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Abstract: A class of sums of the type
∞
∑
n=1

n≡a1 ,...,ar (modm)

1
n2k

is evaluated, where k, m and r are positive integers with m ≥ 2 and a1, . . . , ar are integers satisfying 1 ≤
a1 < a2 < ⋅ ⋅ ⋅ < ar ≤ m − 1.
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1 Introduction
Let ℕ := {1, 2, 3, . . .}, ℕ0 := {0, 1, 2, . . .} and ℤ := {0, ±1, ±2, . . .}. Let ℚ, ℚ̄ and ℝ denote the fields of
rational numbers, algebraic numbers and real numbers, respectively.

In the eighteenth century Euler proved that

∞
∑
n=1

1
n2k

=
(−1)k−122k−1B2kπ2k

(2k)! , k ∈ ℕ, (1.1)

where Bℓ (ℓ ∈ ℕ0) denotes the ℓth Bernoulli number. Euler’s formula (1.1) is well known andmany proofs of
it occur in the literature, see for example [2, 3, 8].

Some subsums of Euler’s sum∑∞
n=1

1
n2k of the type

∞
∑
n=1

n≡a1 ,...,ar (modm)

1
n2k

, k,m, r ∈ ℕ, m ≥ 2, (1.2)

where a1, . . . , ar ∈ ℤ satisfy 0 ≤ a1 < a2 < ⋅ ⋅ ⋅ < ar ≤ m − 1, have been evaluated. One very simple example
is

∞
∑
n=1

n≡0 (modm)

1
n2k

=
(−1)k−122k−1B2kπ2k

m2k(2k)!
, k,m ∈ ℕ, (1.3)

which follows immediately from (1.1). Another simple example is

∞
∑
n=1

n≡1 (mod2)

1
n2k

=
(−1)k−1(22k − 1)B2kπ2k

2(2k)! , k ∈ ℕ,

which follows by subtracting (1.3) with m = 2 from (1.1).
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Recently Navas, Ruiz and Varona [6, p. 34, Proposition 3.5] evaluated the subsum
∞
∑
n=1

n≡±s (modm)

1
n2k

, k,m, s ∈ ℕ,

for m ≡ 1 (mod2), m ≥ 3 and s ∈ {1, 2, . . . , (m − 1)/2} in terms of values of trigonometric functions and
values of Bernoulli polynomials. They stated that there is a similar evaluation for m ≡ 0 (mod2) but did not
give it. We now state their theorem in a form valid for allm ∈ ℕwithm ≥ 3 and all s ∈ ℤwith 2s ̸≡ 0 (modm),
and give a very simple proof of it in Section 2. We recall that the Bernoulli polynomial Bn(x) (n ∈ ℕ0, x ∈ ℝ)
is defined by

Bn(x) :=
n
∑
r=0

(
n
r)
Brxn−r ,

and we note the properties

Bn(0) = Bn B2k(x) = B2k(1 − x), n, k ∈ ℕ0. (1.4)

Theorem 1.1 (Navas, Ruiz and Varona). Let k,m ∈ ℕwithm ≥ 3. Let s ∈ ℤ be such that 2s ̸≡ 0 (modm). Then

∞
∑
n=1

n≡±s (modm)

1
n2k

=
(−1)k−122kπ2k

m(2k)!

m−1
∑
j=0

B2k(j/m) cos(2πsj/m).

As B2k(j/m) ∈ ℚ and cos(2πsj/m) ∈ ℚ̄ ∩ℝ, we see that

1
π2k

∞
∑
n=1

n≡±s (modm)

1
n2k

∈ ℚ̄ ∩ℝ.

Hence a sum of the form (1.2) with

{
{
{

r ≡ 0 (mod2), 1 ≤ a1 < a2 < ⋅ ⋅ ⋅ < ar ≤ m − 1,
(aj ,m) = 1, ar+1−j = m − aj , j = 1, . . . , r,

is a sum of sums of the type given in Theorem 1.1, namely

r/2
∑
j=1

∞
∑
n=1

n≡±aj (modm)

1
n2k

,

where each 2aj ̸≡ 0 (modm), and thus is of the form απ2k, where α ∈ ℚ̄∩ℝ. We give a class of subsums of this
type for which α can be given explicitly as a rational linear combination of squareroots of positive integers,
see Theorem 4.7. The idea of such a result is implicit in the work of Shanks and Wrench [7] and our purpose
is to make it completely explicit. Two examples are

∞
∑
n=1

n≡11,13 (mod24)

1
n2

=
(8 − 5√2 + 4√3 − 3√6)π2

288 ,

see Corollary 5.10, and
∞
∑
n=1

n≡5,11,13,15,17,23 (mod28)

1
n2

=
π2

49 (3 −√7),

see Corollary 5.12.
In Section 2 we prove Theorem 1.1. In Section 3 we define the class of subsums of Euler’s sum that we

shall evaluate in Section 4. In Section 4 wemake use of Theorem 1.1 to prove our main result (Theorem 4.7).
In Section 5 we give some examples illustrating Theorem 4.7.

Brought to you by | Carleton University OCUL
Authenticated

Download Date | 11/3/16 6:27 PM



K. S. Williams, A class of subsums of Euler’s sum | 233

2 Proof of Theorem 1.1
Wemake use of the Fourier expansion of the Bernoulli polynomial B2k(x) (k ∈ ℕ), namely,

B2k(x) =
(−1)k−1(2k)!
22k−1π2k

∞
∑
n=1

cos2nπx
n2k

, x ∈ [0, 1], (2.1)

see for example [1, p. 805]. Appealing to (2.1), we obtain
m−1
∑
j=0

cos(2πsj/m)B2k(j/m) =
m−1
∑
j=0

cos(2πsj/m)
(−1)k−1(2k)!
22k−1π2k

∞
∑
n=1

cos(2πjn/m)
n2k

=
(−1)k−1(2k)!
22k−1π2k

∞
∑
n=1

1
n2k

m−1
∑
j=0

cos(2πsj/m) cos(2πnj/m)

=
(−1)k−1(2k)!

22kπ2k
∞
∑
n=1

1
n2k

m−1
∑
j=0

(cos(2π(n − s)j/m) + cos(2π(n + s)j/m)).

Now
m−1
∑
j=0

cos(2π(n ∓ s)j/m) =
{
{
{

m if n ≡ ±s (modm),
0 if n ̸≡ ±s (modm),

and s ̸≡ −s (modm) (as 2s ̸≡ 0 (modm)) so
m−1
∑
j=0

cos(2πsj/m)B2k(j/m) =
(−1)k−1(2k)!m

22kπ2k
∞
∑
n=1

n≡±s (modm)

1
n2k

from which the asserted formula follows.

3 A class of subsums of Euler’s sum
We begin with some definitions.

Definition 3.1. We call a positive integer d a discriminant if d is not a perfect square and d ≡ 0 or 1 (mod4).
A discriminant d is called a fundamental discriminant if there is no integer g > 1 such that g2|d and d/g2 ≡
0 or 1 (mod4). The conductor f = f(d) of a discriminant d is the largest positive integer such that f 2|d and
d/f 2 ≡ 0 or 1 (mod4). The fundamental discriminant ∆ = ∆(d) associatedwith thediscriminant d is ∆ = d/f 2,
where f is the conductor of d.

We emphasize that in this paperwe are restricting discriminants to be positive integers. TheKronecker symbol
for a discriminant d and a positive integer n is written as ( dn ). Properties of the Kronecker symbol are given in
[4, pp. 304–306]. The Kronecker symbol ( dn ) is a completely multiplicative function of n. Moreover,

(
d
n)

=
{
{
{

0 if (n, d) > 1,
±1 if (n, d) = 1.

(3.1)

Also, if f is the conductor of the discriminant d and ∆ = d/f 2 is the fundamental discriminant associatedwith
d then

(
d
n)

=
{
{
{

0 if (n, f) > 1,
( ∆n ) if (n, f) = 1.

(3.2)

Two further properties of the Kronecker symbol are

(
d
n)

= (
d

d − n)
, 1 ≤ n ≤ d − 1, (3.3)
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see [4, p. 305, Theorem 3.3] for a proof, and

d−1
∑
r=1

(r,d)=1

(
d
r )

= 0. (3.4)

By (3.3) we have

∑
1≤r<d/2
(r,d)=1

(
d
r )

= ∑
d/2<r≤d−1
(r,d)=1

(
d
r )

=
1
2

d−1
∑
r=1

(r,d)=1

(
d
r )

as d/2 is not an integer if d is odd and (d/2, d) = d/2 > 1 if d is even since d ≥ 8 in this case. Hence, by (3.4),
we deduce

∑
1≤r<d/2
(r,d)=1

(
d
r )

= 0. (3.5)

The final property of the Kronecker symbol that we need is the identity

∆−1
∑
t=1

(t,∆)=1

(
∆
t )
e2πint/∆ = (

∆
n )

√∆, (3.6)

which is valid for any positive integer n and any fundamental discriminant ∆, see [5, p. 221, Theorem 215].
As ( ∆n )√∆ ∈ ℝ we have from (3.6)

∆−1
∑
t=1

(t,∆)=1

(
∆
t )

cos(2πnt/∆) = (
∆
n )

√∆. (3.7)

Our next three definitions are of quantities that we need in order to be able to state our main result
(Theorem 4.7).

Definition 3.2. For k,m ∈ ℕ and a discriminant d, we define

Pk(m) := ∏
p|m

(1 −
1
p2k

)

and
Pk(m, d) := ∏

p|m
(1 − (

d
p)

1
p2k

) = ∏
p|m
p∤d

(1 − (
d
p)

1
p2k

),

where p runs through the primes satisfying the given conditions.

In particular, we have Pk(1) = 1 and Pk(m, d) = 1 if m|d.

Definition 3.3. For m ∈ ℕ0 and a discriminant d, we define

Sm(d) := ∑
1≤t<d/2
(t,d)=1

(
d
t )
tm .

We note that S0(d) = 0 by (3.5).

Definition 3.4. Let k ∈ ℕ and d a discriminant. Let f be the conductor of d and ∆ = d/f 2 the fundamental
discriminant associated with d. We define

Hk(d) :=
2
∆2k

Pk(f, ∆)
2k−1
∑
r=0

(
2k
r )

∆rBrS2k−r(∆).

We note that in the sum in Hk(d) the terms with r (odd) ≥ 3 vanish as B2n+1 = 0 for n ∈ ℕ.
Our final definition defines the class of congruences in (1.2) that we consider.
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Definition 3.5. The set of congruences

n ≡ a1, . . . , ar (modm),

where m and r are positive integers with m ≥ 2 and a1, . . . , ar are integers satisfying 1 ≤ a1 < a2 < ⋅ ⋅ ⋅ <
ar ≤ m − 1, is said to be discriminantly determined if there exist ϵ1 = ±1, . . . , ϵs = ±1 and discriminants
d1, . . . , ds with no nonempty product equal to a perfect square such that

n ≡ a1, . . . , ar (modm) if and only if (
d1
n ) = ϵ1, . . . , (

ds
n ) = ϵs .

The congruences n ≡ 7, 17 (mod24) are discriminantly determined as

n ≡ 7, 17 (mod24) if and only if (
8
n)

= 1, (12n ) = −1.

However the congruence n ≡ 1 (mod4) is not discriminantly determined. Our main result evaluates the sum
(1.2) for the class of congruences which are discriminantly determined.

4 Proof of main result
In this section we evaluate some infinite series and then state and prove our main result Theorem 4.7.

Proposition 4.1. Let e, k ∈ ℕ. Let d be a discriminant. Then

∞
∑
n=1
e|n

(
d
n)

1
n2k

= (
d
e )

1
e2k

∞
∑
n=1

(
d
n)

1
n2k

.

Proof. We have
∞
∑
n=1
e|n

(
d
n)

1
n2k

=
∞
∑
n=1

(
d
en)

1
(en)2k

=
∞
∑
n=1

(
d
e )(

d
n)

1
e2k

1
n2k

and the asserted result now follows.

Proposition 4.2. Let k,m ∈ ℕ. Let d be a discriminant. Then

∑
e|m

μ(e)
e2k

= Pk(m) and ∑
e|m
μ(e)(de )

1
e2k

= Pk(m, d),

where μ denotes the Möbius function.

Proof. We just prove the first formula as the second formula can be proved in a similar manner. As μ(e)/e2k
is a multiplicative function of the positive integer e, and μ(p) = −1 and μ(p2) = μ(p3) = ⋅ ⋅ ⋅ = 0 for any prime
p, we have

∑
e|m

μ(e)
e2k

= ∏
pνp (m)‖m

(1 +
μ(p)
p2k

+
μ(p2)
p4k

+ ⋅ ⋅ ⋅ +
μ(pνp(m))
p2νp(m) ) = ∏

p|m
(1 −

1
p2k

).

The asserted formula now follows by Definition 3.2.

Proposition 4.3. Let k,m ∈ ℕ. Then

∞
∑
n=1

(n,m)=1

1
n2k

=
(−1)k−122k−1B2kπ2k

(2k)! Pk(m).
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Proof. Appealing to (1.3) and Proposition 4.2, we obtain

∞
∑
n=1

(n,m)=1

1
n2k

=
∞
∑
n=1

( ∑
e|(n,m)

μ(e)) 1
n2k

= ∑
e|m
μ(e)

∞
∑
n=1
e|n

1
n2k

= ∑
e|m
μ(e) (−1)

k−122k−1B2kπ2k

e2k(2k)!

=
(−1)k−122k−1B2kπ2k

(2k)! ∑
e|m

μ(e)
e2k

=
(−1)k−122k−1B2kπ2k

(2k)! Pk(m)

as asserted.

Proposition 4.4. Let k ∈ ℕ. Let ∆ be a fundamental discriminant. Then

∞
∑
n=1

(
∆
n )

1
n2k

=
(−1)k−122kπ2k

(2k)! ∆2k √∆

2k−1
∑
r=0

(
2k
r )

∆rBrS2k−r(∆).

Proof. Let r1, . . . , rϕ(∆)/2 be the integers such that

1 ≤ r1 < ⋅ ⋅ ⋅ < rϕ(∆)/2 ≤ ∆ − 1, (
∆
r1

) = ⋅ ⋅ ⋅ = (
∆

rϕ(∆)/2
) = 1,

and s1, . . . , sϕ(∆)/2 the integers such that

1 < s1 < ⋅ ⋅ ⋅ < sϕ(∆)/2 < ∆ − 1, (
∆
s1

) = ⋅ ⋅ ⋅ = (
∆

sϕ(∆)/2
) = −1.

We note that ϕ(∆) ≡ 0 (mod4) and (rm , ∆) = (sm , ∆) = 1, rϕ(∆)/2+1−m = ∆ − rm, sϕ(∆)/2+1−m = ∆ − sm for
m = 1, 2, . . . , ϕ(∆)/2. Appealing to (3.1), the theorem of Navas, Ruiz and Varona (Theorem 1.1) and (3.7),
we obtain

∞
∑
n=1

(
∆
n )

1
n2k

=
∞
∑
n=1

(n,∆)=1

(
∆
n )

1
n2k

=
ϕ(∆)/2
∑
m=1

∞
∑
n=1

n≡rm (mod ∆)

1
n2k

−
ϕ(∆)/2
∑
m=1

∞
∑
n=1

n≡sm (mod ∆)

1
n2k

=
ϕ(∆)/4
∑
m=1

∞
∑
n=1

n≡±rm (mod ∆)

1
n2k

−
ϕ(∆)/4
∑
m=1

∞
∑
n=1

n≡±sm (mod ∆)

1
n2k

=
(−1)k−122kπ2k

(2k)! ∆

ϕ(∆)/4
∑
m=1

∆−1
∑
t=0

B2k(t/∆) cos(2πrm t/∆)

−
(−1)k−122kπ2k

(2k)! ∆

ϕ(∆)/4
∑
m=1

∆−1
∑
t=0

B2k(t/∆) cos(2πsm t/∆)

=
(−1)k−122k−1π2k

(2k)! ∆

∆−1
∑
t=0

B2k(t/∆)
∆−1
∑
u=1

(u,∆)=1

(
∆
u )

cos(2πut/∆)
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=
(−1)k−122k−1π2k

(2k)!√∆

∆−1
∑
t=0

(
∆
t )
B2k(t/∆)

=
(−1)k−122k−1π2k

(2k)!√∆

∆−1
∑
t=1

(t,∆)=1

(
∆
t )
B2k(t/∆).

By (3.3) and (1.4) we have, for 1 ≤ t ≤ ∆ − 1 with (t, ∆) = 1,

(
∆
t )

= (
∆
∆ − t)

, B2k(t/∆) = B2k((∆ − t)/∆).

We remark that when ∆ is even we have (∆/2, ∆) = ∆/2 ̸= 1 as ∆ ≥ 8, so t ̸= ∆/2. Hence, pairing t and ∆ − t,
we obtain appealing to Definition 3.3

∆−1
∑
t=1

(t,∆)=1

(
∆
t )
B2k(t/∆) = 2 ∑

1≤t<∆/2
(t,∆)=1

(
∆
t )
B2k(t/∆)

= 2 ∑
1≤t<∆/2
(t,∆)=1

(
∆
t )

2k
∑
r=0

(
2k
r )

Br
t2k−r

∆2k−r

=
2
∆2k

2k
∑
r=0

(
2k
r )

∆rBr ∑
1≤t<∆/2
(t,∆)=1

(
∆
t )
t2k−r

=
2
∆2k

2k
∑
r=0

(
2k
r )

∆rBrS2k−r(∆)

=
2
∆2k

2k−1
∑
r=0

(
2k
r )

∆rBrS2k−r(∆),

as S0(∆) = 0. The asserted formula now follows.

Proposition 4.5. Let k ∈ ℕ. Let d be a discriminant. Let f be the conductor of d and ∆ = d/f 2 the fundamental
discriminant associated with d. Then

∞
∑
n=1

(
d
n)

1
n2k

=
(−1)k−122k−1π2k

(2k)!√∆
Hk(d).

Proof. By (3.1) we have
∞
∑
n=1

(
d
n)

1
n2k

=
∞
∑
n=1

(n,d)=1

(
d
n)

1
n2k

. (4.1)

Replacing d by ∆f 2 in the right-hand sum in (4.1), andnoting that (n, ∆f 2) = 1 is equivalent to (n, ∆) = (n, f) =
1, we deduce that

∞
∑
n=1

(
d
n)

1
n2k

=
∞
∑
n=1

(n,∆)=1
(n,f)=1

(
∆f 2
n )

1
n2k

.

By (3.2) we have ( ∆f
2

n ) = ( ∆n ) for (n, f) = 1 so
∞
∑
n=1

(
d
n)

1
n2k

=
∞
∑
n=1

(n,∆)=1
(n,f)=1

(
∆
n )

1
n2k

.

By (3.1) we have ( ∆n ) = 0 for (n, ∆) > 1, so
∞
∑
n=1

(
d
n)

1
n2k

=
∞
∑
n=1

(n,f)=1

(
∆
n )

1
n2k

.
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Hence
∞
∑
n=1

(
d
n)

1
n2k

=
∞
∑
n=1

( ∑
e|(n,f)

μ(e))(∆n )
1
n2k

= ∑
e|f
μ(e)

∞
∑
n=1
e|n

(
∆
n )

1
n2k

.

Appealing to Propositions 4.1, 4.2 and 4.4, as well as Definition 3.4, we obtain

∞
∑
n=1

(
d
n)

1
n2k

= ∑
e|f
μ(e)(∆e )

1
e2k

∞
∑
n=1

(
∆
n )

1
n2k

= Pk(f, ∆)
∞
∑
n=1

(
∆
n )

1
n2k

= Pk(f, ∆)
(−1)k−122kπ2k

(2k)!∆2k√∆

2k−1
∑
r=0

(
2k
r )

∆rBrS2k−r(∆)

=
(−1)k−122k−1π2k

(2k)!√∆
Hk(d),

which is the asserted result.

Proposition 4.6. Let k,m ∈ ℕ. Let d be a discriminant. Let f be the conductor of d. Let ∆ = d/f 2 be the
fundamental discriminant associated with d. Then

∞
∑
n=1

(n,m)=1

(
d
n)

1
n2k

=
(−1)k−122k−1π2k

(2k)!√∆
Pk(m, d)Hk(d).

Proof. Appealing to Propositions 4.1, 4.2 and 4.5, we deduce

∞
∑
n=1

(n,m)=1

(
d
n)

1
n2k

=
∞
∑
n=1

( ∑
e|(n,m)

μ(e))(dn)
1
n2k

= ∑
e|m
μ(e)

∞
∑
n=1
e|n

(
d
n)

1
n2k

= ∑
e|m
μ(e)(de )

1
e2k

∞
∑
n=1

(
d
n)

1
n2k

= Pk(m, d)
(−1)k−122k−1π2k

(2k)! √∆
Hk(d),

which is the asserted result.

We are now ready to state and prove our main result.

Theorem 4.7. Let m and h be positive integers with m ≥ 2 and a1, . . . , ah integers satisfying 1 ≤ a1 < a2 <
⋅ ⋅ ⋅ < ah ≤ m − 1. Suppose that the set of congruences

n ≡ a1, . . . , ah (modm)

is discriminantly determined, say by discriminants d1, . . . , dr (with no nonempty product dj1 ⋅ ⋅ ⋅ djs (1 ≤ j1 <
⋅ ⋅ ⋅ < js ≤ r) equal to a perfect square) and ϵ1 = ±1, . . . , ϵr = ±1. Then

∞
∑
n=1

n≡a1 ,...,ah (modm)

1
n2k

=
(−1)k−122k−1−rB2kπ2k

(2k)! Pk(d1 ⋅ ⋅ ⋅ dr)

+
(−1)k−122k−1−rπ2k

(2k)!

r
∑
s=1

∑
1≤j1<⋅⋅⋅<js≤r

ϵj1 ⋅ ⋅ ⋅ ϵjs
Hk(dj1 ⋅ ⋅ ⋅ djs )

√∆(dj1 ⋅ ⋅ ⋅ djs )
Pk(d1 ⋅ ⋅ ⋅ dr , dj1 ⋅ ⋅ ⋅ djs ).
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Proof. As d1, . . . , dr are discriminants such that no nonempty product dj1 ⋅ ⋅ ⋅ djs (1 ≤ j1 < ⋅ ⋅ ⋅ < js ≤ r) is a
perfect square, we deduce that dj1 ⋅ ⋅ ⋅ djs (1 ≤ j1 < ⋅ ⋅ ⋅ < js ≤ r) is a discriminant. We have

∞
∑
n=1

n≡a1 ,...,ah (modm)

1
n2k

=
∞
∑
n=1

( d1n )=ϵ1 ,...,( drn )=ϵr

1
n2k

=
∞
∑
n=1

( d1n )=ϵ1 ,...,( drn )=ϵr
(n,d1⋅⋅⋅dr)=1

1
n2k

=
1
2r

∞
∑
n=1

(n,d1⋅⋅⋅dr)=1

r
∏
j=1

(1 + ϵj(
dj
n ))

1
n2k

=
1
2r

∞
∑
n=1

(n,d1⋅⋅⋅dr)=1

(1 +
r
∑
s=1

∑
1≤j1<⋅⋅⋅<js≤r

ϵj1 ⋅ ⋅ ⋅ ϵjs(
dj1 ⋅ ⋅ ⋅ djs

n ))
1
n2k

=
1
2r

∞
∑
n=1

(n,d1⋅⋅⋅dr)=1

1
n2k

+
1
2r

r
∑
s=1

∑
1≤j1<⋅⋅⋅<js≤r

ϵj1 ⋅ ⋅ ⋅ ϵjs
∞
∑
n=1

(n,d1⋅⋅⋅dr)=1

(
dj1 ⋅ ⋅ ⋅ djs

n )
1
n2k

.

The theorem now follows on appealing to Propositions 4.3 and 4.6.

5 Examples
In this section we give some special cases of Theorem 4.7.

Theorem 5.1. Let k ∈ ℕ. Then
∞
∑
n=1

n≡1,4 (mod5)

1
n2k

=
(−1)k−122k−2π2k

52k+1(2k)!
A−,

∞
∑
n=1

n≡2,3 (mod5)

1
n2k

=
(−1)k−122k−2π2k

52k+1(2k)!
A+,

where

A± := 5(52k − 1)B2k ± 2
2k−1
∑
r=0

(
2k
r )

5r(22k−r − 1)Br√5.

Proof. The congruences n ≡ 1, 4 (mod5) are discriminantly determined as n ≡ 1, 4 (mod5) ⇔ ( 5n ) = +1. By
Theorem 4.7 we obtain

∞
∑
n=1

n≡1,4 (mod5)

1
n2k

=
(−1)k−122k−2B2kπ2k

(2k)! Pk(5) +
(−1)k−122k−2π2k

(2k)!
Hk(5)
√5

Pk(5, 5).

By Definition 3.2 we have Pk(5) = 52k−1
52k and Pk(1, 5) = Pk(5, 5) = 1. By Definition 3.4 we have

Hk(5) =
2
52k

2k−1
∑
r=0

(
2k
r )

5r(1 − 22k−r)Br .

The first asserted formula now follows. The second formula follows in a similar manner.

Taking k = 1 and k = 2 in Theorem 5.1, we obtain the following corollary.
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Corollary 5.2. The following four evaluations hold:
∞
∑
n=1

n≡1,4 (mod5)

1
n2

=
2(5 +√5)π2

125 ,
∞
∑
n=1

n≡2,3 (mod5)

1
n2

=
2(5 −√5)π2

125 ,

and
∞
∑
n=1

n≡1,4 (mod5)

1
n4

=
4(13 + 5√5)π4

9375 ,
∞
∑
n=1

n≡2,3 (mod5)

1
n4

=
4(13 − 5√5)π4

9375 .

Theorem 5.3. Let k ∈ ℕ. Then
∞
∑
n=1

n≡1,7 (mod8)

1
n2k

=
(−1)k−1π2k

24k+3(2k)!
B−,

∞
∑
n=1

n≡3,5 (mod8)

1
n2k

=
(−1)k−1π2k

24k+3(2k)!
B+,

where

B± := 24k+1(22k − 1)B2k ±
2k−1
∑
r=0

(
2k
r )

23r(32k−r − 1)Br√2.

Proof. The congruences n ≡ 1, 7 (mod8) are discriminantly determined as n ≡ 1, 7 (mod8) ⇔ ( 8n ) = +1. By
Theorem 4.7 with r = 1, d1 = 8 and ϵ1 = +1, we obtain the first formula. For the second formula we choose
r = 1, d1 = 8 and ϵ1 = −1.

Taking k = 1 and k = 2 in Theorem 5.3, we obtain the following corollary.

Corollary 5.4. We have
∞
∑
n=1

n≡1,7 (mod8)

1
n2

=
(2 +√2)π2

32 ,
∞
∑
n=1

n≡3,5 (mod8)

1
n2

=
(2 −√2)π2

32 ,

and
∞
∑
n=1

n≡1,7 (mod8)

1
n4

=
(16 + 11√2)π4

3072 ,
∞
∑
n=1

n≡3,5 (mod8)

1
n4

=
(16 − 11√2)π4

3072 .

Theorem 5.5. Let k ∈ ℕ. Then
∞
∑
n=1

n≡1,11 (mod12)

1
n2k

=
(−1)k−1π2k

22k+232k+1(2k)!
C−,

∞
∑
n=1

n≡5,7 (mod12)

1
n2k

=
(−1)k−1π2k

22k+232k+1(2k)!
C+,

where

C± := 22k3(22k − 1)(32k − 1)B2k ±
2k−1
∑
r=0

(
2k
r )

22r3r(52k−r − 1)Br√3.

Proof. The congruences n ≡ 1, 11 (mod12) are discriminantly determined as n ≡ 1, 11 (mod12) ⇔ (12n ) =
+1. By Theorem 4.7 with r = 1, d1 = 12 and ϵ1 = +1, we obtain the first formula. For the second formula we
choose r = 1, d1 = 12 and ϵ1 = −1.

Taking k = 1 and k = 2 in Theorem 5.5, we obtain the following corollary.

Corollary 5.6. The following four evaluations hold:
∞
∑
n=1

n≡1,11 (mod12)

1
n2

=
(2 +√3)π2

36 ,
∞
∑
n=1

n≡5,7 (mod12)

1
n2

=
(2 −√3)π2

36 ,

and
∞
∑
n=1

n≡1,11 (mod12)

1
n4

=
(40 + 23√3)π4

7776 ,
∞
∑
n=1

n≡5,7 (mod12)

1
n4

=
(40 − 23√3)π4

7776 .
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Theorem 5.7. Let k ∈ ℕ. Then
∞
∑
n=1

n≡1,9 (mod10)

1
n2k

=
(−1)k−1π2k

4 ⋅ 52k+1(2k)!
D−,

∞
∑
n=1

n≡3,7 (mod10)

1
n2k

=
(−1)k−1π2k

4 ⋅ 52k+1(2k)!
D+,

where

D± := 5(22k − 1)(52k − 1)B2k ± 2(22k + 1)
2k−1
∑
r=0

(
2k
r )

(22k−r − 1)5rBr√5.

Proof. As n ≡ 1, 9 (mod10) ⇔ (20n ) = +1 we choose r = 1, d1 = 20 and ϵ1 = +1 in Theorem 4.7 to obtain the
first formula. For the second formula we choose r = 1, d1 = 20 and ϵ1 = −1.

Taking k = 1 and k = 2 in Theorem 5.7, we obtain the following corollary.

Corollary 5.8. The following four evaluations hold:

∞
∑
n=1

n≡1,9 (mod10)

1
n2

=
(3 +√5)π2

50 ,
∞
∑
n=1

n≡3,7 (mod10)

1
n2

=
(3 −√5)π2

50 ,

and
∞
∑
n=1

n≡1,9 (mod10)

1
n4

=
(39 + 17√5)π4

7500 ,
∞
∑
n=1

n≡3,7 (mod10)

1
n4

=
(39 − 17√5)π4

7500 .

Theorem 5.9. Let k ∈ ℕ. Then
∞
∑
n=1

n≡1,23 (mod24)

1
n2k

= E + F√2 + G√3 + H√6,

∞
∑
n=1

n≡5,19 (mod24)

1
n2k

= E − F√2 − G√3 + H√6,

∞
∑
n=1

n≡7,17 (mod24)

1
n2k

= E + F√2 − G√3 − H√6,

∞
∑
n=1

n≡11,13 (mod24)

1
n2k

= E − F√2 + G√3 − H√6,

where

E := (−1)k−1(22k − 1)(32k − 1)B2kπ2k

8 ⋅ 32k(2k)!
,

F := (−1)k−1(32k + 1)π2k

24k+432k(2k)!

2k−1
∑
r=0

(
2k
r )

23r(1 − 32k−r)Br ,

G := (−1)k−1π2k

22k+332k+1(2k)!

2k−1
∑
r=0

(
2k
r )

22r3r(1 − 52k−r)Br ,

H := (−1)k−1π2k

24k+432k+1(2k)!

2k−1
∑
r=0

(
2k
r )

23r3r(1 + 52k−r − 72k−r − 112k−r)Br .

Proof. We have

n ≡ 1, 23 (mod24) ⇐⇒ (
8
n)

= (
12
n ) = 1,

n ≡ 5, 19 (mod24) ⇐⇒ (
8
n)

= (
12
n ) = −1,
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n ≡ 7, 17 (mod24) ⇐⇒ (
8
n)

= 1, (12n ) = −1,

n ≡ 11, 13 (mod24) ⇐⇒ (
8
n)

= −1, (12n ) = 1.

The asserted formulae follow by taking

r = 2, d1 = 8, d2 = 12, ϵ1 = 1, ϵ2 = 1,
r = 2, d1 = 8, d2 = 12, ϵ1 = −1, ϵ2 = −1,
r = 2, d1 = 8, d2 = 12, ϵ1 = 1, ϵ2 = −1,
r = 2, d1 = 8, d2 = 12, ϵ1 = −1, ϵ2 = 1,

respectively, in Theorem 4.7.

Taking k = 1 in Theorem 5.9, we obtain the following corollary.

Corollary 5.10. The following four evaluations hold:
∞
∑
n=1

n≡1,23 (mod24)

1
n2

=
(8 + 5√2 + 4√3 + 3√6)π2

288 ,

∞
∑
n=1

n≡5,19 (mod24)

1
n2

=
(8 − 5√2 − 4√3 + 3√6)π2

288 ,

∞
∑
n=1

n≡7,17 (mod24)

1
n2

=
(8 + 5√2 − 4√3 − 3√6)π2

288 ,

∞
∑
n=1

n≡11,13 (mod24)

1
n2

=
(8 − 5√2 + 4√3 − 3√6)π2

288 .

Theorem 5.11. Let k ∈ ℕ. Then
∞
∑
n=1

n≡1,3,9,19,25,27 (mod28)

1
n2k

= J + K√7,
∞
∑
n=1

n≡5,11,13,15,17,23 (mod28)

1
n2k

= J − K√7,

where

J := (−1)k−1(22k − 1)(72k − 1)B2kπ2k

2272k(2k)!
,

K := (−1)k−1π2k

22k+272k+1(2k)!

2k−1
∑
r=0

(
2k
r )

22r7r(12k−r + 32k−r − 52k−r + 92k−r − 112k−r − 132k−r)Br .

Proof. We have
n ≡ 1, 3, 9, 19, 25, 27 (mod28) ⇐⇒ (

28
n ) = 1

and
n ≡ 5, 11, 13, 15, 17, 23 (mod28) ⇐⇒ (

28
n ) = −1

so the congruences are discriminantly determined and we can apply Theorem 4.7 with d = ∆ = 28 and
f = 1.

Taking k = 1 in Theorem 5.11 we obtain the following result.

Corollary 5.12. The following two evaluations hold:
∞
∑
n=1

n≡1,3,9,19,25,27 (mod28)

1
n2

=
π2

49 (3 +√7),
∞
∑
n=1

n≡5,11,13,15,17,23 (mod28)

1
n2

=
π2

49 (3 −√7).
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