI T 0A0

. . .
. . .

. . .

cµI T − cµI T 0A0

cµI T − cµI T 0A0

. . .
. . .

. . .



































,

where I is the m × m identity matrix. By using uniformization P = I + Q/cmax with cmax

equal or greater than the biggest absolute value of all diagonal elements of Q, one can easily

convert the generator into the transition matrix of a discrete time Markov chain. Note that
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P still has the same form as that of Q,

P =



































B B0A0

λI B − λI B0A0

2λI B − 2λI B0A0

. . .
. . .

. . .

cλI B − cλI B0A0

cλI B − cλI B0A0

. . .
. . .

. . .



































,

where B = I + T/cmax, λ = µ/cmax and B0 = T 0/cmax. To verify that P is stochastically

block-monotone with respect to Fm, let Di denote the m×∞ sub-matrix formed by m rows

between the ((i − 1)m + 1)st row and the (im)th row, i ≥ 1. It follows from Example 2.4

(3) that Di ≤Fm
Di+1 for i ≥ c + 1. To show that Di ≤Fm

Di+1 for 2 ≤ i ≤ c, let pi,k be

the kth row vector of Di, 1 ≤ k ≤ m, and αi,k
j be the jth phase probability vector of pi,k,

1 ≤ j ≤ m. We have,

αi,k
j = (1 − bk,j − ck,j , 0, . . . , 0, 0, bk,j , ck,j , 0, . . . , ), j 6= k

where there are i − 1 zeros between 1 − bk,j − ck,j and bk,j , and

αi,k
k = (1 − bk,k − ck,k, 0, . . . , 0, (i − 1)λ, bk,k − (i − 1)λ, ck,k, 0, . . . , ),

where there are i − 2 zeros between 1 − bk,k − ck,k and (i − 1)λ. Here bk,j is the (k, j)th

entry of B and ck,j is the (k, j)th entry of B0A0. It is now a simple matter to verify that

αi,k
j ≤st αi+1,k

j for all j 6= k and αi,k
k ≤st αi+1,k

k . By Proposition 3.7, pi,k ≤Fm
pi+1,k,

1 ≤ k ≤ m. Thus, Di ≤Fm
Di+1 for 2 ≤ i ≤ c. It can be also similarly verify that

D1 ≤Fm
D2.

Therefore, Di ≤Fm
Di+1 for all i, which implies, from Theorem 3.8, that P is stochas-

tically block-monotone with respect to Fm. Hence, the stationary probability vector can

be obtained by approximation from a stochastic block augmentation of P , and the last

block-column augmentation provides the best approximation in the sense (3.6).

Example 4.2 We now consider a queueing model with one Poisson arrival stream with

rate λ, c (≥ 2) identical exponential servers with service rate µ for each server and c
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separate queues. All necessary independent conditions are assumed. Jockeying is allowed

among queues. The jockeying rule is that the last customer in the longest queue will

instantaneously move to the shortest queue as soon as the difference of customer numbers

between the longest queue and the shortest queue is greater than 2. Consider the numbers

of customers in all queues including those in service if any. The state space of the Markov

chain is E = {(i1, i2, . . . , ic), ik ≥ 0 for 1 ≤ k ≤ c, and |ik − il| ≤ 1 for 1 ≤ k, l ≤ c}.

States are partitioned into blocks according to the sum of numbers of customers in all

queues. Without loss of generality, we assume that λ+ cµ = 1 (see Zhao (1990) for details).

To illustrate the idea of finding the stationary probability vector of the Markov chain, let

us consider the following transition matrix for c = 3 (the general case is similar),

P =









































A0,0 Q0,1

A1,0 A1,1 Q1,2

A2,1 A2,2 Q2,3

Q0,−1 Q0,0 Q0,1

Q1,0 Q1,1 Q1,2

Q2,1 Q2,2 Q2,3

Q0,−1 Q0,0 Q0,1

. . .
. . .

. . .









































where Ai,i and Qi,i for i = 0, 1, . . . , c − 1 are matrices of size
( c

i

)

×
( c

i

)

. All the sub-

matrices are now described below. A0,0 = (1−λ), Q0,1 = (λ/3, λ/3, λ/3), Q0,−1 = (µ, µ, µ),

Q0,0 = (0), Q1,1 = Q2,2 = 0, A1,1 = diag(1 − (λ + µ), 1 − (λ + µ), 1 − (λ + µ)), A2,2 =

diag(1− (λ + 2µ), 1− (λ + 2µ), 1− (λ + 2µ)), where diag(a1, a2, a3) denotes a 3× 3 matrix

with diagonal elements being a1, a2 and a3, and zero otherwise.

A1,0 =











µ

µ

µ











, A2,1 =











µ µ 0

µ 0 µ

0 µ µ











, Q1,0 =











3µ

3µ

3µ











,

Q2,1 =











1.5µ 1.5µ 0

1.5µ 0 1.5µ

0 1.5µ 1.5µ











, Q1,2 =











λ/2 λ/2 0

λ/2 0 λ/2

0 λ/2 λ/2











, Q2,3 =











λ

λ

λ











.

The transition probabilities have the following property: from any state in a given block,

the sum of transition probabilities over any block is a constant. Equivalently, the Markov
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chain is lumpable. Note also that P is not stochastically monotone in the usual sense

(for example, the fourth row probability vector is not stochastically less than the fifth row

probability vector).

We now regroup the blocks of P into a block matrix of block size (2c − 1) × (2c − 1) as

follows

P =























B0 C

D B1 C

D B1 C

D B1 C
. . .

. . .
. . .























, (4.1)

where

B0 =











A0,0 Q0,1 0

A1,0 A1,1 Q1,2

0 A2,1 A2,2











, B1 =











Q0,0 Q0,1 0

Q1,0 Q1,1 Q1,2

0 Q2,1 Q2,2











,

and

C =











0 0 0

0 0 0

Q2,3 0 0











, D =











0 0 Q0,−1

0 0 0

0 0 0











.

To show that P is stochastically block monotone in certain sense, we introduce the following

class of block monotone functions. Define F∗ = {f = (b1, b2, . . .) : bi = (bi1, bi2, bi3, bi4, bi5, bi6, bi7), i ≥

1, such that bi1 ≤ bi2 = bi3 = bi4 ≤ bi5 = bi6 = bi7} ⊆ F1; that is, F∗ consists of increasing

functions of block size 2c − 1 such that each block is partitioned into sub-blocks with sizes
( c

0

)

,
( c

1

)

, and
(

c
c−1

)

respectively, and the function takes on a constant value over each sub-

block. Clearly F∗ satisfies the tightness condition (does not satisfy the closure property of

block increasingness, though).

Using the lumpable property, we now show that Pf ∈ F∗ for any f ∈ F∗. For this, let

f = (b1, b2, . . .) ∈ F∗ where bi = (bi1, bi2, bi2, bi2, bi3, bi3, bi3), bi1 ≤ bi2 ≤ bi3, i ≥ 1, and let

pj be the jth row vector of P . Noticing that 3µ + λ = 1, we have

p1f
T = (1 − λ)b11 + λb12 ≤ p2f

T = p3f
T = p4f

T = µb11 + (1 − λ − µ)b12 + λb13

≤ p5f
T = p6f

T = p7f
T = 2µb12 + (1 − λ − 2µ)b13 + λb21 ≤

p8f
T = 3µb13 + λb22 ≤ p9f

T = p10f
T = p11f

T = 3µb21 + λb23
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≤ p12f
T = p13f

T = p14f
T = 3µb22 + λb31.

Also for any k ≥ 1,

pk7+1f
T = 3µbk3 + λb(k+1)2 ≤ pk7+2f

T = pk7+3f
T = pk7+4f

T = 3µb(k+1)1 + λb(k+1)3

≤ pk7+5f
T = pk7+6f

T = pk7+7f
T = 3µb(k+1)2 + λb(k+2)1.

Therefore, Pf ∈ F∗. Thus, P is stochastically block-monotone with respect to F∗. So

the stationary probability vector can be obtained by approximation from a stochastic block

augmentation of P .

As illustrated in this example, we sometimes need to carefully design a class of block

monotone functions in order to establish the block monotone property for some Markov

chain.

It is also possible to establish the block monotone property for the transition matrix

of the embedded Markov chain of a generalized model of the above example (Zhao and

Grassmann (1995)), where the interarrival time has a general distribution function. The

transition matrix is of GI/M/1 type.

4.2 Queues with non-repeating block rows

Our method can be also applied to queues whose transition matrices are of the forms with

non-repeating block rows. Some queueing systems with state-dependent parameters have

this kind of natural block monotone structures, as the following example shows.

Example 4.3 Consider a queueing system with a single server, a finite internal source of N

customers and an independent non-stationary Poisson arrival stream of external customers

(for a simplified version of this model, see, for example, page 299 of Neuts (1981)). Here

Poisson arrival rate λi, depending on the number of customers in the system upon arrival,

is increasing in i and bounded above by λ. Each internal customer who is not in service

issues a request for service after an exponential distributed length of time of mean 1/λ′.

The service times of both types of customers are exponentially distributed, respectively

with parameters µ for external and µ′ for internal customers.

The internal customers have preemptive-resume priority over external customers. The

classical independence assumptions on inter-arrival and service times are imposed. The
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model leads to a Markov chain on the state space E = {(i, j), i ≥ 0, 0 ≤ j ≤ N}. The index

i denotes the number of external customers in the system and the index j represents the

number of internal customers requesting service. When the second index assumes the value

j, the arrival rate of internal customers is given by (N − j)λ′.

The generator of this Markov chain is given by

Q =























A + B0 C0

A B1 C1

A B2 C2

A B3 C3

. . .
. . .

. . .























,

where A, Bi’s and Ci’s are matrices of order N + 1. The matrix A is zero, except for the

entry µ in the upper left-hand corner. The matrix Bi is a Jacobi matrix with diagonal

elements

−λi −Nλ′−µ, −λi − (N −1)λ′−µ′, −λi − (N −2)λ′−µ′, . . . , −λi −λ′−µ′, −λi −µ′.

The elements on the superior diagonal are given by Nλ′, (N − 1)λ′, . . . , λ′, and all elements

on the inferior diagonal are equal to µ′. The matrix Ci is equal to λiI. Now let c be

the largest absolute value of the diagonal entries in Q, and consider the transition matrix

P = I + Q/c of the embedded discrete-time Markov chain, which has a similar form as Q.

P =























A′ + B′
0 C ′

0

A′ B′
1 C ′

1

A′ B′
2 C ′

2

A′ B′
3 C ′

3

. . .
. . .

. . .























,

where A′ = A/c, B′
i = I + Bi/c, and C ′

i = Ci/c, i = 0, 1, . . ..

Using Example 2.8, we obtain that






















A′ + B′
0 C ′

0

A′ B′
0 C ′

0

A′ B′
0 C ′

0

A′ B′
0 C ′

0

. . .
. . .

. . .
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is stochastically block-monotone with respect to Fm. Observe that B′
i+1 = B′

i−(λi+1−λi)I

and C ′
i+1 = C ′

i +(λi+1−λi)I for i ≥ 0. Using Lemma 2.9, we obtain that P is stochastically

block-monotone with respect to Fm, so the stationary probability vector can be obtained

by approximation from a stochastic block augmentation of P , and the last block-column

augmentation provides the best approximation in the sense (3.6).

4.3 Queues of M/G/1 Type

In this subsection, we discuss an example in which the transition probability matrix is of

M/G/1 type.

Example 4.4 Zhao and Alfa (1995) studied the impact of the presence of impatient cus-

tomers on a telephone switch. An impatient customer (incomplete call), either due to a

dial tone delay or abundance from the system, still consumes about 30% to 80% of the real

time of processing a complete call. They formulated the model into a discrete time Markov

chain with finite capacity. Since the buffer size is usually large, we here relax the condi-

tion to infinite capacity. Specifically, we assume that the arrival process is Poisson with

rate λ. The service mechanism is last-come-first-serve and always the patient customers

get served first. Let T0 be the waiting time threshold. Upon the arrival, any customer is

patient. If the waiting time a customer has endured in the buffer before entering the service

is at least T0, then this customer becomes impatient and will remain impatient forever.

The service times of patient and impatient customers are constants and equal to a and b,

respectively, with a > b. Consider the time epoch tn immediately after the n-th service

completion. Let In and Jn be, respectively, the numbers of the impatient and patient cus-

tomers in the system at time tn. Because a patient customer may become impatient later,

neither of them is Markovian. To study this system, Zhao and Alfa (1995) proposed an

approximate Markovian model essentially refreshing all patient customers at each service

completion epoch by forgetting their waiting time history. For convenience, let the capacity

m (= T0/a) of the buffer for storing patient customers be an integer. Now, it is easy to see

that {(In, Jn), n ≥ 0} is a Markov chain on the state space {(i, j), i ≥ 0, j = 0, 1, . . . , m}. It
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can be shown that the transition matrix is given by

P =





























B0 B1 B2 B3 · · ·

A0 A1 A2 A3 · · ·

A0 A1 A2 · · ·

A0 A1 · · ·

A0 · · ·
. . .





























,

where

B0 =





























b0 b1 b2 · · · bm−1 bm

a0 a1 a2 · · · am−1 am

0 a0 a1 · · · am−2 am−1

0 0 a0 · · · am−3 am−2

...
...

... · · ·
...

...

0 0 0 · · · a0 a1





























, Bj =





























0 0 · · · 0 bm+j

0 0 · · · 0 am+j

0 0 · · · 0 am−1+j

0 0 · · · 0 am−2+j

...
... · · ·

...
...

0 0 · · · 0 a1+j





























for j = 1, 2, . . ., and

A0 =

















b0 b1 b2 · · · bm−1 bm

0 0 0 · · · 0 0
...

...
... · · ·

...
...

0 0 0 · · · 0 0

















, A1 =























0 0 0 · · · 0 bm+1

a0 a1 a2 · · · am−1 am

0 a0 a1 · · · am−2 am−1

...
...

... · · ·
...

...

0 0 0 · · · a0 a1























,

and

Aj =























0 0 · · · 0 bm+j

0 0 · · · 0 am−1+j

0 0 · · · 0 am−2+j

...
... · · ·

...
...

0 0 · · · 0 aj























for j = 2, 3, . . .. In the above matrices, for k = 0, 1, 2, . . .,

ak =
ak

k!
e−a and bk =

bk

k!
e−b.

To verify that P is stochastically block-monotone with respect to Fm, let Ci be the m×∞

sub-matrix of P formed by m rows between the (i−1)m+1st row and the imth row, i ≥ 1.
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Using Example 2.4 (3), we have Ci ≤Fm
Ci+1 for i ≥ 2. To verify that C1 ≤Fm

C2, let pj

and qj be the jth row vector of C1 and C2 respectively, 1 ≤ j ≤ m. Clearly p1 = q1. Also

from Example 2.4 (3), we have pj ≤Fm
qj for j ≥ 2. Thus C1 ≤Fm

C2.

Therefore, Ci ≤Fm
Ci+1 for any i, and it follows from Theorem 3.8 that P is stochas-

tically block-monotone with respect to Fm. So the stationary probability vector can be

obtained by approximation from a stochastic block-augmentation of P , and the last block-

column augmentation provides the best approximation in the sense (3.6).

Finally, we mention that the convergence of scaler augmentations for block-structured

matrices was studied by Grassmann and Heyman (1993), where the missing probabilities

are added to the last column of the northwest corner. The block augmentation can also

be used to deal with the convergence of some numerical algorithms, for example, some of

algorithms studied in Latouche (1993).
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