Research Article

Kenneth S. Williams*

A class of subsums of Euler’s sum

DOI: 10.1515/anly-2015-0018
Received May 3, 2015; revised October 1, 2015; accepted January 19, 2016

Abstract: A class of sums of the type
\[\sum_{n=1}^{\infty} \frac{1}{n^{2k}} \]
is evaluated, where \(k, m \) and \(r \) are positive integers with \(m \geq 2 \) and \(a_1, \ldots, a_r \) are integers satisfying \(1 \leq a_1 < a_2 < \cdots < a_r \leq m - 1 \).

Keywords: Euler’s sum, Euler’s formula, Bernoulli numbers and polynomials, Kronecker symbol, subsums of Euler’s sum

MSC 2010: 11A07, 11A25, 11B25, 11B68, 11F66, 11Y60

1 Introduction

Let \(\mathbb{N} := \{1, 2, 3, \ldots\} \), \(\mathbb{N}_0 := \{0, 1, 2, \ldots\} \) and \(\mathbb{Z} := \{0, \pm 1, \pm 2, \ldots\} \). Let \(\mathbb{Q} \), \(\mathbb{Q} \) and \(\mathbb{R} \) denote the fields of rational numbers, algebraic numbers and real numbers, respectively.

In the eighteenth century Euler proved that
\[\sum_{n=1}^{\infty} \frac{1}{n^{2k}} = \frac{(-1)^{k-1}2^{2k-1}B_{2k}n^{2k}}{(2k)!}, \quad k \in \mathbb{N}, \quad (1.1) \]
where \(B_{\ell} (\ell \in \mathbb{N}_0) \) denotes the \(\ell \)th Bernoulli number. Euler’s formula (1.1) is well known and many proofs of it occur in the literature, see for example [2, 3, 8].

Some subsums of Euler’s sum \(\sum_{n=1}^{\infty} \frac{1}{n^{2k}} \) of the type
\[\sum_{n=a_1, \ldots, a_r (\text{mod } m)}^{\infty} \frac{1}{n^{2k}}, \quad k, m, r \in \mathbb{N}, \quad m \geq 2, \quad (1.2) \]
where \(a_1, \ldots, a_r \in \mathbb{Z} \) satisfy \(0 \leq a_1 < a_2 < \cdots < a_r \leq m - 1 \), have been evaluated. One very simple example is
\[\sum_{n=1}^{\infty} \frac{1}{n^{2k}} = \frac{(-1)^{k-1}2^{2k-1}B_{2k}n^{2k}}{m^{2k}(2k)!}, \quad k, m \in \mathbb{N}, \quad (1.3) \]
which follows immediately from (1.1). Another simple example is
\[\sum_{n=1}^{\infty} \frac{1}{n^{2k}} = \frac{(-1)^{k-1}(2^{2k} - 1)B_{2k}n^{2k}}{2(2k)!}, \quad k \in \mathbb{N}, \]
which follows by subtracting (1.3) with \(m = 2 \) from (1.1).

*Corresponding author: Kenneth S. Williams: Centre for Research in Algebra and Number Theory, School of Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada K1S 5B6, e-mail: kennethwilliams@cunet.carleton.ca
Recently Navas, Ruiz and Varona [6, p. 34, Proposition 3.5] evaluated the subsum
\[\sum_{n=1}^{\infty} \frac{1}{n^{2k}}, \quad k, m, s \in \mathbb{N}, \]
for \(m \equiv 1 (\text{mod } 2) \), \(m \geq 3 \) and \(s \in \{1, 2, \ldots, (m-1)/2\} \) in terms of values of trigonometric functions and values of Bernoulli polynomials. They stated that there is a similar evaluation for \(m \equiv 0 (\text{mod } 2) \) but did not give it. We now state their theorem in a form valid for all \(m \in \mathbb{N} \) with \(m \geq 3 \) and all \(s \in \mathbb{Z} \) with \(2s \not\equiv 0 (\text{mod } m) \), and give a very simple proof of it in Section 2. We recall that the Bernoulli polynomial \(B_n(x) \) \((n \in \mathbb{N}_0, x \in \mathbb{R})\) is defined by
\[B_n(x) := \sum_{j=0}^{n} \binom{n}{j} B_r x^{n-j}, \]
and we note the properties
\[B_n(0) = B_n, \quad B_{2k}(x) = B_{2k}(1-x), \quad n, k \in \mathbb{N}_0. \] \((1.4) \)

Theorem 1.1 (Navas, Ruiz and Varona). Let \(k, m \in \mathbb{N} \) with \(m \geq 3 \). Let \(s \in \mathbb{Z} \) be such that \(2s \not\equiv 0 (\text{mod } m) \). Then
\[\sum_{n=1}^{\infty} \frac{1}{n^{2k}} = \frac{(-1)^{k-1} 2^{k-1} \pi^{2k} m^{k-1}}{m(2k)!} \sum_{j=0}^{m-1} B_{2k}(\mathbb{Q}) \cos(2\pi s j/m). \]
As \(B_{2k}(\mathbb{Q}) \in \mathbb{Q} \) and \(\cos(2\pi s j/m) \in \mathbb{Q} \cap \mathbb{R} \), we see that
\[\frac{1}{n^{2k}} \sum_{n=1}^{\infty} \frac{1}{n^{2k}} \in \mathbb{Q} \cap \mathbb{R}. \]

Hence a sum of the form (1.2) with
\[\begin{cases} r \equiv 0 (\text{mod } 2), & 1 \leq a_1 < a_2 < \cdots < a_r \leq m-1, \\ (a_j, m) = 1, & a_{r+1-j} = m - a_j, \quad j = 1, \ldots, r, \end{cases} \]
is a sum of sums of the type given in Theorem 1.1, namely
\[\sum_{j=1}^{\lfloor m/2 \rfloor} \sum_{n=1}^{\infty} \frac{1}{n^{2k}}, \]
where each \(2a_j \not\equiv 0 (\text{mod } m) \), and thus is of the form \(a \pi^{2k} \), where \(a \in \mathbb{Q} \cap \mathbb{R} \). We give a class of subsums of this type for which \(a \) can be given explicitly as a rational linear combination of square roots of positive integers, see Theorem 4.7. The idea of such a result is implicit in the work of Shanks and Wrench [7] and our purpose is to make it completely explicit. Two examples are
\[\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{(8 - 5\sqrt{2} + 4\sqrt{3} - 3\sqrt{6})n^2}{288}, \]
see Corollary 5.10, and
\[\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{n^2}{49} (3 - \sqrt{7}), \]
see Corollary 5.12.

In Section 2 we prove Theorem 1.1. In Section 3 we define the class of subsums of Euler’s sum that we shall evaluate in Section 4. In Section 4 we make use of Theorem 1.1 to prove our main result (Theorem 4.7). In Section 5 we give some examples illustrating Theorem 4.7.
2 Proof of Theorem 1.1

We make use of the Fourier expansion of the Bernoulli polynomial $B_{2k}(x)$ ($k \in \mathbb{N}$), namely,

$$B_{2k}(x) = \frac{(-1)^{k-1}(2k)!}{2^{2k-1}\pi^{2k}} \sum_{n=1}^{\infty} \frac{\cos 2n\pi x}{n^{2k}}, \quad x \in [0, 1],$$ \hspace{1cm} (2.1)

see for example [1, p. 805]. Appealing to (2.1), we obtain

$$\sum_{j=0}^{m-1} \cos(2\pi j/m) B_{2k}(j/m) = \sum_{j=0}^{m-1} \cos(2\pi j/m) \frac{(-1)^{k-1}(2k)!}{2^{2k-1}\pi^{2k}} \sum_{n=1}^{\infty} \frac{\cos(2\pi j/m)}{n^{2k}}$$

$$= \frac{(-1)^{k-1}(2k)!}{2^{2k-1}\pi^{2k}} \sum_{n=1}^{\infty} \frac{1}{n^{2k}} \sum_{j=0}^{m-1} \cos(2\pi j/m) \cos(2\pi jm/m)$$

$$= \frac{(-1)^{k-1}(2k)!}{2^{2k}\pi^{2k}} \sum_{n=1}^{\infty} \frac{1}{n^{2k}} \sum_{j=0}^{m-1} (\cos(2\pi (n-s)j/m) + \cos(2\pi (n+s)j/m)).$$

Now

$$\sum_{j=0}^{m-1} \cos(2\pi (n \mp s)j/m) = \begin{cases}
 m & \text{if } n \equiv \pm s \text{ (mod } m), \\
 0 & \text{if } n \not\equiv \pm s \text{ (mod } m),
\end{cases}$$

and $s \not\equiv -s \text{ (mod } m)$ (as $2s \not\equiv 0 \text{ (mod } m)$) so

$$\sum_{j=0}^{m-1} \cos(2\pi jm/m) B_{2k}(j/m) = \frac{(-1)^{k-1}(2k)!m}{2^{2k}\pi^{2k}} \sum_{n=1}^{\infty} \frac{1}{n^{2k}} \sum_{n=1}^{\infty} \frac{1}{n^{2k}}$$

from which the asserted formula follows.

3 A class of subsums of Euler’s sum

We begin with some definitions.

Definition 3.1. We call a positive integer d a discriminant if d is not a perfect square and $d \equiv 0 \text{ or } 1 \text{ (mod } 4)$. A discriminant d is called a fundamental discriminant if there is no integer $g > 1$ such that $g^2|d$ and $d/g^2 \equiv 0 \text{ or } 1 \text{ (mod } 4)$. The conductor $f = f(d)$ of a discriminant d is the largest positive integer such that $f^2|d$ and $d/f^2 \equiv 0 \text{ or } 1 \text{ (mod } 4)$. The fundamental discriminant $\Delta = \Delta(d)$ associated with the discriminant d is $\Delta = df^2$, where f is the conductor of d.

We emphasize that in this paper we are restricting discriminants to be positive integers. The Kronecker symbol for a discriminant d and a positive integer n is written as $(\frac{d}{n})$. Properties of the Kronecker symbol are given in [4, pp. 304–306]. The Kronecker symbol $(\frac{d}{n})$ is a completely multiplicative function of n. Moreover,

$$\left(\frac{d}{n} \right) = \begin{cases}
 0 & \text{if } (n, d) > 1, \\
 \pm 1 & \text{if } (n, d) = 1.
\end{cases}$$ \hspace{1cm} (3.1)

Also, if f is the conductor of the discriminant d and $\Delta = df^2$ is the fundamental discriminant associated with d then

$$\left(\frac{d}{n} \right) = \begin{cases}
 0 & \text{if } (n, f) > 1, \\
 \left(\frac{d}{\Delta} \right) & \text{if } (n, f) = 1.
\end{cases}$$ \hspace{1cm} (3.2)

Two further properties of the Kronecker symbol are

$$\left(\frac{d}{n} \right) = \left(\frac{d}{d-n} \right), \quad 1 \leq n \leq d-1,$$ \hspace{1cm} (3.3)
see [4, p. 305, Theorem 3.3] for a proof, and
\[
\sum_{\substack{r=1 \\ (r,d)=1}}^{d-1} \left(\frac{d}{r} \right) = 0. \tag{3.4}
\]

By (3.3) we have
\[
\sum_{\substack{1 \leq r < d/2 \\ (r,d)=1}} \left(\frac{d}{r} \right) = \sum_{\substack{d/2 < r < d/2 \\ (r,d)=1}} \left(\frac{d}{r} \right) = \frac{1}{2} \sum_{\substack{r=1 \\ (r,d)=1}}^{d-1} \left(\frac{d}{r} \right)
\]
as \(d/2\) is not an integer if \(d\) is odd and \((d/2, d) = d/2 > 1\) if \(d\) is even since \(d \geq 8\) in this case. Hence, by (3.4), we deduce
\[
\sum_{\substack{1 \leq r < d/2 \\ (r,d)=1}} \left(\frac{d}{r} \right) = 0. \tag{3.5}
\]

The final property of the Kronecker symbol that we need is the identity
\[
\sum_{\substack{t=1 \\ (t,\Delta)=1}}^{\Delta-1} \left(\frac{\Delta}{t} \right) e^{2\pi nt/\Delta} = \left(\frac{\Delta}{n} \right) \sqrt{\Delta}, \tag{3.6}
\]
which is valid for any positive integer \(n\) and any fundamental discriminant \(\Delta\), see [5, p. 221, Theorem 215]. As \((\frac{\Delta}{\bar{n}})\sqrt{\Delta} \in \mathbb{R}\) we have from (3.6)
\[
\sum_{\substack{t=1 \\ (t,\Delta)=1}}^{\Delta-1} \left(\frac{\Delta}{t} \right) \cos(2\pi nt/\Delta) = \left(\frac{\Delta}{n} \right) \sqrt{\Delta}. \tag{3.7}
\]

Our next three definitions are of quantities that we need in order to be able to state our main result (Theorem 4.7).

Definition 3.2. For \(k, m \in \mathbb{N}\) and a discriminant \(d\), we define
\[
P_k(m) := \prod_{p|m} \left(1 - \frac{1}{p^{2k}} \right)
\]
and
\[
P_k(m, d) := \prod_{p|m} \left(1 - \left(\frac{d}{p} \right) \frac{1}{p^{2k}} \right) = \prod_{p|m} \left(1 - \left(\frac{d}{p} \right) \frac{1}{p^{2k}} \right),
\]
where \(p\) runs through the primes satisfying the given conditions.

In particular, we have \(P_k(1) = 1\) and \(P_k(m, d) = 1\) if \(m|d\).

Definition 3.3. For \(m \in \mathbb{N}_0\) and a discriminant \(d\), we define
\[
S_m(d) := \sum_{\substack{1 \leq r < d/2 \\ (r,d)=1}} \left(\frac{d}{r} \right)^m.
\]

We note that \(S_0(d) = 0\) by (3.5).

Definition 3.4. Let \(k \in \mathbb{N}\) and \(d\) a discriminant. Let \(f\) be the conductor of \(d\) and \(\Delta = d/f^2\) the fundamental discriminant associated with \(d\). We define
\[
H_k(d) := \frac{2}{\Delta^k} P_k(f, \Delta) \sum_{r=0}^{2k-1} \left(\frac{2k}{r} \right) \Delta^r B_r S_{2k-r}(\Delta).
\]

We note that in the sum in \(H_k(d)\) the terms with \(r\) (odd) \(\geq 3\) vanish as \(B_{2n+1} = 0\) for \(n \in \mathbb{N}\).

Our final definition defines the class of congruences in (1.2) that we consider.
Definition 3.5. The set of congruences
\[n \equiv a_1, \ldots, a_r \pmod{m}, \]
where \(m \) and \(r \) are positive integers with \(m \geq 2 \) and \(a_1, \ldots, a_r \) are integers satisfying \(1 \leq a_1 < a_2 < \cdots < a_r \leq m - 1 \), is said to be discriminantly determined if there exist \(\epsilon_1 = \pm 1, \ldots, \epsilon_s = \pm 1 \) and discriminants \(d_1, \ldots, d_s \) with no nonempty product equal to a perfect square such that
\[n \equiv a_1, \ldots, a_r \pmod{m} \quad \text{if and only if} \quad \left(\frac{d_1}{n} \right) = \epsilon_1, \ldots, \left(\frac{d_s}{n} \right) = \epsilon_s. \]
The congruences \(n \equiv 7, 17 \pmod{24} \) are discriminantly determined as
\[n \equiv 7, 17 \pmod{24} \quad \text{if and only if} \quad \left(\frac{8}{n} \right) = 1, \left(\frac{12}{n} \right) = -1. \]
However the congruence \(n \equiv 1 \pmod{4} \) is not discriminantly determined. Our main result evaluates the sum (1.2) for the class of congruences which are discriminantly determined.

4 Proof of main result

In this section we evaluate some infinite series and then state and prove our main result Theorem 4.7.

Proposition 4.1. Let \(e, k \in \mathbb{N} \). Let \(d \) be a discriminant. Then
\[\sum_{n=1}^{\infty} \left(\frac{d}{n} \right) \frac{1}{n^{2k}} = \left(\frac{d}{e} \right) \frac{1}{e^{2k}} \sum_{n=1}^{\infty} \left(\frac{d}{n} \right) \frac{1}{n^{2k}}. \]

Proof. We have
\[\sum_{n=1}^{\infty} \left(\frac{d}{n} \right) \frac{1}{n^{2k}} = \sum_{n=1}^{\infty} \left(\frac{d}{en} \right) \frac{1}{(en)^{2k}} = \sum_{n=1}^{\infty} \left(\frac{d}{e} \right) \frac{1}{n^{2k}} \frac{1}{n^{2k}}, \]
and the asserted result now follows. \(\Box \)

Proposition 4.2. Let \(k, m \in \mathbb{N} \). Let \(d \) be a discriminant. Then
\[\sum_{e | m} \frac{\mu(e)}{e^{2k}} = P_k(m) \quad \text{and} \quad \sum_{e | m} \mu(e) \left(\frac{d}{e} \right) \frac{1}{e^{2k}} = P_k(m, d), \]
where \(\mu \) denotes the Möbius function.

Proof. We just prove the first formula as the second formula can be proved in a similar manner. As \(\mu(e)/e^{2k} \) is a multiplicative function of the positive integer \(e \), and \(\mu(p) = -1 \) and \(\mu(p^2) = \mu(p^3) = \cdots = 0 \) for any prime \(p \), we have
\[\sum_{e | m} \frac{\mu(e)}{e^{2k}} = \prod_{p \mid m} \left(1 + \frac{\mu(p)}{p^{2k}} + \frac{\mu(p^2)}{p^{2k}} + \cdots + \frac{\mu(p^{v_p(m)})}{p^{2k v_p(m)}} \right) = \prod_{p \mid m} \left(1 - \frac{1}{p^{2k}} \right). \]
The asserted formula now follows by Definition 3.2. \(\Box \)

Proposition 4.3. Let \(k, m \in \mathbb{N} \). Then
\[\sum_{(n, m) = 1}^{\infty} \frac{1}{n^{2k}} = \frac{(-1)^{k-1} 2^{2k-1} B_{2k} \pi^{2k}}{(2k)!} P_k(m). \]
Proof. Appealing to (1.3) and Proposition 4.2, we obtain
\[
\sum_{n=1}^{\infty} \frac{1}{n^{2k}} = \sum_{e|n} \sum_{m=1}^{\infty} \mu(e) \frac{1}{n^{2k}} = \sum_{e|n} \mu(e) \sum_{m=1}^{\infty} \frac{1}{n^{2k}} = \sum_{e|n} \mu(e) \frac{(-1)^{k-1} 2^{k-1} B_{2k} \pi^{2k}}{e^{2k} (2k)!} = \frac{(-1)^{k-1} 2^{k-1} B_{2k} \pi^{2k}}{(2k)!} \sum_{e|n} \mu(e) e^{2k} = \frac{(-1)^{k-1} 2^{k-1} B_{2k} \pi^{2k}}{(2k)!} P_k(m)
\]
as asserted.

Proposition 4.4. Let \(k \in \mathbb{N} \). Let \(\Delta \) be a fundamental discriminant. Then
\[
\sum_{n=1}^{\infty} \left(\frac{\Delta}{n} \right) \frac{1}{n^{2k}} = \frac{(-1)^{k-1} 2^{k-1} \pi^{2k}}{(2k)! \Delta^{2k} \sqrt{\Delta}} \sum_{r=0}^{2k-1} \binom{2k}{r} \Delta^r B_r S_{2k-1-r}(\Delta).
\]

Proof. Let \(r_1, \ldots, r_{\phi(\Delta)/2} \) be the integers such that
\[
1 \leq r_1 < \cdots < r_{\phi(\Delta)/2} \leq \Delta - 1, \quad \left(\frac{\Delta}{r_1} \right) = \cdots = \left(\frac{\Delta}{r_{\phi(\Delta)/2}} \right) = 1,
\]
and \(s_1, \ldots, s_{\phi(\Delta)/2} \) the integers such that
\[
1 < s_1 < \cdots < s_{\phi(\Delta)/2} < \Delta - 1, \quad \left(\frac{\Delta}{s_1} \right) = \cdots = \left(\frac{\Delta}{s_{\phi(\Delta)/2}} \right) = -1.
\]
We note that \(\phi(\Delta) \equiv 0 \pmod{4} \) and \((r_m, \Delta) = (S_m, \Delta) = 1, r_{\phi(\Delta)/2+1-m} = \Delta - r_m, s_{\phi(\Delta)/2+1-m} = \Delta - s_m \) for \(m = 1, 2, \ldots, \phi(\Delta)/2 \). Appealing to (3.1), the theorem of Navas, Ruiz and Varona (Theorem 1.1) and (3.7), we obtain
\[
\sum_{n=1}^{\infty} \left(\frac{\Delta}{n} \right) \frac{1}{n^{2k}} = \sum_{n=1}^{\infty} \left(\frac{\Delta}{n} \right) \frac{1}{n^{2k}} = \sum_{m=1}^{\phi(\Delta)/2} \frac{1}{m^{2k}} - \sum_{m=1}^{\phi(\Delta)/2} \frac{1}{n^{2k}} = \sum_{n=1}^{\phi(\Delta)/4} \frac{1}{n^{2k}} - \sum_{n=1}^{\phi(\Delta)/4} \frac{1}{n^{2k}} = \frac{(-1)^{k-1} 2^{k-1} \pi^{2k} \phi(\Delta)/4}{(2k)! \Delta} \sum_{m=1}^{\Delta-1} B_{2k}(t/\Delta) \cos(2\pi r_m t/\Delta) - \frac{(-1)^{k-1} 2^{k-1} \pi^{2k} \phi(\Delta)/4}{(2k)! \Delta} \sum_{m=1}^{\Delta-1} B_{2k}(t/\Delta) \cos(2\pi s_m t/\Delta) = \frac{(-1)^{k-1} 2^{k-1} \pi^{2k}}{(2k)! \Delta} \sum_{t=0}^{\Delta-1} B_{2k}(t/\Delta) \sum_{m=1}^{\Delta-1} \left(\frac{\Delta}{n} \right) \cos(2\pi u t/\Delta)
\]
By (3.3) and (1.4) we have, for $1 \leq t \leq \Delta - 1$ with $(t, \Delta) = 1$,

$$\left(\frac{\Delta}{t} \right) = \left(\frac{\Delta}{t-\Delta} \right), \quad B_{2k}(t/\Delta) = B_{2k}((\Delta - t)/\Delta).$$

We remark that when Δ is even we have $(\Delta/2, \Delta) = \Delta/2 \neq 1$ as $\Delta \geq 8$, so $t \neq \Delta/2$. Hence, pairing t and $\Delta - t$, we observe appealing to Definition 3.3

$$\sum_{t=1}^{\Delta-1} \left(\frac{\Delta}{t} \right) B_{2k}(t/\Delta) = 2 \sum_{1 \leq t \leq \Delta/2 \atop (t,\Delta)=1} \left(\frac{\Delta}{t} \right) B_{2k}(t/\Delta)$$

$$= 2 \sum_{1 \leq t \leq \Delta/2 \atop (t,\Delta)=1} \left(\frac{\Delta}{t} \right) \sum_{r=0}^{2k} \binom{2k}{r} B_r \frac{t^{2k-r}}{\Delta^{2k-r}}$$

$$= \frac{2}{\Delta^{2k}} \sum_{r=0}^{2k} \binom{2k}{r} \Delta^r B_r \sum_{1 \leq t \leq \Delta/2 \atop (t,\Delta)=1} \left(\frac{\Delta}{t} \right) t^{2k-r}$$

$$= \frac{2}{\Delta^{2k}} \sum_{r=0}^{2k} \binom{2k}{r} \Delta^r B_r S_{2k-r}(\Delta)$$

$$= \frac{2}{\Delta^{2k}} \sum_{r=0}^{2k-1} \binom{2k-1}{r} \Delta^r B_r S_{2k-r}(\Delta),$$

as $S_0(\Delta) = 0$. The asserted formula now follows. \hfill \qed

Proposition 4.5. Let $k \in \mathbb{N}$. Let d be a discriminant. Let f be the conductor of d and $\Delta = df^2$ the fundamental discriminant associated with d. Then

$$\sum_{n=1}^{\infty} \left(\frac{d}{n} \right) \frac{1}{n^{2k}} = \frac{(-1)^{k-1} 2^{2k-1} \pi^{2k}}{(2k)! \sqrt{\Delta}} H_k(d).$$

Proof. By (3.1) we have

$$\sum_{n=1}^{\infty} \left(\frac{d}{n} \right) \frac{1}{n^{2k}} = \sum_{n=1}^{\infty} \left(\frac{d}{n} \right) \frac{1}{n^{2k}}. \quad (4.1)$$

Replacing d by Δf^2 in the right-hand sum in (4.1), and noting that $(n, \Delta f^2) = 1$ is equivalent to $(n, \Delta) = (n, f) = 1$, we deduce that

$$\sum_{n=1}^{\infty} \left(\frac{\Delta f^2}{n} \right) \frac{1}{n^{2k}} = \sum_{n=1}^{\infty} \left(\frac{\Delta}{n} \right) \frac{1}{n^{2k}}.$$

By (3.2) we have $(\frac{\Delta f^2}{n}) = (\frac{\Delta}{n})$ for $(n, f) = 1$ so

$$\sum_{n=1}^{\infty} \left(\frac{d}{n} \right) \frac{1}{n^{2k}} = \sum_{n=1}^{\infty} \left(\frac{\Delta}{n} \right) \frac{1}{n^{2k}}.$$

By (3.1) we have $(\frac{\Delta}{n}) = 0$ for $(n, \Delta) > 1$, so

$$\sum_{n=1}^{\infty} \left(\frac{d}{n} \right) \frac{1}{n^{2k}} = \sum_{n=1}^{\infty} \left(\frac{\Delta}{n} \right) \frac{1}{n^{2k}}.$$
Hence
\[
\sum_{n=1}^{\infty} \left(\frac{d}{n} \right) \frac{1}{n^{2k}} = \sum_{n=1}^{\infty} \left(\sum_{e|n} \mu(e) \right) \left(\frac{\Delta}{n} \right) \frac{1}{n^{2k}} = \sum_{e|n} \mu(e) \sum_{n=1}^{\infty} \left(\frac{\Delta}{n} \right) \frac{1}{n^{2k}}.
\]

Appealing to Propositions 4.1, 4.2 and 4.4, as well as Definition 3.4, we obtain
\[
\sum_{n=1}^{\infty} \left(\frac{d}{n} \right) \frac{1}{n^{2k}} = \sum_{e|n} \mu(e) \left(\frac{\Delta}{e} \right) \frac{1}{e^{2k}} \sum_{n=1}^{\infty} \left(\frac{\Delta}{n} \right) \frac{1}{n^{2k}}
\]
\[= P_k(f, \Delta) \sum_{n=1}^{\infty} \left(\frac{\Delta}{n} \right) \frac{1}{n^{2k}}
\]
\[= P_k(f, \Delta) \frac{(-1)^{k-1} 2^{k-1} \pi^{2k}}{(2k)!} \frac{\Delta^{2k} \sqrt{\Delta}}{\Gamma(2k)} \sum_{r=0}^{\infty} (2k-r) \Delta^r B_r S_{2k-r}(\Delta)
\]
\[= \frac{(-1)^{k-1} 2^{k-1} \pi^{2k}}{(2k)!} \frac{\Delta^{2k} \sqrt{\Delta}}{H_k(d),}
\]

which is the asserted result.

Proposition 4.6. Let \(k, m \in \mathbb{N} \). Let \(d \) be a discriminant. Let \(f \) be the conductor of \(d \). Let \(\Delta = df^2 \) be the fundamental discriminant associated with \(d \). Then
\[
\sum_{n=1}^{\infty} \left(\frac{d}{n} \right) \frac{1}{n^{2k}} = \frac{(-1)^{k-1} 2^{k-1} \pi^{2k}}{(2k)!} P_k(m, d) H_k(d).
\]

Proof. Appealing to Propositions 4.1, 4.2 and 4.5, we deduce
\[
\sum_{n=1}^{\infty} \left(\frac{d}{n} \right) \frac{1}{n^{2k}} = \sum_{n=1}^{\infty} \left(\sum_{e|n} \mu(e) \right) \left(\frac{d}{n} \right) \frac{1}{n^{2k}}
\]
\[= \sum_{e|n} \mu(e) \sum_{n=1}^{\infty} \left(\frac{d}{n} \right) \frac{1}{n^{2k}}
\]
\[= \sum_{e|n} \mu(e) \left(\frac{d}{e} \right) \frac{1}{e^{2k}} \sum_{n=1}^{\infty} \left(\frac{d}{n} \right) \frac{1}{n^{2k}}
\]
\[= P_k(m, d) \frac{(-1)^{k-1} 2^{k-1} \pi^{2k}}{(2k)!} \frac{\Delta^{2k} \sqrt{\Delta}}{H_k(d),}
\]

which is the asserted result.

We are now ready to state and prove our main result.

Theorem 4.7. Let \(m \) and \(h \) be positive integers with \(m \geq 2 \) and \(a_1, \ldots, a_h \) integers satisfying \(1 \leq a_1 < a_2 < \cdots < a_h \leq m - 1 \). Suppose that the set of congruences
\[n \equiv a_1, \ldots, a_h \pmod{m} \]
is discriminantly determined, say by discriminants \(d_1, \ldots, d_r \) (with no nonempty product \(d_{j_1} \cdots d_{j_r} \) (\(1 \leq j_1 < \cdots < j_r \leq r \)) equal to a perfect square) and \(\epsilon_1 = \pm 1, \ldots, \epsilon_r = \pm 1 \). Then
\[\sum_{n=a_1,\ldots,a_r \pmod{m}} \frac{1}{n^{2k}} = \frac{(-1)^{k-1} 2^{k-1} \pi^{2k}}{(2k)!} P_k(d_1 \cdots d_r)
\]
\[+ \frac{(-1)^{k-1} 2^{k-1} \pi^{2k}}{(2k)!} \sum_{s=1}^{r} \sum_{1 \leq j_1 < \cdots < j_s \leq r} \epsilon_{j_1} \cdots \epsilon_{j_s} \frac{H_k(d_{j_1} \cdots d_{j_s})}{\Delta(d_{j_1} \cdots d_{j_s})} P_k(d_1 \cdots d_r, d_{j_1} \cdots d_{j_s}). \]
Proof. As \(d_1, \ldots, d_r\) are discriminants such that no nonempty product \(d_{j_1} \cdots d_{j_s}\) \((1 \leq j_1 < \cdots < j_s \leq r)\) is a perfect square, we deduce that \(d_{j_1} \cdots d_{j_s}\) \((1 \leq j_1 < \cdots < j_s \leq r)\) is a discriminant. We have

\[
\sum_{n=a_1, \ldots, a_k \pmod{m}}^{\infty} \frac{1}{n^{2k}} = \sum_{n=1}^{\infty} \frac{1}{n^{2k}}
\]

The theorem now follows on appealing to Propositions 4.3 and 4.6.

\[\square\]

5 Examples

In this section we give some special cases of Theorem 4.7.

Theorem 5.1. Let \(k \in \mathbb{N}\). Then

\[
\sum_{n=1}^{\infty} \frac{1}{n^{2k}} = \frac{(-1)^{k-1} 2^{2k-2} \pi^{2k}}{2^{2k-1}(2k)!} A^* , \quad \sum_{n=2, 3 \pmod{5}}^{\infty} \frac{1}{n^{2k}} = \frac{(-1)^{k-1} 2^{2k-2} \pi^{2k}}{5^{2k+1}(2k)!} A^* ,
\]

where

\[A^* := 5(5^{2k} - 1)B_{2k} + \sum_{r=0}^{2k-1} \binom{2k}{r} 5^r (2^{2k-r} - 1)B_r \sqrt{5} .\]

Proof. The congruences \(n \equiv 1, 4 \pmod{5}\) are discriminantly determined as \(n \equiv 1, 4 \pmod{5} \Leftrightarrow (\frac{5}{n}) = +1\). By Theorem 4.7 we obtain

\[
\sum_{n=1, 4 \pmod{5}}^{\infty} \frac{1}{n^{2k}} = \frac{(-1)^{k-1} 2^{2k-2} B_{2k} \pi^{2k}}{(2k)!} P_k(5) + \frac{(-1)^{k-1} 2^{2k-2} \pi^{2k}}{(2k)!} \frac{H_k(5)}{\sqrt{5}} P_k(5, 5).
\]

By Definition 3.2 we have \(P_k(5) = \frac{5^{2k}-1}{5^{2k}}\) and \(P_k(1, 5) = P_k(5, 5) = 1\). By Definition 3.4 we have

\[H_k(5) = \frac{2}{5^{2k}} \sum_{r=0}^{2k-1} \binom{2k}{r} 5^r (1 - 2^{2k-r}) B_r .\]

The first asserted formula now follows. The second formula follows in a similar manner. \[\square\]

Taking \(k = 1\) and \(k = 2\) in Theorem 5.1, we obtain the following corollary.
Corollary 5.2. The following four evaluations hold:
\[
\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{2(5 + \sqrt{5})\pi^2}{125}, \quad \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{2(5 - \sqrt{5})\pi^2}{125},
\]
and
\[
\sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{4(13 + 5\sqrt{5})\pi^4}{9375}, \quad \sum_{n=1}^{\infty} \frac{1}{n^6} = \frac{4(13 - 5\sqrt{5})\pi^4}{9375}.
\]

Theorem 5.3. Let \(k \in \mathbb{N} \). Then
\[
\sum_{n=1}^{\infty} \frac{1}{n^{2k}} = \frac{(-1)^{k-1}\pi^{2k}}{2^{4k+3}(2k)!} B^k,
\]
where
\[
B^k := 2^{4k+1}(2^{2k} - 1)B_{2k} + \sum_{r=0}^{2k-1} \binom{2k}{r} 2^{3(r-2^{k-r-1})} B_r \sqrt{2}.
\]

Proof. The congruences \(n \equiv 1, 7 \pmod{8} \) are discriminantly determined as \(n \equiv 1, 7 \pmod{8} \) \(\Rightarrow \left(\frac{6}{n} \right) = +1 \). By Theorem 4.7 with \(r = 1, d_1 = 8 \) and \(\epsilon_1 = +1 \), we obtain the first formula. For the second formula we choose \(r = 1, d_1 = 8 \) and \(\epsilon_1 = -1 \). \(\square \)

Taking \(k = 1 \) and \(k = 2 \) in Theorem 5.3, we obtain the following corollary.

Corollary 5.4. We have
\[
\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{(2 + \sqrt{2})\pi^2}{32}, \quad \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{(2 - \sqrt{2})\pi^2}{32},
\]
and
\[
\sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{(16 + 11\sqrt{2})\pi^4}{3072}, \quad \sum_{n=1}^{\infty} \frac{1}{n^6} = \frac{(16 - 11\sqrt{2})\pi^4}{3072}.
\]

Theorem 5.5. Let \(k \in \mathbb{N} \). Then
\[
\sum_{n=1}^{\infty} \frac{1}{n^{2k}} = \frac{(-1)^{k-1}n^{2k}}{2^{2k+3}3^{2k+1}(2k)!} C^k,
\]
where
\[
C^k := 2^{2k}3(2^{2k} - 1)(3^{2k} - 1)B_{2k} + \sum_{r=0}^{2k-1} \binom{2k}{r} 2^{3r}(5^{2k-r} - 1)B_r \sqrt{3}.
\]

Proof. The congruences \(n \equiv 1, 11 \pmod{12} \) are discriminantly determined as \(n \equiv 1, 11 \pmod{12} \) \(\Rightarrow \left(\frac{12}{n} \right) = +1 \). By Theorem 4.7 with \(r = 1, d_1 = 12 \) and \(\epsilon_1 = +1 \), we obtain the first formula. For the second formula we choose \(r = 1, d_1 = 12 \) and \(\epsilon_1 = -1 \). \(\square \)

Taking \(k = 1 \) and \(k = 2 \) in Theorem 5.5, we obtain the following corollary.

Corollary 5.6. The following four evaluations hold:
\[
\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{(2 + \sqrt{3})\pi^2}{36}, \quad \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{(2 - \sqrt{3})\pi^2}{36},
\]
and
\[
\sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{(40 + 23\sqrt{3})\pi^4}{7776}, \quad \sum_{n=1}^{\infty} \frac{1}{n^6} = \frac{(40 - 23\sqrt{3})\pi^4}{7776}.
\]
Theorem 5.7. Let \(k \in \mathbb{N} \). Then

\[
\sum_{n=1,9}^{\infty} \frac{1}{n^{2k}} = \frac{(-1)^{k-1} \pi^{2k}}{4 \cdot 5^{2k+1} (2k)!} D^+, \quad \sum_{n=3,7}^{\infty} \frac{1}{n^{2k}} = \frac{(-1)^{k-1} \pi^{2k}}{4 \cdot 5^{2k+1} (2k)!} D^-,
\]

where

\[D^\pm := 5(2^k - 1)(5^k - 1)B_{2k} \pm 2(2^k + 1) \sum_{r=0}^{2k-1} \left(\frac{2k}{r} \right) (2^{2k-r} - 1) 5' ! \sqrt{3}. \]

Proof. As \(n \equiv 1, 9 \pmod{10} \) \(\Leftrightarrow \left(\frac{20}{n} \right) = +1 \) we choose \(r = 1, d_1 = 20 \) and \(c_1 = +1 \) in Theorem 4.7 to obtain the first formula. For the second formula we choose \(r = 1, d_1 = 20 \) and \(c_1 = -1 \).

Taking \(k = 1 \) and \(k = 2 \) in Theorem 5.7, we obtain the following corollary.

Corollary 5.8. The following four evaluations hold:

\[
\sum_{n=1,9}^{\infty} \frac{1}{n^2} = \frac{(3 + \sqrt{3}) \pi^2}{50}, \quad \sum_{n=3,7}^{\infty} \frac{1}{n^2} = \frac{(3 - \sqrt{3}) \pi^2}{50},
\]

and

\[
\sum_{n=1,9}^{\infty} \frac{1}{n^4} = \frac{(39 + 17 \sqrt{3}) \pi^4}{7500}, \quad \sum_{n=3,7}^{\infty} \frac{1}{n^4} = \frac{(39 - 17 \sqrt{3}) \pi^4}{7500}.
\]

Theorem 5.9. Let \(k \in \mathbb{N} \). Then

\[
\sum_{n=1,23}^{\infty} \frac{1}{n^{2k}} = E + F \sqrt{2} + G \sqrt{3} + H \sqrt{6},
\]

\[
\sum_{n=5,19}^{\infty} \frac{1}{n^{2k}} = E - F \sqrt{2} - G \sqrt{3} + H \sqrt{6},
\]

\[
\sum_{n=7,17}^{\infty} \frac{1}{n^{2k}} = E + F \sqrt{2} - G \sqrt{3} - H \sqrt{6},
\]

\[
\sum_{n=11,13}^{\infty} \frac{1}{n^{2k}} = E - F \sqrt{2} + G \sqrt{3} - H \sqrt{6},
\]

where

\[
E := \frac{(-1)^{k-1}(2^k - 1)(3^{2k} - 1) B_{2k} \pi^{2k}}{8 \cdot 3^{2k} (2k)!},
\]

\[
F := \frac{(-1)^{k-1}(3^{2k} + 1) \pi^{2k}}{2^{2k+3} \pi^{3k+1} (2k)!} \sum_{r=0}^{2k-1} \left(\frac{2k}{r} \right) 2^{3r} (1 - 3^{2k-r}) B_{r},
\]

\[
G := \frac{(-1)^{k-1} \pi^{2k}}{2^{2k+3} \pi^{3k+1} (2k)!} \sum_{r=0}^{2k-1} \left(\frac{2k}{r} \right) 2^{2r} 3^{3r} (1 - 5^{2k-r}) B_{r},
\]

\[
H := \frac{(-1)^{k-1} \pi^{2k}}{2^{2k+3} \pi^{3k+1} (2k)!} \sum_{r=0}^{2k-1} \left(\frac{2k}{r} \right) 2^{3r} 3^{3r} (1 + 5^{2k-r} - 7^{2k-r} - 11^{2k-r}) B_{r},
\]

Proof. We have

\[
\begin{align*}
\text{if } n \equiv 1, 23 \pmod{24} & \quad \Longleftrightarrow \quad \left(\frac{8}{n} \right) = \left(\frac{12}{n} \right) = 1, \\
\text{if } n \equiv 5, 19 \pmod{24} & \quad \Longleftrightarrow \quad \left(\frac{8}{n} \right) = \left(\frac{12}{n} \right) = -1,
\end{align*}
\]
\[n \equiv 7, 17 \pmod{24} \iff \left(\frac{8}{n} \right) = 1, \quad \left(\frac{12}{n} \right) = -1, \]
\[n \equiv 11, 13 \pmod{24} \iff \left(\frac{8}{n} \right) = -1, \quad \left(\frac{12}{n} \right) = 1. \]

The asserted formulae follow by taking
\[
\begin{align*}
 r &= 2, \quad d_1 = 8, \quad d_2 = 12, \quad \epsilon_1 = 1, \quad \epsilon_2 = 1, \\
 r &= 2, \quad d_1 = 8, \quad d_2 = 12, \quad \epsilon_1 = -1, \quad \epsilon_2 = -1, \\
 r &= 2, \quad d_1 = 8, \quad d_2 = 12, \quad \epsilon_1 = 1, \quad \epsilon_2 = -1, \\
 r &= 2, \quad d_1 = 8, \quad d_2 = 12, \quad \epsilon_1 = -1, \quad \epsilon_2 = 1,
\end{align*}
\]
respectively, in Theorem 4.7.

Taking \(k = 1 \) in Theorem 5.9, we obtain the following corollary.

Corollary 5.10. The following four evaluations hold:

\[
\begin{align*}
 &\sum_{n=1, 23}^{\infty} \frac{1}{n^2} = \frac{(8 + 5\sqrt{2} + 4\sqrt{3} + 3\sqrt{6})n^2}{288}, \\
 &\sum_{n=5, 19}^{\infty} \frac{1}{n^2} = \frac{(8 - 5\sqrt{2} - 4\sqrt{3} + 3\sqrt{6})n^2}{288}, \\
 &\sum_{n=7, 17}^{\infty} \frac{1}{n^2} = \frac{(8 + 5\sqrt{2} - 4\sqrt{3} - 3\sqrt{6})n^2}{288}, \\
 &\sum_{n=11, 13}^{\infty} \frac{1}{n^2} = \frac{(8 - 5\sqrt{2} + 4\sqrt{3} - 3\sqrt{6})n^2}{288}.
\end{align*}
\]

Theorem 5.11. Let \(k \in \mathbb{N} \). Then

\[
\sum_{n=1, 3, 9, 19, 25, 27}^{\infty} \frac{1}{n^{2k}} = J + K\sqrt{7}, \quad \sum_{n=5, 11, 13, 15, 17, 23}^{\infty} \frac{1}{n^{2k}} = J - K\sqrt{7},
\]

where

\[
J := \frac{(-1)^{k-1}(2^{2k-1} - 1)(7^{2k} - 1)B_{2k}n^{2k}}{2^{2k}7^{2k}(2k)!},
\]

\[
K := \frac{(-1)^{k-1}n^{2k}}{2^{2k}7^{2k+1}(2k)!} \sum_{r=0}^{2k-1} \binom{2k}{r} 2^{2r}7^r(1^{2k-r} + 3^{2k-r} - 5^{2k-r} + 9^{2k-r} - 11^{2k-r} - 13^{2k-r})B_r.
\]

Proof. We have
\[
n \equiv 1, 3, 9, 19, 25, 27 \pmod{28} \iff \left(\frac{28}{n} \right) = 1
\]
and
\[
n \equiv 5, 11, 13, 15, 17, 23 \pmod{28} \iff \left(\frac{28}{n} \right) = -1
\]
so the congruences are discriminantly determined and we can apply Theorem 4.7 with \(d = \Delta = 28 \) and \(f = 1 \).

Taking \(k = 1 \) in Theorem 5.11 we obtain the following result.

Corollary 5.12. The following two evaluations hold:

\[
\sum_{n=1, 3, 9, 19, 25, 27}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{49}(3 + \sqrt{7}), \quad \sum_{n=5, 11, 13, 15, 17, 23}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{49}(3 - \sqrt{7}).
\]
Acknowledgment: The author thanks the referee for his/her positive comments and suggestions regarding his paper.

References