Research Article

Kenneth S. Williams*

A class of subsums of Euler's sum

DOI: 10.1515/anly-2015-0018
Received May 3, 2015; revised October 1, 2015; accepted January 19, 2016
Abstract: A class of sums of the type

$$
\sum_{\substack{n=1 \\ n \equiv a_{1}, \ldots, a_{r}(\bmod m)}}^{\infty} \frac{1}{n^{2 k}}
$$

is evaluated, where k, m and r are positive integers with $m \geq 2$ and a_{1}, \ldots, a_{r} are integers satisfying $1 \leq$ $a_{1}<a_{2}<\cdots<a_{r} \leq m-1$.
Keywords: Euler's sum, Euler's formula, Bernoulli numbers and polynomials, Kronecker symbol, subsums of Euler's sum

MSC 2010: 11A07, 11A25, 11B25, 11B68, 11F66, 11Y60

1 Introduction

Let $\mathbb{N}:=\{1,2,3, \ldots\}, \mathbb{N}_{0}:=\{0,1,2, \ldots\}$ and $\mathbb{Z}:=\{0, \pm 1, \pm 2, \ldots\}$. Let $\mathbb{Q}, \overline{\mathbb{Q}}$ and \mathbb{R} denote the fields of rational numbers, algebraic numbers and real numbers, respectively.

In the eighteenth century Euler proved that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n^{2 k}}=\frac{(-1)^{k-1} 2^{2 k-1} B_{2 k} \pi^{2 k}}{(2 k)!}, \quad k \in \mathbb{N} \tag{1.1}
\end{equation*}
$$

where $B_{\ell}\left(\ell \in \mathbb{N}_{0}\right)$ denotes the ℓ th Bernoulli number. Euler's formula (1.1) is well known and many proofs of it occur in the literature, see for example [2, 3, 8].

Some subsums of Euler's sum $\sum_{n=1}^{\infty} \frac{1}{n^{2 k}}$ of the type

$$
\begin{equation*}
\sum_{\substack{n=1 \\ n \equiv a_{1}, \ldots, a_{r}(\bmod m)}}^{\infty} \frac{1}{n^{2 k}}, \quad k, m, r \in \mathbb{N}, m \geq 2 \tag{1.2}
\end{equation*}
$$

where $a_{1}, \ldots, a_{r} \in \mathbb{Z}$ satisfy $0 \leq a_{1}<a_{2}<\cdots<a_{r} \leq m-1$, have been evaluated. One very simple example is

$$
\begin{equation*}
\sum_{\substack{n=1 \\ n \equiv 0(\bmod m)}}^{\infty} \frac{1}{n^{2 k}}=\frac{(-1)^{k-1} 2^{2 k-1} B_{2 k} \pi^{2 k}}{m^{2 k}(2 k)!}, \quad k, m \in \mathbb{N} \tag{1.3}
\end{equation*}
$$

which follows immediately from (1.1). Another simple example is

$$
\sum_{\substack{n=1 \\ n \equiv 1(\bmod 2)}}^{\infty} \frac{1}{n^{2 k}}=\frac{(-1)^{k-1}\left(2^{2 k}-1\right) B_{2 k} \pi^{2 k}}{2(2 k)!}, \quad k \in \mathbb{N}
$$

which follows by subtracting (1.3) with $m=2$ from (1.1).

[^0]Recently Navas, Ruiz and Varona [6, p. 34, Proposition 3.5] evaluated the subsum

$$
\sum_{\substack{n=1 \\ n \equiv \pm s(\bmod m)}}^{\infty} \frac{1}{n^{2 k}}, \quad k, m, s \in \mathbb{N}
$$

for $m \equiv 1(\bmod 2), m \geq 3$ and $s \in\{1,2, \ldots,(m-1) / 2\}$ in terms of values of trigonometric functions and values of Bernoulli polynomials. They stated that there is a similar evaluation for $m \equiv 0(\bmod 2)$ but did not give it. We now state their theorem in a form valid for all $m \in \mathbb{N}$ with $m \geq 3$ and all $s \in \mathbb{Z}$ with $2 s \not \equiv 0(\bmod m)$, and give a very simple proof of it in Section 2. We recall that the Bernoulli polynomial $B_{n}(x)\left(n \in \mathbb{N}_{0}, x \in \mathbb{R}\right)$ is defined by

$$
B_{n}(x):=\sum_{r=0}^{n}\binom{n}{r} B_{r} x^{n-r},
$$

and we note the properties

$$
\begin{equation*}
B_{n}(0)=B_{n} \quad B_{2 k}(x)=B_{2 k}(1-x), \quad n, k \in \mathbb{N}_{0} . \tag{1.4}
\end{equation*}
$$

Theorem 1.1 (Navas, Ruiz and Varona). Let $k, m \in \mathbb{N}$ with $m \geq 3$. Let $s \in \mathbb{Z}$ be such that $2 s \neq 0(\bmod m)$. Then

$$
\sum_{\substack{n=1 \\ n \equiv \pm s(\bmod m)}}^{\infty} \frac{1}{n^{2 k}}=\frac{(-1)^{k-1} 2^{2 k} \pi^{2 k}}{m(2 k)!} \sum_{j=0}^{m-1} B_{2 k}(j / m) \cos (2 \pi s j / m)
$$

As $B_{2 k}(j / m) \in \mathbb{Q}$ and $\cos (2 \pi s j / m) \in \overline{\mathbb{Q}} \cap \mathbb{R}$, we see that

$$
\frac{1}{\pi^{2 k}} \sum_{\substack{n=1 \\ n \equiv \pm s(\bmod m)}}^{\infty} \frac{1}{n^{2 k}} \in \overline{\mathbb{Q}} \cap \mathbb{R} .
$$

Hence a sum of the form (1.2) with

$$
\begin{cases}r \equiv 0(\bmod 2), & 1 \leq a_{1}<a_{2}<\cdots<a_{r} \leq m-1 \\ \left(a_{j}, m\right)=1, & a_{r+1-j}=m-a_{j}, j=1, \ldots, r\end{cases}
$$

is a sum of sums of the type given in Theorem 1.1, namely

$$
\sum_{j=1}^{r / 2} \sum_{\substack{n=1 \\ n= \pm a_{j}(\bmod m)}}^{\infty} \frac{1}{n^{2 k}}
$$

where each $2 a_{j} \not \equiv 0(\bmod m)$, and thus is of the form $\alpha \pi^{2 k}$, where $\alpha \in \overline{\mathbb{Q}} \cap \mathbb{R}$. We give a class of subsums of this type for which α can be given explicitly as a rational linear combination of squareroots of positive integers, see Theorem 4.7. The idea of such a result is implicit in the work of Shanks and Wrench [7] and our purpose is to make it completely explicit. Two examples are

$$
\sum_{\substack{n=1 \\ 1,13(\bmod 24)}}^{\infty} \frac{1}{n^{2}}=\frac{(8-5 \sqrt{2}+4 \sqrt{3}-3 \sqrt{6}) \pi^{2}}{288}
$$

see Corollary 5.10, and

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{49}(3-\sqrt{7}),
$$

see Corollary 5.12.
In Section 2 we prove Theorem 1.1. In Section 3 we define the class of subsums of Euler's sum that we shall evaluate in Section 4. In Section 4 we make use of Theorem 1.1 to prove our main result (Theorem 4.7). In Section 5 we give some examples illustrating Theorem 4.7.

2 Proof of Theorem 1.1

We make use of the Fourier expansion of the Bernoulli polynomial $B_{2 k}(x)(k \in \mathbb{N})$, namely,

$$
\begin{equation*}
B_{2 k}(x)=\frac{(-1)^{k-1}(2 k)!}{2^{2 k-1} \pi^{2 k}} \sum_{n=1}^{\infty} \frac{\cos 2 n \pi x}{n^{2 k}}, \quad x \in[0,1] \tag{2.1}
\end{equation*}
$$

see for example [1, p. 805]. Appealing to (2.1), we obtain

$$
\begin{aligned}
\sum_{j=0}^{m-1} \cos (2 \pi s j / m) B_{2 k}(j / m) & =\sum_{j=0}^{m-1} \cos (2 \pi s j / m) \frac{(-1)^{k-1}(2 k)!}{2^{2 k-1} \pi^{2 k}} \sum_{n=1}^{\infty} \frac{\cos (2 \pi j n / m)}{n^{2 k}} \\
& =\frac{(-1)^{k-1}(2 k)!}{2^{2 k-1} \pi^{2 k}} \sum_{n=1}^{\infty} \frac{1}{n^{2 k}} \sum_{j=0}^{m-1} \cos (2 \pi s j / m) \cos (2 \pi n j / m) \\
& =\frac{(-1)^{k-1}(2 k)!}{2^{2 k} \pi^{2 k}} \sum_{n=1}^{\infty} \frac{1}{n^{2 k}} \sum_{j=0}^{m-1}(\cos (2 \pi(n-s) j / m)+\cos (2 \pi(n+s) j / m))
\end{aligned}
$$

Now

$$
\sum_{j=0}^{m-1} \cos (2 \pi(n \mp s) j / m)= \begin{cases}m & \text { if } n \equiv \pm s(\bmod m) \\ 0 & \text { if } n \neq \pm s(\bmod m)\end{cases}
$$

and $s \not \equiv-s(\bmod m)(\operatorname{as} 2 s \not \equiv 0(\bmod m))$ so

$$
\sum_{j=0}^{m-1} \cos (2 \pi s j / m) B_{2 k}(j / m)=\frac{(-1)^{k-1}(2 k)!m}{2^{2 k} \pi^{2 k}} \sum_{\substack{n=1 \\ n \equiv \pm s(\bmod m)}}^{\infty} \frac{1}{n^{2 k}}
$$

from which the asserted formula follows.

3 A class of subsums of Euler's sum

We begin with some definitions.
Definition 3.1. We call a positive integer d a discriminant if d is not a perfect square and $d \equiv 0$ or $1(\bmod 4)$. A discriminant d is called a fundamental discriminant if there is no integer $g>1$ such that $g^{2} \mid d$ and $d / g^{2} \equiv$ 0 or $1(\bmod 4)$. The conductor $f=f(d)$ of a discriminant d is the largest positive integer such that $f^{2} \mid d$ and $d / f^{2} \equiv 0$ or $1(\bmod 4)$. The fundamental discriminant $\Delta=\Delta(d)$ associated with the discriminant d is $\Delta=d / f^{2}$, where f is the conductor of d.

We emphasize that in this paper we are restricting discriminants to be positive integers. The Kronecker symbol for a discriminant d and a positive integer n is written as $\left(\frac{d}{n}\right)$. Properties of the Kronecker symbol are given in [4, pp.304-306]. The Kronecker symbol $\left(\frac{d}{n}\right)$ is a completely multiplicative function of n. Moreover,

$$
\left(\frac{d}{n}\right)= \begin{cases}0 & \text { if }(n, d)>1 \tag{3.1}\\ \pm 1 & \text { if }(n, d)=1\end{cases}
$$

Also, if f is the conductor of the discriminant d and $\Delta=d / f^{2}$ is the fundamental discriminant associated with d then

$$
\left(\frac{d}{n}\right)= \begin{cases}0 & \text { if }(n, f)>1 \tag{3.2}\\ \left(\frac{\Delta}{n}\right) & \text { if }(n, f)=1\end{cases}
$$

Two further properties of the Kronecker symbol are

$$
\begin{equation*}
\left(\frac{d}{n}\right)=\left(\frac{d}{d-n}\right), \quad 1 \leq n \leq d-1 \tag{3.3}
\end{equation*}
$$

see [4, p. 305, Theorem 3.3] for a proof, and

$$
\begin{equation*}
\sum_{\substack{r=1 \\(r, d)=1}}^{d-1}\left(\frac{d}{r}\right)=0 . \tag{3.4}
\end{equation*}
$$

By (3.3) we have

$$
\sum_{\substack{1 \leq r<d / 2 \\(r, d)=1}}\left(\frac{d}{r}\right)=\sum_{\substack{d / 2<r \leq d-1 \\(r, d)=1}}\left(\frac{d}{r}\right)=\frac{1}{2} \sum_{\substack{r=1 \\(r, d)=1}}^{d-1}\left(\frac{d}{r}\right)
$$

as $d / 2$ is not an integer if d is odd and $(d / 2, d)=d / 2>1$ if d is even since $d \geq 8$ in this case. Hence, by (3.4), we deduce

$$
\begin{equation*}
\sum_{\substack{1 \leq r<d / 2 \\(r, d)=1}}\left(\frac{d}{r}\right)=0 \tag{3.5}
\end{equation*}
$$

The final property of the Kronecker symbol that we need is the identity

$$
\begin{equation*}
\sum_{\substack{t=1 \\(t, \Delta)=1}}^{\Delta-1}\left(\frac{\Delta}{t}\right) e^{2 \pi i n t / \Delta}=\left(\frac{\Delta}{n}\right) \sqrt{\Delta} \tag{3.6}
\end{equation*}
$$

which is valid for any positive integer n and any fundamental discriminant Δ, see [5, p. 221, Theorem 215]. As $\left(\frac{\Delta}{n}\right) \sqrt{\Delta} \in \mathbb{R}$ we have from (3.6)

$$
\begin{equation*}
\sum_{\substack{t=1 \\(t, \Delta)=1}}^{\Delta-1}\left(\frac{\Delta}{t}\right) \cos (2 \pi n t / \Delta)=\left(\frac{\Delta}{n}\right) \sqrt{\Delta} \tag{3.7}
\end{equation*}
$$

Our next three definitions are of quantities that we need in order to be able to state our main result (Theorem 4.7).

Definition 3.2. For $k, m \in \mathbb{N}$ and a discriminant d, we define

$$
P_{k}(m):=\prod_{p \mid m}\left(1-\frac{1}{p^{2 k}}\right)
$$

and

$$
P_{k}(m, d):=\prod_{p \mid m}\left(1-\left(\frac{d}{p}\right) \frac{1}{p^{2 k}}\right)=\prod_{\substack{p \mid m \\ p \nmid d}}\left(1-\left(\frac{d}{p}\right) \frac{1}{p^{2 k}}\right),
$$

where p runs through the primes satisfying the given conditions.
In particular, we have $P_{k}(1)=1$ and $P_{k}(m, d)=1$ if $m \mid d$.
Definition 3.3. For $m \in \mathbb{N}_{0}$ and a discriminant d, we define

$$
S_{m}(d):=\sum_{\substack{1 \leq t<d / 2 \\(t, d)=1}}\left(\frac{d}{t}\right) t^{m}
$$

We note that $S_{0}(d)=0$ by (3.5).
Definition 3.4. Let $k \in \mathbb{N}$ and d a discriminant. Let f be the conductor of d and $\Delta=d / f^{2}$ the fundamental discriminant associated with d. We define

$$
H_{k}(d):=\frac{2}{\Delta^{2 k}} P_{k}(f, \Delta) \sum_{r=0}^{2 k-1}\binom{2 k}{r} \Delta^{r} B_{r} S_{2 k-r}(\Delta)
$$

We note that in the sum in $H_{k}(d)$ the terms with $r(o d d) \geq 3$ vanish as $B_{2 n+1}=0$ for $n \in \mathbb{N}$.
Our final definition defines the class of congruences in (1.2) that we consider.

Definition 3.5. The set of congruences

$$
n \equiv a_{1}, \ldots, a_{r}(\bmod m)
$$

where m and r are positive integers with $m \geq 2$ and a_{1}, \ldots, a_{r} are integers satisfying $1 \leq a_{1}<a_{2}<\cdots<$ $a_{r} \leq m-1$, is said to be discriminantly determined if there exist $\epsilon_{1}= \pm 1, \ldots, \epsilon_{s}= \pm 1$ and discriminants d_{1}, \ldots, d_{s} with no nonempty product equal to a perfect square such that

$$
n \equiv a_{1}, \ldots, a_{r}(\bmod m) \quad \text { if and only if } \quad\left(\frac{d_{1}}{n}\right)=\epsilon_{1}, \ldots,\left(\frac{d_{s}}{n}\right)=\epsilon_{s}
$$

The congruences $n \equiv 7,17(\bmod 24)$ are discriminantly determined as

$$
n \equiv 7,17(\bmod 24) \quad \text { if and only if } \quad\left(\frac{8}{n}\right)=1,\left(\frac{12}{n}\right)=-1
$$

However the congruence $n \equiv 1(\bmod 4)$ is not discriminantly determined. Our main result evaluates the sum (1.2) for the class of congruences which are discriminantly determined.

4 Proof of main result

In this section we evaluate some infinite series and then state and prove our main result Theorem 4.7.
Proposition 4.1. Let $e, k \in \mathbb{N}$. Let d be a discriminant. Then

$$
\sum_{\substack{n=1 \\ e \mid n}}^{\infty}\left(\frac{d}{n}\right) \frac{1}{n^{2 k}}=\left(\frac{d}{e}\right) \frac{1}{e^{2 k}} \sum_{n=1}^{\infty}\left(\frac{d}{n}\right) \frac{1}{n^{2 k}}
$$

Proof. We have

$$
\sum_{\substack{n=1 \\ e \mid n}}^{\infty}\left(\frac{d}{n}\right) \frac{1}{n^{2 k}}=\sum_{n=1}^{\infty}\left(\frac{d}{e n}\right) \frac{1}{(e n)^{2 k}}=\sum_{n=1}^{\infty}\left(\frac{d}{e}\right)\left(\frac{d}{n}\right) \frac{1}{e^{2 k}} \frac{1}{n^{2 k}}
$$

and the asserted result now follows.
Proposition 4.2. Let $k, m \in \mathbb{N}$. Let d be a discriminant. Then

$$
\sum_{e \mid m} \frac{\mu(e)}{e^{2 k}}=P_{k}(m) \quad \text { and } \quad \sum_{e \mid m} \mu(e)\left(\frac{d}{e}\right) \frac{1}{e^{2 k}}=P_{k}(m, d)
$$

where μ denotes the Möbius function.
Proof. We just prove the first formula as the second formula can be proved in a similar manner. As $\mu(e) / e^{2 k}$ is a multiplicative function of the positive integer e, and $\mu(p)=-1$ and $\mu\left(p^{2}\right)=\mu\left(p^{3}\right)=\cdots=0$ for any prime p, we have

$$
\sum_{e \mid m} \frac{\mu(e)}{e^{2 k}}=\prod_{p^{v_{p}(m) \| m}}\left(1+\frac{\mu(p)}{p^{2 k}}+\frac{\mu\left(p^{2}\right)}{p^{4 k}}+\cdots+\frac{\mu\left(p^{v_{p}(m)}\right)}{p^{2 v_{p}(m)}}\right)=\prod_{p \mid m}\left(1-\frac{1}{p^{2 k}}\right)
$$

The asserted formula now follows by Definition 3.2.
Proposition 4.3. Let $k, m \in \mathbb{N}$. Then

$$
\sum_{\substack{n=1 \\(n, m)=1}}^{\infty} \frac{1}{n^{2 k}}=\frac{(-1)^{k-1} 2^{2 k-1} B_{2 k} \pi^{2 k}}{(2 k)!} P_{k}(m)
$$

Proof. Appealing to (1.3) and Proposition 4.2, we obtain

$$
\begin{aligned}
\sum_{\substack{n=1 \\
(n, m)=1}}^{\infty} \frac{1}{n^{2 k}} & =\sum_{n=1}^{\infty}\left(\sum_{e \mid(n, m)} \mu(e)\right) \frac{1}{n^{2 k}} \\
& =\sum_{e \mid m} \mu(e) \sum_{\substack{n=1 \\
e \mid n}}^{\infty} \frac{1}{n^{2 k}} \\
& =\sum_{e \mid m} \mu(e) \frac{(-1)^{k-1} 2^{2 k-1} B_{2 k} \pi^{2 k}}{e^{2 k}(2 k)!} \\
& =\frac{(-1)^{k-1} 2^{2 k-1} B_{2 k} \pi^{2 k}}{(2 k)!} \sum_{e \mid m} \frac{\mu(e)}{e^{2 k}} \\
& =\frac{(-1)^{k-1} 2^{2 k-1} B_{2 k} \pi^{2 k}}{(2 k)!} P_{k}(m)
\end{aligned}
$$

as asserted.
Proposition 4.4. Let $k \in \mathbb{N}$. Let Δ be a fundamental discriminant. Then

$$
\sum_{n=1}^{\infty}\left(\frac{\Delta}{n}\right) \frac{1}{n^{2 k}}=\frac{(-1)^{k-1} 2^{2 k} \pi^{2 k}}{(2 k)!\Delta^{2 k} \sqrt{\Delta}} \sum_{r=0}^{2 k-1}\binom{2 k}{r} \Delta^{r} B_{r} S_{2 k-r}(\Delta) .
$$

Proof. Let $r_{1}, \ldots, r_{\phi(\Delta) / 2}$ be the integers such that

$$
1 \leq r_{1}<\cdots<r_{\phi(\Delta) / 2} \leq \Delta-1, \quad\left(\frac{\Delta}{r_{1}}\right)=\cdots=\left(\frac{\Delta}{r_{\phi(\Delta) / 2}}\right)=1,
$$

and $s_{1}, \ldots, s_{\phi(\Delta) / 2}$ the integers such that

$$
1<s_{1}<\cdots<s_{\phi(\Delta) / 2}<\Delta-1, \quad\left(\frac{\Delta}{s_{1}}\right)=\cdots=\left(\frac{\Delta}{s_{\phi(\Delta) / 2}}\right)=-1 .
$$

We note that $\phi(\Delta) \equiv 0(\bmod 4)$ and $\left(r_{m}, \Delta\right)=\left(s_{m}, \Delta\right)=1, r_{\phi(\Delta) / 2+1-m}=\Delta-r_{m}, s_{\phi(\Delta) / 2+1-m}=\Delta-s_{m}$ for $m=1,2, \ldots, \phi(\Delta) / 2$. Appealing to (3.1), the theorem of Navas, Ruiz and Varona (Theorem 1.1) and (3.7), we obtain

$$
\begin{aligned}
& \sum_{n=1}^{\infty}\left(\frac{\Delta}{n}\right) \frac{1}{n^{2 k}}=\sum_{\substack{n=1 \\
(n, \Delta)=1}}^{\infty}\left(\frac{\Delta}{n}\right) \frac{1}{n^{2 k}} \\
& =\sum_{m=1}^{\phi(\Delta) / 2} \sum_{\substack{n=1 \\
n=r_{m}(\bmod \Delta)}}^{\infty} \frac{1}{n^{2 k}}-\sum_{m=1}^{\phi(\Delta) / 2} \sum_{\substack{n=1 \\
n \equiv s_{m}(\bmod \Delta)}}^{\infty} \frac{1}{n^{2 k}} \\
& =\sum_{m=1}^{\phi(\Delta) / 4} \sum_{\substack{n=1 \\
n \equiv \pm r_{m}(\bmod \Delta)}}^{\infty} \frac{1}{n^{2 k}}-\sum_{m=1}^{\phi(\Delta) / 4} \sum_{\substack{n=1 \\
n \equiv \pm s_{m}(\bmod \Delta)}}^{\infty} \frac{1}{n^{2 k}} \\
& =\frac{(-1)^{k-1} 2^{2 k} \pi^{2 k}}{(2 k)!\Delta} \sum_{m=1}^{\phi(\Delta) / 4} \sum_{t=0}^{\Delta-1} B_{2 k}(t / \Delta) \cos \left(2 \pi r_{m} t / \Delta\right) \\
& -\frac{(-1)^{k-1} 2^{2 k} \pi^{2 k}}{(2 k)!\Delta} \sum_{m=1}^{\phi(\Delta) / 4} \sum_{t=0}^{\Delta-1} B_{2 k}(t / \Delta) \cos \left(2 \pi s_{m} t / \Delta\right) \\
& =\frac{(-1)^{k-1} 2^{2 k-1} \pi^{2 k}}{(2 k)!\Delta} \sum_{t=0}^{\Delta-1} B_{2 k}(t / \Delta) \sum_{\substack{u=1 \\
(u, \Delta)=1}}^{\Delta-1}\left(\frac{\Delta}{u}\right) \cos (2 \pi u t / \Delta)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{(-1)^{k-1} 2^{2 k-1} \pi^{2 k}}{(2 k)!\sqrt{\Delta}} \sum_{t=0}^{\Delta-1}\left(\frac{\Delta}{t}\right) B_{2 k}(t / \Delta) \\
& =\frac{(-1)^{k-1} 2^{2 k-1} \pi^{2 k}}{(2 k)!\sqrt{\Delta}} \sum_{\substack{t=1 \\
(t, \Delta)=1}}^{\Delta-1}\left(\frac{\Delta}{t}\right) B_{2 k}(t / \Delta)
\end{aligned}
$$

By (3.3) and (1.4) we have, for $1 \leq t \leq \Delta-1$ with $(t, \Delta)=1$,

$$
\left(\frac{\Delta}{t}\right)=\left(\frac{\Delta}{\Delta-t}\right), \quad B_{2 k}(t / \Delta)=B_{2 k}((\Delta-t) / \Delta)
$$

We remark that when Δ is even we have $(\Delta / 2, \Delta)=\Delta / 2 \neq 1$ as $\Delta \geq 8$, so $t \neq \Delta / 2$. Hence, pairing t and $\Delta-t$, we obtain appealing to Definition 3.3

$$
\begin{aligned}
\sum_{\substack{t=1 \\
(t, \Delta)=1}}^{\Delta-1}\left(\frac{\Delta}{t}\right) B_{2 k}(t / \Delta) & =2 \sum_{\substack{1 \leq t<\Delta / 2 \\
(t, \Delta)=1}}\left(\frac{\Delta}{t}\right) B_{2 k}(t / \Delta) \\
& =2 \sum_{\substack{1 \leq t<\Delta / 2 \\
(t, \Delta)=1}}\left(\frac{\Delta}{t}\right) \sum_{r=0}^{2 k}\binom{2 k}{r} B_{r} \frac{t^{2 k-r}}{\Delta^{2 k-r}} \\
& =\frac{2}{\Delta^{2 k}} \sum_{r=0}^{2 k}\binom{2 k}{r} \Delta^{r} B_{r} \sum_{\substack{1 \leq t<\Delta / 2 \\
(t, \Delta)=1}}\left(\frac{\Delta}{t}\right) t^{2 k-r} \\
& =\frac{2}{\Delta^{2 k}} \sum_{r=0}^{2 k}\binom{2 k}{r} \Delta^{r} B_{r} S_{2 k-r}(\Delta) \\
& =\frac{2}{\Delta^{2 k}} \sum_{r=0}^{2 k-1}\binom{2 k}{r} \Delta^{r} B_{r} S_{2 k-r}(\Delta)
\end{aligned}
$$

as $S_{0}(\Delta)=0$. The asserted formula now follows.
Proposition 4.5. Let $k \in \mathbb{N}$. Let d be a discriminant. Let f be the conductor of d and $\Delta=d / f^{2}$ the fundamental discriminant associated with d. Then

$$
\sum_{n=1}^{\infty}\left(\frac{d}{n}\right) \frac{1}{n^{2 k}}=\frac{(-1)^{k-1} 2^{2 k-1} \pi^{2 k}}{(2 k)!\sqrt{\Delta}} H_{k}(d)
$$

Proof. By (3.1) we have

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{d}{n}\right) \frac{1}{n^{2 k}}=\sum_{\substack{n=1 \\(n, d)=1}}^{\infty}\left(\frac{d}{n}\right) \frac{1}{n^{2 k}} \tag{4.1}
\end{equation*}
$$

Replacing d by Δf^{2} in the right-hand sum in (4.1), and noting that $\left(n, \Delta f^{2}\right)=1$ is equivalent to $(n, \Delta)=(n, f)=$ 1, we deduce that

$$
\sum_{n=1}^{\infty}\left(\frac{d}{n}\right) \frac{1}{n^{2 k}}=\sum_{\substack{n=1 \\(n, \Delta)=1 \\(n, f)=1}}^{\infty}\left(\frac{\Delta f^{2}}{n}\right) \frac{1}{n^{2 k}}
$$

By (3.2) we have $\left(\frac{\Delta f^{2}}{n}\right)=\left(\frac{\Delta}{n}\right)$ for $(n, f)=1$ so

$$
\sum_{n=1}^{\infty}\left(\frac{d}{n}\right) \frac{1}{n^{2 k}}=\sum_{\substack{n=1 \\(n, \Delta)=1 \\(n, f)=1}}^{\infty}\left(\frac{\Delta}{n}\right) \frac{1}{n^{2 k}}
$$

By (3.1) we have $\left(\frac{\Delta}{n}\right)=0$ for $(n, \Delta)>1$, so

$$
\sum_{n=1}^{\infty}\left(\frac{d}{n}\right) \frac{1}{n^{2 k}}=\sum_{\substack{n=1 \\(n, f)=1}}^{\infty}\left(\frac{\Delta}{n}\right) \frac{1}{n^{2 k}}
$$

Hence

$$
\sum_{n=1}^{\infty}\left(\frac{d}{n}\right) \frac{1}{n^{2 k}}=\sum_{n=1}^{\infty}\left(\sum_{e \mid(n, f)} \mu(e)\right)\left(\frac{\Delta}{n}\right) \frac{1}{n^{2 k}}=\sum_{e \mid f} \mu(e) \sum_{\substack{n=1 \\ e \mid n}}^{\infty}\left(\frac{\Delta}{n}\right) \frac{1}{n^{2 k}} .
$$

Appealing to Propositions 4.1, 4.2 and 4.4, as well as Definition 3.4, we obtain

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left(\frac{d}{n}\right) \frac{1}{n^{2 k}} & =\sum_{e \mid f} \mu(e)\left(\frac{\Delta}{e}\right) \frac{1}{e^{2 k}} \sum_{n=1}^{\infty}\left(\frac{\Delta}{n}\right) \frac{1}{n^{2 k}} \\
& =P_{k}(f, \Delta) \sum_{n=1}^{\infty}\left(\frac{\Delta}{n}\right) \frac{1}{n^{2 k}} \\
& =P_{k}(f, \Delta) \frac{(-1)^{k-1} 2^{2 k} \pi^{2 k}}{(2 k)!\Delta^{2 k} \sqrt{\Delta}} \sum_{r=0}^{2 k-1}\binom{2 k}{r} \Delta^{r} B_{r} S_{2 k-r}(\Delta) \\
& =\frac{(-1)^{k-1} 2^{2 k-1} \pi^{2 k}}{(2 k)!\sqrt{\Delta}} H_{k}(d),
\end{aligned}
$$

which is the asserted result.
Proposition 4.6. Let $k, m \in \mathbb{N}$. Let d be a discriminant. Let f be the conductor of d. Let $\Delta=d / f^{2}$ be the fundamental discriminant associated with d. Then

$$
\sum_{\substack{n=1 \\(n, m)=1}}^{\infty}\left(\frac{d}{n}\right) \frac{1}{n^{2 k}}=\frac{(-1)^{k-1} 2^{2 k-1} \pi^{2 k}}{(2 k)!\sqrt{\Delta}} P_{k}(m, d) H_{k}(d)
$$

Proof. Appealing to Propositions 4.1, 4.2 and 4.5, we deduce

$$
\begin{aligned}
\sum_{\substack{n=1 \\
(n, m)=1}}^{\infty}\left(\frac{d}{n}\right) \frac{1}{n^{2 k}} & =\sum_{n=1}^{\infty}\left(\sum_{e \mid(n, m)} \mu(e)\right)\left(\frac{d}{n}\right) \frac{1}{n^{2 k}} \\
& =\sum_{e \mid m} \mu(e) \sum_{\substack{n=1 \\
e \mid n}}^{\infty}\left(\frac{d}{n}\right) \frac{1}{n^{2 k}} \\
& =\sum_{e \mid m} \mu(e)\left(\frac{d}{e}\right) \frac{1}{e^{2 k}} \sum_{n=1}^{\infty}\left(\frac{d}{n}\right) \frac{1}{n^{2 k}} \\
& =P_{k}(m, d) \frac{(-1)^{k-1} 2^{2 k-1} \pi^{2 k}}{(2 k)!\sqrt{\Delta}} H_{k}(d)
\end{aligned}
$$

which is the asserted result.
We are now ready to state and prove our main result.
Theorem 4.7. Let m and h be positive integers with $m \geq 2$ and a_{1}, \ldots, a_{h} integers satisfying $1 \leq a_{1}<a_{2}<$ $\cdots<a_{h} \leq m-1$. Suppose that the set of congruences

$$
n \equiv a_{1}, \ldots, a_{h}(\bmod m)
$$

is discriminantly determined, say by discriminants d_{1}, \ldots, d_{r} (with no nonempty product $d_{j_{1}} \ldots d_{j_{s}}\left(1 \leq j_{1}<\right.$ $\cdots<j_{s} \leq r$) equal to a perfect square) and $\epsilon_{1}= \pm 1, \ldots, \epsilon_{r}= \pm 1$. Then

$$
\begin{aligned}
\sum_{\substack{n=1 \\
n \equiv a_{1}, \ldots, a_{h}(\bmod m)}}^{\infty} \frac{1}{n^{2 k}}= & \frac{(-1)^{k-1} 2^{2 k-1-r} B_{2 k} \pi^{2 k}}{(2 k)!} P_{k}\left(d_{1} \cdots d_{r}\right) \\
& +\frac{(-1)^{k-1} 2^{2 k-1-r} \pi^{2 k}}{(2 k)!} \sum_{s=1}^{r} \sum_{1 \leq j_{1}<\cdots<j_{s} \leq r} \epsilon_{j_{1}} \cdots \epsilon_{j_{s}} \frac{H_{k}\left(d_{j_{1}} \cdots d_{j_{s}}\right)}{\sqrt{\Delta\left(d_{j_{1}} \cdots d_{j_{s}}\right)}} P_{k}\left(d_{1} \cdots d_{r}, d_{j_{1}} \cdots d_{j_{s}}\right) .
\end{aligned}
$$

Proof. As d_{1}, \ldots, d_{r} are discriminants such that no nonempty product $d_{j_{1}} \cdots d_{j_{s}}\left(1 \leq j_{1}<\cdots<j_{s} \leq r\right)$ is a perfect square, we deduce that $d_{j_{1}} \cdots d_{j_{s}}\left(1 \leq j_{1}<\cdots<j_{s} \leq r\right)$ is a discriminant. We have

$$
\begin{aligned}
\sum_{\substack{n=1 \\
n \equiv a_{1}, \ldots, a_{h}(\bmod m)}}^{\infty} \frac{1}{n^{2 k}} & =\sum_{\substack{n=1 \\
\left(\frac{d_{1}}{n}\right)=\epsilon_{1}, \ldots,\left(\frac{d_{r}}{n}\right)=\epsilon_{r}}}^{\infty} \frac{1}{n^{2 k}} \\
& =\sum_{\substack{n=1 \\
\left(\frac{d_{1}}{n}\right)=\epsilon_{1}, \ldots,\left(\frac{d_{r}}{n}\right)=\epsilon_{r} \\
\left(n, d_{1} \cdots d_{r}\right)=1}}^{\infty} \frac{1}{n^{2 k}} \\
& =\frac{1}{2^{r}} \sum_{\substack{n=1 \\
\left(n, d_{1} \cdots d_{r}\right)=1}}^{\infty} \prod_{j=1}^{r}\left(1+\epsilon_{j}\left(\frac{d_{j}}{n}\right)\right) \frac{1}{n^{2 k}} \\
& =\frac{1}{2^{r}} \sum_{\substack{n=1 \\
\left(n, d_{1} \cdots d_{r}\right)=1}}^{\infty}\left(1+\sum_{s=1}^{r} \sum_{1 \leq j_{1}<\cdots<j_{s} \leq r} \epsilon_{j_{1}} \cdots \epsilon_{j_{s}}\left(\frac{d_{j_{1}} \cdots d_{j_{s}}}{n}\right)\right) \frac{1}{n^{2 k}} \\
& =\frac{1}{2^{r}} \sum_{\substack{n=1 \\
\left(n, d_{1} \cdots d_{r}\right)=1}}^{\infty} \frac{1}{n^{2 k}}+\frac{1}{2^{r}} \sum_{s=1}^{r} \sum_{1 \leq j_{1}<\cdots<j_{s} \leq r} \epsilon_{j_{1}} \cdots \epsilon_{j_{s}} \sum_{\substack{n=1 \\
\left(n, d_{1} \cdots d_{r}\right)=1}}^{\infty}\left(\frac{d_{j_{1}} \cdots d_{j_{s}}}{n}\right) \frac{1}{n^{2 k}} .
\end{aligned}
$$

The theorem now follows on appealing to Propositions 4.3 and 4.6.

5 Examples

In this section we give some special cases of Theorem 4.7.
Theorem 5.1. Let $k \in \mathbb{N}$. Then

$$
\sum_{\substack{n=1 \\ n \equiv 1,4(\bmod 5)}}^{\infty} \frac{1}{n^{2 k}}=\frac{(-1)^{k-1} 2^{2 k-2} \pi^{2 k}}{5^{2 k+1}(2 k)!} A^{-}, \quad \sum_{\substack{n=1 \\ n \equiv 2,3(\bmod 5)}}^{\infty} \frac{1}{n^{2 k}}=\frac{(-1)^{k-1} 2^{2 k-2} \pi^{2 k}}{5^{2 k+1}(2 k)!} A^{+},
$$

where

$$
A^{ \pm}:=5\left(5^{2 k}-1\right) B_{2 k} \pm 2 \sum_{r=0}^{2 k-1}\binom{2 k}{r} 5^{r}\left(2^{2 k-r}-1\right) B_{r} \sqrt{5} .
$$

Proof. The congruences $n \equiv 1,4(\bmod 5)$ are discriminantly determined as $n \equiv 1,4(\bmod 5) \Leftrightarrow\left(\frac{5}{n}\right)=+1$. By Theorem 4.7 we obtain

$$
\sum_{\substack{n=1 \\ n \equiv 1,4(\bmod 5)}}^{\infty} \frac{1}{n^{2 k}}=\frac{(-1)^{k-1} 2^{2 k-2} B_{2 k} \pi^{2 k}}{(2 k)!} P_{k}(5)+\frac{(-1)^{k-1} 2^{2 k-2} \pi^{2 k}}{(2 k)!} \frac{H_{k}(5)}{\sqrt{5}} P_{k}(5,5)
$$

By Definition 3.2 we have $P_{k}(5)=\frac{5^{2 k}-1}{5^{2 k}}$ and $P_{k}(1,5)=P_{k}(5,5)=1$. By Definition 3.4 we have

$$
H_{k}(5)=\frac{2}{5^{2 k}} \sum_{r=0}^{2 k-1}\binom{2 k}{r} 5^{r}\left(1-2^{2 k-r}\right) B_{r}
$$

The first asserted formula now follows. The second formula follows in a similar manner.
Taking $k=1$ and $k=2$ in Theorem 5.1, we obtain the following corollary.

Corollary 5.2. The following four evaluations hold:

$$
\sum_{\substack{n=1 \\ n=1,4(\bmod 5)}}^{\infty} \frac{1}{n^{2}}=\frac{2(5+\sqrt{5}) \pi^{2}}{125}, \quad \sum_{\substack{n=1 \\ n \equiv 2,3(\bmod 5)}}^{\infty} \frac{1}{n^{2}}=\frac{2(5-\sqrt{5}) \pi^{2}}{125},
$$

and

$$
\sum_{\substack{n=1 \\ n=1,4(\bmod 5)}}^{\infty} \frac{1}{n^{4}}=\frac{4(13+5 \sqrt{5}) \pi^{4}}{9375}, \quad \sum_{\substack{n=1 \\ n=2,3(\bmod 5)}}^{\infty} \frac{1}{n^{4}}=\frac{4(13-5 \sqrt{5}) \pi^{4}}{9375} .
$$

Theorem 5.3. Let $k \in \mathbb{N}$. Then

$$
\sum_{\substack{n=1 \\ n=1,7(\bmod 8)}}^{\infty} \frac{1}{n^{2 k}}=\frac{(-1)^{k-1} \pi^{2 k}}{2^{4 k+3}(2 k)!} B^{-}, \quad \sum_{\substack{n=1 \\ n \equiv 3,5(\bmod 8)}}^{\infty} \frac{1}{n^{2 k}}=\frac{(-1)^{k-1} \pi^{2 k}}{2^{4 k+3}(2 k)!} B^{+},
$$

where

$$
B^{ \pm}:=2^{4 k+1}\left(2^{2 k}-1\right) B_{2 k} \pm \sum_{r=0}^{2 k-1}\binom{2 k}{r} 2^{3 r}\left(3^{2 k-r}-1\right) B_{r} \sqrt{2}
$$

Proof. The congruences $n \equiv 1,7(\bmod 8)$ are discriminantly determined as $n \equiv 1,7(\bmod 8) \Leftrightarrow\left(\frac{8}{n}\right)=+1$. By Theorem 4.7 with $r=1, d_{1}=8$ and $\epsilon_{1}=+1$, we obtain the first formula. For the second formula we choose $r=1, d_{1}=8$ and $\epsilon_{1}=-1$.
Taking $k=1$ and $k=2$ in Theorem 5.3, we obtain the following corollary.
Corollary 5.4. We have

$$
\sum_{\substack{n=1 \\ n=1,7(\bmod 8)}}^{\infty} \frac{1}{n^{2}}=\frac{(2+\sqrt{2}) \pi^{2}}{32}, \quad \sum_{\substack{n=1 \\ n=3,5(\bmod 8)}}^{\infty} \frac{1}{n^{2}}=\frac{(2-\sqrt{2}) \pi^{2}}{32},
$$

and

$$
\sum_{\substack{n=1 \\ n=1,7(\bmod 8)}}^{\infty} \frac{1}{n^{4}}=\frac{(16+11 \sqrt{2}) \pi^{4}}{3072}, \sum_{\substack{n=1 \\ n=3,5(\bmod 8)}}^{\infty} \frac{1}{n^{4}}=\frac{(16-11 \sqrt{2}) \pi^{4}}{3072} .
$$

Theorem 5.5. Let $k \in \mathbb{N}$. Then

$$
\sum_{\substack{n=1 \\ n=1,11(\bmod 12)}}^{\infty} \frac{1}{n^{2 k}}=\frac{(-1)^{k-1} \pi^{2 k}}{2^{2 k+2} 3^{2 k+1}(2 k)!} C^{-}, \quad \sum_{\substack{n=1 \\ n=5,7(\bmod 12)}}^{\infty} \frac{1}{n^{2 k}}=\frac{(-1)^{k-1} \pi^{2 k}}{2^{2 k+2} 3^{2 k+1}(2 k)!} C^{+},
$$

where

$$
C^{ \pm}:=2^{2 k} 3\left(2^{2 k}-1\right)\left(3^{2 k}-1\right) B_{2 k} \pm \sum_{r=0}^{2 k-1}\binom{2 k}{r} 2^{2 r} 3^{r}\left(5^{2 k-r}-1\right) B_{r} \sqrt{3} .
$$

Proof. The congruences $n \equiv 1,11(\bmod 12)$ are discriminantly determined as $n \equiv 1,11(\bmod 12) \Leftrightarrow\left(\frac{12}{n}\right)=$ +1 . By Theorem 4.7 with $r=1, d_{1}=12$ and $\epsilon_{1}=+1$, we obtain the first formula. For the second formula we choose $r=1, d_{1}=12$ and $\epsilon_{1}=-1$.
Taking $k=1$ and $k=2$ in Theorem 5.5, we obtain the following corollary.
Corollary 5.6. The following four evaluations hold:

$$
\sum_{\substack{n=1 \\ n=1,11(\bmod 12)}}^{\infty} \frac{1}{n^{2}}=\frac{(2+\sqrt{3}) \pi^{2}}{36}, \quad \sum_{\substack{n=1 \\ n=5,7(\bmod 12)}}^{\infty} \frac{1}{n^{2}}=\frac{(2-\sqrt{3}) \pi^{2}}{36},
$$

and

$$
\sum_{\substack{n=1 \\ n=1,11(\bmod 12)}}^{\infty} \frac{1}{n^{4}}=\frac{(40+23 \sqrt{3}) \pi^{4}}{7776}, \quad \sum_{\substack{n=1 \\ n=5,7(\bmod 12)}}^{\infty} \frac{1}{n^{4}}=\frac{(40-23 \sqrt{3}) \pi^{4}}{7776} .
$$

Theorem 5.7. Let $k \in \mathbb{N}$. Then

$$
\sum_{\substack{n=1 \\ n=1,9(\bmod 10)}}^{\infty} \frac{1}{n^{2 k}}=\frac{(-1)^{k-1} \pi^{2 k}}{4 \cdot 5^{2 k+1}(2 k)!} D^{-}, \quad \sum_{\substack{n=1 \\ n \equiv 3,7(\bmod 10)}}^{\infty} \frac{1}{n^{2 k}}=\frac{(-1)^{k-1} \pi^{2 k}}{4 \cdot 5^{2 k+1}(2 k)!} D^{+},
$$

where

$$
D^{ \pm}:=5\left(2^{2 k}-1\right)\left(5^{2 k}-1\right) B_{2 k} \pm 2\left(2^{2 k}+1\right) \sum_{r=0}^{2 k-1}\binom{2 k}{r}\left(2^{2 k-r}-1\right) 5^{r} B_{r} \sqrt{5}
$$

Proof. As $n \equiv 1,9(\bmod 10) \Leftrightarrow\left(\frac{20}{n}\right)=+1$ we choose $r=1, d_{1}=20$ and $\epsilon_{1}=+1$ in Theorem 4.7 to obtain the first formula. For the second formula we choose $r=1, d_{1}=20$ and $\epsilon_{1}=-1$.

Taking $k=1$ and $k=2$ in Theorem 5.7, we obtain the following corollary.
Corollary 5.8. The following four evaluations hold:

$$
\sum_{\substack{n=1 \\ n \equiv 1,9(\bmod 10)}}^{\infty} \frac{1}{n^{2}}=\frac{(3+\sqrt{5}) \pi^{2}}{50}, \quad \sum_{\substack{n=1 \\ n \equiv 3,7(\bmod 10)}}^{\infty} \frac{1}{n^{2}}=\frac{(3-\sqrt{5}) \pi^{2}}{50}
$$

and

$$
\sum_{\substack{n=1 \\ n \equiv 1,9(\bmod 10)}}^{\infty} \frac{1}{n^{4}}=\frac{(39+17 \sqrt{5}) \pi^{4}}{7500}, \quad \sum_{\substack{n=1 \\ n \equiv 3,7(\bmod 10)}}^{\infty} \frac{1}{n^{4}}=\frac{(39-17 \sqrt{5}) \pi^{4}}{7500}
$$

Theorem 5.9. Let $k \in \mathbb{N}$. Then

$$
\begin{gathered}
\sum_{\substack{n=1 \\
n \equiv 1,23(\bmod 24)}}^{\infty} \frac{1}{n^{2 k}}=E+F \sqrt{2}+G \sqrt{3}+H \sqrt{6}, \\
\sum_{\substack{n=1 \\
n \equiv 5,19(\bmod 24)}}^{\infty} \frac{1}{n^{2 k}}=E-F \sqrt{2}-G \sqrt{3}+H \sqrt{6}, \\
\sum_{\substack{n=1 \\
n=7,17(\bmod 24)}}^{\infty} \frac{1}{n^{2 k}}=E+F \sqrt{2}-G \sqrt{3}-H \sqrt{6}, \\
\sum_{\substack{n=1}}^{\infty} \frac{1}{n^{2 k}}=E-F \sqrt{2}+G \sqrt{3}-H \sqrt{6}, \\
n \equiv 11,13(\bmod 24)
\end{gathered}
$$

where

$$
\begin{aligned}
& E:=\frac{(-1)^{k-1}\left(2^{2 k}-1\right)\left(3^{2 k}-1\right) B_{2 k} \pi^{2 k}}{8 \cdot 3^{2 k}(2 k)!}, \\
& F:=\frac{(-1)^{k-1}\left(3^{2 k}+1\right) \pi^{2 k}}{2^{4 k+4} 3^{2 k}(2 k)!} \sum_{r=0}^{2 k-1}\binom{2 k}{r} 2^{3 r}\left(1-3^{2 k-r}\right) B_{r}, \\
& G:=\frac{(-1)^{k-1} \pi^{2 k}}{2^{2 k+3} 3^{2 k+1}(2 k)!} \sum_{r=0}^{2 k-1}\binom{2 k}{r} 2^{2 r} 3^{r}\left(1-5^{2 k-r}\right) B_{r}, \\
& H:=\frac{(-1)^{k-1} \pi^{2 k}}{2^{4 k+4} 3^{2 k+1}(2 k)!} \sum_{r=0}^{2 k-1}\binom{2 k}{r} 2^{3 r} 3^{r}\left(1+5^{2 k-r}-7^{2 k-r}-11^{2 k-r}\right) B_{r} .
\end{aligned}
$$

Proof. We have

$$
\begin{array}{ll}
n \equiv 1,23(\bmod 24) & \Longleftrightarrow\left(\frac{8}{n}\right)=\left(\frac{12}{n}\right)=1 \\
n \equiv 5,19(\bmod 24) & \Longleftrightarrow\left(\frac{8}{n}\right)=\left(\frac{12}{n}\right)=-1
\end{array}
$$

$$
\begin{aligned}
n \equiv 7,17(\bmod 24) & \Longleftrightarrow \quad\left(\frac{8}{n}\right)=1,\left(\frac{12}{n}\right)=-1 \\
n \equiv 11,13(\bmod 24) & \Longleftrightarrow \quad\left(\frac{8}{n}\right)=-1,\left(\frac{12}{n}\right)=1
\end{aligned}
$$

The asserted formulae follow by taking

$$
\begin{aligned}
& r=2, \quad d_{1}=8, \quad d_{2}=12, \quad \epsilon_{1}=1, \quad \epsilon_{2}=1, \\
& r=2, \quad d_{1}=8, \quad d_{2}=12, \quad \epsilon_{1}=-1, \quad \epsilon_{2}=-1, \\
& r=2, \quad d_{1}=8, \quad d_{2}=12, \quad \epsilon_{1}=1, \quad \epsilon_{2}=-1, \\
& r=2, \quad d_{1}=8, \quad d_{2}=12, \quad \epsilon_{1}=-1, \quad \epsilon_{2}=1,
\end{aligned}
$$

respectively, in Theorem 4.7.
Taking $k=1$ in Theorem 5.9, we obtain the following corollary.
Corollary 5.10. The following four evaluations hold:

$$
\begin{array}{r}
\sum_{\substack{n=1 \\
n \equiv 1,23(\bmod 24)}}^{\infty} \frac{1}{n^{2}}=\frac{(8+5 \sqrt{2}+4 \sqrt{3}+3 \sqrt{6}) \pi^{2}}{288}, \\
\sum_{\substack{n=1 \\
n \equiv 5,19(\bmod 24)}}^{\infty} \frac{1}{n^{2}}=\frac{(8-5 \sqrt{2}-4 \sqrt{3}+3 \sqrt{6}) \pi^{2}}{288}, \\
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{(8+5 \sqrt{2}-4 \sqrt{3}-3 \sqrt{6}) \pi^{2}}{288}, \\
n \equiv 7,17(\bmod 24) \\
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{(8-5 \sqrt{2}+4 \sqrt{3}-3 \sqrt{6}) \pi^{2}}{288} . \\
n \equiv 11,13(\bmod 24)
\end{array}
$$

Theorem 5.11. Let $k \in \mathbb{N}$. Then

$$
\sum_{\substack{n=1 \\ n \equiv 1,3,9,19,25,27(\bmod 28)}}^{\infty} \frac{1}{n^{2 k}}=J+K \sqrt{7}, \quad \sum_{\substack{n=1 \\ n \equiv 5,11,13,15,17,23(\bmod 28)}}^{\infty} \frac{1}{n^{2 k}}=J-K \sqrt{7},
$$

where

$$
\begin{aligned}
& J:=\frac{(-1)^{k-1}\left(2^{2 k}-1\right)\left(7^{2 k}-1\right) B_{2 k} \pi^{2 k}}{2^{2} 7^{2 k}(2 k)!}, \\
& K:=\frac{(-1)^{k-1} \pi^{2 k}}{2^{2 k+2} 7^{2 k+1}(2 k)!} \sum_{r=0}^{2 k-1}\binom{2 k}{r} 2^{2 r} 7^{r}\left(1^{2 k-r}+3^{2 k-r}-5^{2 k-r}+9^{2 k-r}-11^{2 k-r}-13^{2 k-r}\right) B_{r} .
\end{aligned}
$$

Proof. We have

$$
n \equiv 1,3,9,19,25,27(\bmod 28) \quad \Longleftrightarrow \quad\left(\frac{28}{n}\right)=1
$$

and

$$
n \equiv 5,11,13,15,17,23(\bmod 28) \quad \Longleftrightarrow\left(\frac{28}{n}\right)=-1
$$

so the congruences are discriminantly determined and we can apply Theorem 4.7 with $d=\Delta=28$ and $f=1$.

Taking $k=1$ in Theorem 5.11 we obtain the following result.
Corollary 5.12. The following two evaluations hold:

$$
\sum_{\substack{n=1 \\ n=1,3,9,19,25,27(\bmod 28)}}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{49}(3+\sqrt{7}), \quad \sum_{\substack{n=1 \\ n \equiv 5,11,13,15,17,23(\bmod 28)}}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{49}(3-\sqrt{7}) .
$$

Acknowledgment: The author thanks the referee for his/her positive comments and suggestions regarding his paper.

References

[1] M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, Dover Publications, New York, 1968.
[2] D. Cvijović and H. M. Srivastava, Limit representations of Riemann's zeta function, Amer. Math. Monthly 119 (2012), 324-330.
[3] M. Dalai, How would Riemann evaluate $\zeta(2 n)$?, Amer. Math. Monthly 120 (2013), 169-171.
[4] L. K. Hua, Introduction to Number Theory, Springer, Berlin, 1982.
[5] E. Landau, Elementary Number Theory, Chelsea Publishing Company, New York, 1958.
[6] L. M. Navas, F. J. Ruiz and J. L. Varona, The Möbius inversion formula for Fourier series applied to Bernoulli and Euler polynomials, J. Approx. Theory 163 (2011), 22-40.
[7] D. Shanks and J. W. Wrench Jr., The calculation of certain Dirichlet series, Math. Comp. 17 (1963), 136-154.
[8] H. Tsumura, An elementary proof of Euler's formula for $\zeta(2 m)$, Amer. Math. Monthly 111 (2004), 430-431.

[^0]: *Corresponding author: Kenneth S. Williams: Centre for Research in Algebra and Number Theory, School of Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada K1S 5B6, e-mail: kennethwilliams@cunet.carleton.ca

