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Abstract Let n be a positive integer. Let δ3(n) denote the difference between the
number of (positive) divisors of n congruent to 1 modulo 3 and the number of those
congruent to 2 modulo 3. In 2004, Farkas proved that the arithmetic convolution sum

D3(n) :=
n−1∑

j=1

δ3( j)δ3(n − j)

satisfies the relation

3D3(n) + δ3(n) =
∑

d|n
3�d

d.

In this paper, we use a result about binary quadratic forms to prove a general arithmetic
convolution identity which contains Farkas’ formula and two other similar known
formulas as special cases. From our identity, we deduce a number of analogous new
convolution formulas.
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198 K. S. Williams

1 Introduction

As usual let N, Z and Q denote the sets of positive integers, integers and rational
numbers, respectively. In 2004, Farkas [7, Theorem 1] showed using the theory of
theta functions that the arithmetic function

δ3(n) :=
∑

d∈N
d|n

d≡1 (mod 3)

1 −
∑

d∈N
d|n

d≡2 (mod 3)

1 (1.1)

satisfies the relation

3
n−1∑

j=1

δ3( j)δ3(n − j) + δ3(n) = σ(n) − 3σ(n/3) (1.2)

for all positive integers n, where

σ(m) =

⎧
⎪⎪⎨

⎪⎪⎩

∑

d∈N
d|m

d if m ∈ N,

0 if m ∈ Q \ N.

(1.3)

(If f : N → Z, we understand throughout this paper that f (x) = 0 for all x ∈ Q\N.)
In 2005, Farkas [8] derived the arithmetic identity

2
n−1∑

j=1

δ4( j)δ4(n − j) + δ4(n) = σ(n) − 4σ(n/4) (1.4)

for all positive integers n, where

δ4(n) :=
∑

d∈N
d|n

d≡1 (mod 4)

1 −
∑

d∈N
d|n

d≡3 (mod 4)

1. (1.5)

This identitywas reproved byRaji [14] in 2008 using eta products and their logarithmic
derivatives.

In 2009, Guerzhoy and Raji [9] showed that

n−1∑

j=1

δ7( j)δ7(n − j) + δ7(n) = σ(n) − 7σ(n/7) (1.6)
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Some arithmetic convolution identities 199

for all positive integers n, where

δ7(n) :=
∑

d∈N
d|n

d≡1,2,4 (mod 7)

1 −
∑

d∈N
d|n

d≡3,5,6 (mod 7)

1. (1.7)

In Sect. 2, we prove a general arithmetic convolution identity, see Theorem 2.1,
from which the identities (1.2), (1.4) and (1.6) follow. Theorem 2.1 is proved using a
result from the theory of binary quadratic forms, specifically an extension of a theorem
of Dirichlet due to Kaplan and Williams [11] giving the number of representations
of a positive integer n by a representative system of inequivalent, primitive, positive-
definite, integral, binary quadratic forms with fundamental discriminant. In order to
apply Theorem 2.1, one requires the number of representations of n by certain quater-
nary quadratic forms of the type a1x2 + b1xy + c1y2 + a2z2 + b2zt + c2t2 of which
there are many examples in the literature. Then, in Sect. 3, we deduce from Theorem
2.1 twelve new arithmetic convolution identities similar to (1.2), (1.4) and (1.6), see
Theorem 3.1. Further examples illustrating Theorem 2.1 are given in Sects. 4 and 5.

2 A general arithmetic convolution identity

We begin with some definitions.

Definition 2.1 An integer D is called a discriminant if D is not a perfect square and
D ≡ 0 or 1 (mod 4).

Definition 2.2 A discriminant D is called a fundamental discriminant if there is no
integer g > 1 such that g2 | D and D/g2 ≡ 0 or 1 (mod 4).

Definition 2.3 Let D be a negative discriminant. Let
( D

∗
)
be the Legendre–Jacobi–

Kronecker symbol. For n ∈ N, define

δ|D|(n) :=
∑

d∈N
d|n

(
D

d

)
. (2.1)

For d ∈ N, we have

(−3

d

)
=

⎧
⎪⎨

⎪⎩

1 if d ≡ 1 (mod 3),

−1 if d ≡ 2 (mod 3),

0 if d ≡ 0 (mod 3),

(−4

d

)
=

⎧
⎪⎨

⎪⎩

1 if d ≡ 1 (mod 4),

−1 if d ≡ 3 (mod 4),

0 if d ≡ 0 (mod 2),
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200 K. S. Williams

(−7

d

)
=

⎧
⎪⎨

⎪⎩

1 if d ≡ 1, 2, 4 (mod 7),

−1 if d ≡ 3, 5, 6 (mod 7),

0 if d ≡ 0 (mod 7),

so that (2.1) agrees with (1.1), (1.5) and (1.7) when D = −3,−4 and−7, respectively.
We now recall a result from the theory of binary quadratic forms.

Proposition 2.1 Let D be a negative fundamental discriminant. Let

{ fi (x, y) = ai x
2 + bi xy + ci y

2 | i = 1, 2, . . . , h}

be a representative set of inequivalent, primitive, positive-definite, integral, binary
quadratic forms of discriminant D. (The positive integer h = h(D) is called the class
number of discriminant D.) Let n be a positive integer. Let N (n, d) denote the number
of representations of n by the forms fi (x, y)(i = 1, 2, . . . , h), that is

N (n, D) =
h∑

i=1

card{(x, y) ∈ Z
2 | fi (x, y) = n}.

Then

N (n, D) = w(D)δ|D|(n),

where

w(D) =

⎧
⎪⎨

⎪⎩

6 if D = −3,

4 if D = −4,

2 if D < −4.

Proof This is the special case of an extension of a formula due to Dirichlet proved by
Kaplan and Williams [11] when the discriminant D is restricted to be negative and
fundamental. ��

We now state our main result.

Theorem 2.1 Let k and � be positive integers. Let D and E be negative fundamental
discriminants. Let

{ fi (x, y) = ai x
2 + bi xy + ci y

2 | i = 1, 2, . . . , h(D)}

and

{g j (z, t) = A j z
2 + Bj zt + C j t

2 | j = 1, 2, . . . , h(E)}

be representative sets of inequivalent, primitive, positive-definite, integral, binary
quadratic forms of discriminants D and E, respectively. For n ∈ N, i ∈ {1, 2, . . . ,
h(D)} and j ∈ {1, 2, . . . , h(E)}, let
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Some arithmetic convolution identities 201

N (k fi + �g j ; n) := card{(x, y, z, t) ∈ Z
4 | n = k fi (x, y) + �g j (z, t)}.

Then

w(D)w(E)
∑

(r,s)∈N2
kr+�s=n

δ|D|(r)δ|E |(s) + w(D)h(E)δ|D|(n/k) + w(E)h(D)δ|E |(n/�)

=
h(D)∑

i=1

H(E)∑

j=1

N (k fi + �g j ; n).

Proof Let n ∈ N. Set N0 := N ∪ {0}. We have

h(D)∑

i=1

H(E)∑

j=1

N (k fi + �g j ; n) =
h(D)∑

i=1

H(E)∑

j=1

∑

(r,s)∈N2
0

kr+�s=n

∑

(x,y,z,t)∈Z4

fi (x,y)=r
g j (z,t)=s

1

=
∑

(r,s)∈N2
0

kr+�s=n

(h(D)∑

i=1

∑

(x,y)∈Z2

fi (x,y)=r

1

)(h(E)∑

j=1

∑

(z,t)∈Z2
g j (z,t)=s

1

)
.

In the sum over (r, s) ∈ N
2
0 satisfying kr + �s = n, we cannot have (r, s) = (0, 0) as

n ∈ N. In the same sum, the terms with s = 0 contribute

∑

r∈N
r=n/k

(h(D)∑

i=1

∑

(x,y)∈Z2

fi (x,y)=r

1

)(h(E)∑

j=1

∑

(z,t)∈Z2
g j (z,t)=0

1

)

= N (n/k, D)

h(E)∑

j=1

1 = w(D)δ|D|(n/k)h(E)

by Proposition 2.1, where N (n/k, D) = δ|D|(n/k) = 0 if k � n. Similarly, the terms
in the sum with r = 0 contribute

w(E)δ|E |(n/�)h(D).

Finally the terms with r 	= 0 and s 	= 0 contribute

∑

(r,s)∈N2
kr+�s=n

N (r, D)N (s, E) = w(D)w(E)
∑

(r,s)∈N2
kr+�s=n

δ|D|(r)δ|E |(s)

by Proposition 2.1. Putting the contributions together, we obtain the asserted identity.
��
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202 K. S. Williams

We conclude this section by deducing identities (1.2), (1.4) and (1.6) from Theorem
2.1.

To prove Farkas’ identity (1.2), we take D = E = −3 and k = � = 1 in Theorem
2.1. With this choice, we have h(D) = h(E) = h(−3) = 1, w(D) = w(E) =
w(−3) = 6, f1(x, y) = x2 + xy + y2 and g1(z, t) = z2 + zt + t2. Now for n ∈ N

we have

card {(x, y, z, t)∈Z
4 | n= x2+xy+y2+z2+zt+t2}=12σ(n)−36σ(n/3). (2.2)

This formula goes back to Liouville [12]. An elementary proof of Liouville’s formula
was given in 2002 by Huard, Ou Spearman and Williams [10, Theorem 13] and in
2008 by Chapman [6]. Then Theorem 2.1 gives

36
n−1∑

j=1

δ3( j)δ3(n − j) + 12δ3(n) = N ( f1 + g1; n) = 12σ(n) − 36σ(n/3)

from which (1.2) follows on dividing by 12.
To prove Farkas’ identity (1.4), we take D = E = −4 and k = � = 1 in Theorem

2.1. With this choice, we have h(D) = h(E) = h(−4) = 1, w(D) = w(E) =
w(−4) = 4, f1(x, y) = x2 + y2 and g1(z, t) = z2 + t2. Now for n ∈ N, we have
Jacobi’s well-known formula

card {(x, y, z, t) ∈ Z
4 | n = x2 + y2 + z2 + t2} = 8σ(n) − 32σ(n/4). (2.3)

A simple arithmetic proof of Jacobi’s formula was given in 2000 by Spearman and
Williams [15]. Theorem 2.1 gives

16
n−1∑

j=1

δ4( j)δ4(n − j) + 8δ4(n) = N ( f1 + g1; n) = 8σ(n) − 32σ(n/4)

from which (1.4) follows on dividing by 8.
To prove Guerzhoy and Raji’s identity (1.6), we take D = E = −7 and k = � = 1

in Theorem 2.1. With this choice, we have h(D) = h(E) = h(−7) = 1, w(D) =
w(E) = w(−7) = 2, f1(x, y) = x2 + xy + 2y2 and g1(z, t) = z2 + zt + 2t2. Now
for n ∈ N, we have

card {(x, y, z, t)∈Z
4 | n= x2+xy+2y2+z2+zt+2t2}=4σ(n)−28σ(n/7),

which was proved arithmetically by the author [16] in 2006. Then Theorem 2.1 gives

4
n−1∑

j=1

δ7( j)δ7(n − j) + 4δ7(n) = N ( f1 + g1; n) = 4σ(n) − 28σ(n/7)

from which Guerzhoy and Raji’s identity (1.6) follows on dividing by 4.
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Some arithmetic convolution identities 203

3 Twelve new arithmetic convolution identities

In this section, we derive from Theorem 2.1 twelve new arithmetic convolution identi-
ties which are analogous to (1.2), (1.4) and (1.6). We put the twelve identities together
as Theorem 3.1. In what follows C denotes the field of complex numbers and [x]
denotes the greatest integer less than or equal to the real number x .

Part (ix) of Theorem 3.1 involves the function c(n) (n ∈ N) defined by

q
∞∏

n=1

(1 − q2n)2(1 − q10n)2 =
∞∑

n=1

c(n)qn, q ∈ C, |q| < 1. (3.1)

Clearly c(n) = 0 for n ≡ 0 (mod 2). It is known that c(n) is a multiplicative function
of n [13, Table 1, p. 4853].

Theorem 3.1 Let n ∈ N. The following identities hold:

(i) 6
∑

1≤m<n/2

δ3(m)δ3(n − 2m) + δ3(n) + δ3(n/2)

= σ(n) − 2σ(n/2) + 3σ(n/3) − 6σ(n/6).
(ii) 6

∑

1≤m<n/3

δ3(m)δ3(n − 3m) + δ3(n) + δ3(n/3)

= (2 + 3[n/3] − n)σ (n) − 6σ(n/3).
(iii) 6

∑

1≤m<n/4

δ3(m)δ3(n − 4m) + δ3(n) + δ3(n/4)

= σ(n) − 3σ(n/2) − 3σ(n/3) + 4σ(n/4) + 9σ(n/6) − 12σ(n/12).
(iv) 6

∑

1≤m<n/6

δ3(m)δ3(n − 6m) + δ3(n) + δ3(n/6)

= Aσ(n) − 2Aσ(n/2) + 5σ(n/3) − 10σ(n/6),
where

A =

⎧
⎪⎨

⎪⎩

−1 if n ≡ 0 (mod 3),

1 if n ≡ 1 (mod 3),

0 if n ≡ 2 (mod 3).

(v) 6
∑

r,s≥1
2r+3s=n

δ3(r)δ3(s) + δ3(n/2) + δ3(n/3)

= Bσ(n) − 2Bσ(n/2) + 5σ(n/3) − 10σ(n/6),
where

B =

⎧
⎪⎨

⎪⎩

−1 if n ≡ 0 (mod 3),

0 if n ≡ 1 (mod 3),

1 if n ≡ 2 (mod 3).
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204 K. S. Williams

(vi) 4
∑

1≤m<n/2

δ4(m)δ4(n − 2m) + δ4(n) + δ4(n/2)

= σ(n) − σ(n/2) + 2σ(n/4) − 8σ(n/8).
(vii) 4

∑

1≤m<n/3

δ4(m)δ4(n − 3m) + δ4(n) + δ4(n/3)

= σ(n) − 2σ(n/2) − 3σ(n/3) + 4σ(n/4) + 6σ(n/6) − 12σ(n/12).
(viii) 8

∑

1≤m<n/4

δ4(m)δ4(n − 4m) + 2δ4(n) + 2δ4(n/4)

= (
1 + (−4

n

))
σ(n) − σ(n/2) + 4σ(n/8) − 16σ(n/16).

(ix) 12
∑

1≤m<n/5

δ4(m)δ4(n − 5m) + 3δ4(n) + 3δ4(n/5)

= σ(n) − 4σ(n/4) + 5σ(n/5) − 20σ(n/20) + 2c(n).

(x)
n−1∑

m=1

δ8(m)δ8(n − m) + δ8(n)

= σ(n) − σ(n/2) + 2σ(n/4) − 8σ(n/8).
(xi) 2

∑

1≤m<n/2

δ8(m)δ8(n − 2m) + δ8(n) + δ8(n/2)

= σ(n) − σ(n/2) + 4σ(n/8) − 16σ(n/16).
(xii) 2

∑

1≤m<n/2

δ11(m)δ11(n − 2m) + δ11(n) + δ11(n/2)

= σ(n) − 2σ(n/2) + 11σ(n/11) − 22σ(n/22).

Proof (i) We choose D = E = −3, k = 1 and � = 2 in Theorem 2.1. With this
choice, we have h(D) = h(E) = h(−3) = 1, w(D) = w(E) = w(−3) = 6,
f1(x, y) = x2 + xy + y2 and g1(z, t) = z2 + zt + t2. By [1, Theorem 13, p. 180],
we have

N ( f1 + 2g1; n) = card{(x, y, z, t) ∈ Z
4 | x2 + xy + y2 + 2z2 + 2zt + 2t2 = n}

= 6σ(n) − 12σ(n/2) + 18σ(n/3) − 36σ(n/6).

Appealing to Theorem 2.1, we obtain the asserted formula after dividing through by
6.

(ii) The proof is similar to that of (i). We choose D = E = −3, k = 1 and � = 3
in Theorem 2.1 and use the result

N ( f1 + 3g1; n) = card{(x, y, z, t) ∈ Z
4 | x2 + xy + y2 + 3z2 + 3zt + 3t2 = n}

= 6(2 + 3[n/3] − n)σ (n) − 36σ(n/3),

see [1, Theorem 14, p. 180].
(iii) The proof proceeds as in (i) and (ii). We choose D = E = −3, k = 1 and

� = 4 in Theorem 2.1 and use the result

N ( f1 + 4g1; n) = card{(x, y, z, t) ∈ Z
4 | x2 + xy + y2 + 4z2 + 4zt + 4t2 = n}

= 6σ(n) − 18σ(n/2) − 18σ(n/3) + 24σ(n/4) + 54σ(n/6)

− 72σ(n/12),
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Some arithmetic convolution identities 205

which follows from [1, Theorem 15, p. 181] using the elementary identities σ(n) =
3σ(n/2) − 2σ(n/4) and σ(n/3) = 3σ(n/6) − 2σ(n/12) when n is even.

(iv) The proof is the same as those in (i), (ii) and (iii) except that we use the result

N ( f1 + 6g1; n) = 6Aσ(n) − 12Aσ(n/2) + 30σ(n/3) − 60σ(n/6),

see [1, Theorem 16, p. 181].
(v) The proof is similar to those in (i)–(iv). We choose D = E = −3, k = 2 and

� = 3 in Theorem 2.1 and use the result

N (2 f1 + 3g1; n) = 6Bσ(n) − 12Bσ(n/2) + 30σ(n/3) − 60σ(n/6),

see [1, Theorem 17, p. 181].
(vi)We choose D = E = −4, k = 1 and � = 2. Here h(D) = h(E) = h(−4) = 1,

w(D) = w(E) = w(−4) = 4, f1(x, y) = x2 + y2 and g1(z, t) = z2 + t2. By [3, p.
297], we have

N ( f1 + 2g1; n) = card{(x, y, z, t) ∈ Z
4 | x2 + y2 + 2z2 + 2t2 = n}

= 4σ(n) − 4σ(n/2) + 8σ(n/4) − 32σ(n/8).

Appealing to Theorem 2.1, we obtain (vi) after dividing by 4.
(vii) The proof is similar to (vi). We choose D = E = −4, k = 1 and � = 3 in

Theorem 2.1 and use the result

N ( f1 + 3g1; n) = card{(x, y, z, t) ∈ Z
4 | x2 + y2 + 3z2 + 3t2 = n}

= 4σ(n) − 8σ(n/2) − 12σ(n/3) + 16σ(n/4)

+ 24σ(n/6) − 48σ(n/12),

see [3, p. 297].
(viii) The proof is as in (vi) and (vii). We choose D = E = −4, k = 1 and � = 4

in Theorem 2.1 and use the result

N ( f1 + 4g1; n) =
(
2 + 2

(−4

n

))
σ(n) − 2σ(n/2) + 8σ(n/8) − 32σ(n/16),

see [3, p. 298].
(ix) The proof proceeds as in (vi), (vii) and (viii). We choose D = E = −4, k = 1

and � = 5 in Theorem 2.1 and use the result

N ( f1 + 5g1; n) = 4

3
σ(n) − 16

3
σ(n/4) + 20

3
σ(n/5) − 80

3
σ(n/20) + 8

3
c(n),

where c(n) (n ∈ N) is defined in (3.1), see [2, Eq. (7.3), p. 49].
(x) We choose D = E = −8 and k = � = 1 in Theorem 2.1. Here h(D) =

h(E) = h(−8) = 1, w(D) = w(E) = w(−8) = 2, f1(x, y) = x2 + 2y2 and
g1(z, t) = z2 + 2t2. By [3, Theorem 1.8, p. 297], we have
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206 K. S. Williams

N ( f1 + g1; n) = card{(x, y, z, t) ∈ Z
4 | x2 + 2y2 + z2 + 2t2 = n}

= 4σ(n) − 4σ(n/2) + 8σ(n/4) − 32σ(n/8).

Appealing to Theorem 2.1, we obtain (x) after dividing by 4.
(xi) The proof proceeds as in (x) except that we choose � = 2 and use the formula

[3, Theorem 1.14, p. 300]

N ( f1 + 2g1; n) = card{(x, y, z, t) ∈ Z
4 | x2 + 2y2 + 2z2 + 4t2 = n}

= 2σ(n) − 2σ(n/2) + 8σ(n/8) − 32σ(n/16).

(xii)We choose D = E = −11, k = 1 and � = 2. Here h(D) = h(E) = h(−11) = 1,
w(D) = w(E) = w(−11) = 2, f1(x, y) = x2+xy+3y2 and g1(z, t) = z2+zt+3t2.
By [5, Theorem 1.20], we have

N ( f1 + 2g1; n) = card{(x, y, z, t) ∈ Z
4 | x2 + xy + 3y2 + 2z2 + 2zt + 6t2 = n}

= 2σ(n) − 4σ(n/2) + 22σ(n/11) − 44σ(n/22).

Appealing to Theorem 2.1, we obtain (xii) after dividing by 2. ��

In the proofs of all twelve parts of Theorem 3.1, we choose the fundamental dis-
criminants D and E such that D = E and h(D) = h(E) = 1. In Sect. 4 we illustrate
Theorem 2.1 with an example where we choose D and E such that D = E and
h(D) = h(E) > 1 and in Sect. 5 an example with D 	= E .

4 An example with the class number greater than 1

Arepresentative set of inequivalent, primitive, positive-definite, binary quadratic forms
of discriminant −20 is {x2 + 5y2, 2x2 + 2xy + 3y2}, so that h(−20) = 2. We define
for n ∈ N

N (1, 5, 1, 5; n) := card{(x, y, z, t) ∈ Z
4 | x2 + 5y2 + z2 + 5t2 = n},

N (1, 5, 2, 2, 3; n) := card{(x, y, z, t) ∈ Z
4 | x2 + 5y2 + 2z2 + 2zt + 3t2 = n}

and

N (2, 2, 3, 2, 2, 3; n) := card{(x, y, z, t) ∈ Z
4 | 2x2 + 2xy

+ 3y2 + 2z2 + 2zt + 3t2 = n}.

We recall from the proof of Theorem 3.1(ix) that

N (1, 5, 1, 5; n) = 4

3
σ(n) − 16

3
σ(n/4) + 20

3
σ(n/5) − 80

3
σ(n/20) + 8

3
c(n),

(4.1)
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where c(n) is defined in (3.1). Recently a formula for N (1, 5, 2, 2, 3; n) has been
determined by Alaca, Alaca and Williams [5, Theorem 1.15], namely

N (1, 5, 2, 2, 3; n) = 2σ(n) − 4σ(n/2) + 8σ(n/4) − 10σ(n/5)

+ 20σ(n/10) − 40σ(n/20). (4.2)

As far as the author is aware, the number of representations of n by 2x2+2xy+3y2+
2z2 + 2zt + 3t2 has not been determined, and as we require this number, we give a
formula for it in the next theorem.

Theorem 4.1 Let n ∈ N. Then

N (2, 2, 3, 2, 2, 3; n) = 4

3
σ(n) − 16

3
σ(n/4) + 20

3
σ(n/5) − 80

3
σ(n/20) − 4

3
c(n).

Proof For q ∈ C with |q| < 1, we define

ϕ(q) :=
∑

x∈Z

qx
2

and

h(q) :=
∑

(x,y)∈Z2

q2x
2+2xy+3y2 .

The function ϕ(q) is known as Ramanujan’s theta function. We have

h(q2) =
∑

(x,y)∈Z2

q4x
2+4xy+6y2 =

∑

(x,y)∈Z2

q(2x+y)2+5y2 =
∑

(x,y)∈Z2

x≡y (mod 2)

qx
2+5y2 .

On the other hand, we have

ϕ(q)ϕ(q5) + ϕ(−q)ϕ(−q5) =
∑

(x,y)∈Z2

qx
2+5y2 +

∑

(x,y)∈Z2

(−1)x−yqx
2+5y2 ,

as (−1)x
2+5y2 = (−1)x−y . Thus

ϕ(q)ϕ(q5) + ϕ(−q)ϕ(−q5) = 2
∑

(x,y)∈Z2

x≡y (mod 2)

qx
2+5y2 .

Hence

ϕ(q)ϕ(q5) + ϕ(−q)ϕ(−q5) = 2h(q2).
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208 K. S. Williams

Squaring this equation, we obtain (as ϕ(q)ϕ(−q) = ϕ2(−q2))

ϕ2(q)ϕ2(q5) + ϕ2(−q)ϕ2(−q5) + 2ϕ2(−q2)ϕ2(−q10) = 4h2(q2).

Now

ϕ2(q)ϕ2(q5) =
∞∑

n=0

N (1, 5, 1, 5; n)qn

and

ϕ2(−q)ϕ2(−q5) =
∞∑

n=0

N (1, 5, 1, 5; n)(−q)n .

Therefore

ϕ2(q)ϕ2(q5) + ϕ2(−q)ϕ2(−q5) = 2
∞∑

n=0
n≡0 (mod 2)

N (1, 5, 1, 5; n)qn

= 2
∞∑

n=0

N (1, 5, 1, 5; 2n)q2n .

Also

ϕ2(−q2)ϕ2(−q10) =
∞∑

n=0

N (1, 5, 1, 5; n)(−q2)n =
∞∑

n=0

N (1, 5, 1, 5; n)(−1)nq2n .

Thus

4h2(q2) = ϕ2(q)ϕ2(q5) + ϕ2(−q)ϕ2(−q5) + 2ϕ2(−q2)ϕ2(−q10)

=
∞∑

n=0

(2N (1, 5, 1, 5; 2n) + 2(−1)nN (1, 5, 1, 5; n))q2n .

Now

h2(q) =
∞∑

n=0

N (2, 2, 3, 2, 2, 3; n)qn .

Thus

h2(q2) =
∞∑

n=0

N (2, 2, 3, 2, 2, 3; n)q2n .
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Hence

∞∑

n=0

(2N (1, 5, 1, 5; 2n) + 2(−1)nN (1, 5, 1, 5; n))q2n

= 4
∞∑

n=0

N (2, 2, 3, 2, 2, 3; n)q2n .

Equating coefficients of q2n (n ∈ N), we obtain

N (2, 2, 3, 2, 2, 3; n) = 1

2
N (1, 5, 1, 5; 2n) + (−1)n

2
N (1, 5, 1, 5; n).

Replacing n by 2n in (4.1), we deduce

N (1, 5, 1, 5; 2n) = 4

3
σ(2n) − 16

3
σ(n/2) + 20

3
σ(2n/5) − 80

3
σ(n/10)

as c(2n) = 0. Now

σ(2n) = 3σ(n) − 2σ(n/2), σ (2n/5) = 3σ(n/5) − 2σ(n/10),

so that

N (1, 5, 1, 5; 2n) = 4σ(n) − 8σ(n/2) + 20σ(n/5) − 40σ(n/10).

We now treat two cases according as n is odd or even.
If n is odd, we have

N (1, 5, 1, 5; 2n) = 4σ(n) + 20σ(n/5).

Thus

N (2, 2, 3, 2, 2, 3; n) = 1

2
N (1, 5, 1, 5; 2n) − 1

2
N (1, 5, 1, 5; n)

= 1

2
(4σ(n) + 20σ(n/5)) − 1

2

(
4

3
σ(n) + 20

3
σ(n/5) + 8

3
c(n)

)

= 4

3
σ(n) + 20

3
σ(n/5) − 4

3
c(n)

= 4

3
σ(n) − 16

3
σ(n/4) + 20

3
σ(n/5) − 80

3
σ(n/20) − 4

3
c(n),

as asserted.
If n is even, as

σ(n/2) = 1

3
σ(n) + 2

3
σ(n/4), σ (n/10) = 1

3
σ(n/5) + 2

3
σ(n/20), c(n) = 0,
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we have by (4.1)

N (1, 5, 1, 5; 2n) = 4

3
σ(n) − 16

3
σ(n/4) + 20

3
σ(n/5) − 80

3
σ(n/20)

= N (1, 5, 1, 5; n).

Thus

N (2, 2, 3, 2, 2, 3; n) = 1

2
N (1, 5, 1, 5; 2n) + 1

2
N (1, 5, 1, 5; n)

= N (1, 5, 1, 5; n)

= 4

3
σ(n) − 16

3
σ(n/4) + 20

3
σ(n/5) − 80

3
σ(n/20) − 4

3
c(n),

as asserted. ��.
Theorem 4.2 Let n ∈ N. Then

3
n−1∑

m=1

δ20(m)δ20(n − m) + 6δ20(n) = 5σ(n) − 6σ(n/2) + 4σ(n/4) − 5σ(n/5)

+ 30σ(n/10) − 100σ(n/20) + c(n).

Proof We choose D = E = −20 and k = � = 1 in Theorem 2.1. Here h(D) =
h(E) = h(−20) = 2, w(D) = w(E) = w(−20) = 2, f1(x, y) = x2 + 5y2,
f2(x, y) = 2x2 + 2xy + 3y2, g1(z, t) = z2 + 5t2 and g2(z, t) = 2z2 + 2xy + 3y2.
Also, appealing to (4.1), (4.2) and Theorem 4.1, we have

N ( f1 + g1; n) = N (1, 5, 1, 5; n)

= 4

3
σ(n) − 16

3
σ(n/4) + 20

3
σ(n/5) − 80

3
σ(n/20) + 8

3
c(n),

N ( f1 + g2; n) = N ( f2 + g1; n) = N (1, 5, 2, 2, 3; n)

= 2σ(n) − 4σ(n/2) + 8σ(n/4) − 10σ(n/5)

+ 20σ(n/10) − 40σ(n/20),

N ( f2 + g2; n) = N (2, 2, 3, 2, 2, 3; n)

= 4

3
σ(n) − 16

3
σ(n/4) + 20

3
σ(n/5) − 80

3
σ(n/20) − 4

3
c(n).

Thus

2∑

i=1

2∑

j=1

N ( fi + g j ; n) = 20

3
σ(n) − 8σ(n/2) + 16

3
σ(n/4) − 20

3
σ(n/5)

+ 40σ(n/10) − 400

3
σ(n/20) + 4

3
c(n).
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Appealing to Theorem 2.1, we obtain the asserted result on multiplying the resulting
formula by 3/4. ��

5 An example with unequal discriminants

We treat the special case of Theorem 2.1 when D = −3 and E = −4. In this case,
the evaluation of the right-hand side of Theorem 2.1 requires the function

σ(r, s, 12; n) :=
∑

d∈N
d|n

d≡r (mod 12)
n/d≡s (mod 12)

d (5.1)

rather than σ(n). We note that σ(r, s, 12; n) = 0 if n 	≡ rs (mod 12).

Theorem 5.1 Let n ∈ N. For r, s ∈ Z, we define

c(r, s) :=
(
3

(−3

s

)
−

(−3

r

)) (
4

(−4

s

)
+

(−4

r

))
. (5.2)

Then

24
n−1∑

m=1

δ3(m)δ4(n − m) + 6δ3(n) + 4δ4(n) =
11∑

r,s=0
rs≡n (mod 12)

c(r, s)σ (r, s, 12; n).

Proof In [4, p. 225], the arithmetic functions A(n), B(n), C(n) and D(n) are defined
for n ∈ N by

A(n) :=
∑

d|n
d

(
12

n/d

)
,

B(n) :=
∑

d|n
d

(−3

d

)( −4

n/d

)
,

C(n) :=
∑

d|n
d

( −3

n/d

)(−4

d

)
,

D(n) :=
∑

d|n
d

(
12

d

)
,

and their basic properties given. Appealing to (5.2), we see that

A(n) =
11∑

r,s=0

(
12

s

)
σ(r, s, 12; n),
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B(n) =
11∑

r,s=0

(−3

r

) (−4

s

)
σ(r, s, 12; n),

C(n) =
11∑

r,s=0

(−4

r

) (−3

s

)
σ(r, s, 12; n),

D(n) =
11∑

r,s=0

(
12

r

)
σ(r, s, 12; n).

By [4, p. 233], we have

card{(x, y, z, t) ∈ Z
4 | x2 + xy + y2 + z2 + t2 = n}

= 12A(n) − 4B(n) + 3C(n) − D(n)

=
11∑

r,s=0

(
3

(−3

s

)
−

(−3

r

)) (
4

(−4

s

)
+

(−4

r

))
σ(r, s, 12; n),

that is

card{(x, y, z, t) ∈ Z
4 | x2 + xy + y2 + z2 + t2 = n}

=
11∑

r,s=0

c(r, s)σ (r, s, 12; n), (5.3)

by (5.1). Choosing D = −3, E = −4 and k = � = 1 in Theorem 2.1, as h(D) =
h(−3) = 1, h(E) = h(−4) = 1, w(D) = w(−3) = 6, w(E) = w(−4) = 4,
f1(x, y) = x2 + xy + y2 and g1(z, t) = z2 + t2, we obtain

24
n−1∑

m=1

δ3(m)δ4(n − m) + 6δ3(n) + 4δ4(n) = N ( f1 + g1; n)

= card{(x, y, z, t) ∈ Z
4 | x2 + xy + y2 + z2 + t2 = n}

=
11∑

r,s=0

c(r, s)σ (r, s, 12; n)

by (5.2). This is the asserted identity. ��
As we have already mentioned, elementary arithmetic proofs of the formulas in

(2.2) and (2.3) are known. As far as the author is aware, no such proof is known for
the formula (5.3). It would be interesting to give such a proof.

The referee has pointed out that the identities derived in this paper might be of
interest from thepoint of viewofmodular formsbyconsidering the connectionbetween
sums of classes of theta series associated to positive-definite quadratic forms and
Eisenstein series. The author thanks the referee for his/her helpful review of his paper.
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