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The fact that every positive integer is the sum of four squares of integers was first
proved in 1770 by Lagrange [9]. For example the integer 1770 is 12 + 12 + 22 + 422.
We can view Lagrange’s theorem as telling us that the polynomial x2

1 + x2
2 + x2

3 + x2
4 in

the four real variables x1, x2, x3 and x4 represents every positive integer since whatever
positive integer n is specified there are integer values of x1, x2, x3 and x4, say y1, y2, y3,
and y4, respectively, such that y2

1 + y2
2 + y2

3 + y2
4 = n. The quadruple (y1, y2, y3, y4)

is called the representation of n by the polynomial x2
1 + x2

2 + x2
3 + x2

4 . The polynomial
x2

1 + x2
2 + x2

3 + x2
4 is an example of a quadratic form as it has the property that if we

replace each of x1, x2, x3, x4 by t x1, t x2, t x3, t x4, respectively, where t is a real number,
we obtain t2 times the original polynomial. (All quadratic forms in this article are
assumed to have integer coefficients.) Moreover, the quadratic form x2

1 + x2
2 + x2

3 + x2
4

has the additional property that it is nonnegative for all real values of x1, x2, x3, and x4

and is zero only when x1, x2, x3, and x4 are all zero. Quadratic forms with this property
are called positive. (Frobenius gave in 1894 necessary and sufficient conditions for
a quadratic form to be positive, see for example [11, Theorem 13.3.1, p. 400].) A
positive quadratic form is called universal if it represents every positive integer. Thus
x2

1 + x2
2 + x2

3 + x2
4 is an example of a universal positive quadratic form.

The problem of determining whether a given positive quadratic form is universal
has been solved in some ground-breaking work in recent years. It was first solved by
Conway and Schneeberger [5] for positive quadratic forms all of whose cross-product
terms have even coefficients. (For example the cross-product terms of the positive
quadratic form 3x2

1 + 3x2
2 + 3x2

3 + 2x1x2 + 2x1x3 are all even, namely 2, 2, and 0.)
They proved but did not publish the proof of the following theorem.

15-Theorem. Let f be a positive quadratic form in any number of variables such that
all the coefficients of its cross-product terms are even integers. If f represents all the
positive integers up to and including 15 then f is universal.

The details of their work are given in [5] and [13]. In 2000 Bhargava [2] gave a beau-
tiful new proof of this theorem in the following stronger form.

Strong 15-Theorem. Let f be a positive quadratic form in any number of variables
such that all the coefficients of its cross-product terms are even integers. If f represents
all the nine integers

1, 2, 3, 5, 6, 7, 10, 14, 15

then it is universal.

Bhargava also showed that the set {1, 2, 3, 5, 6, 7, 10, 14, 15} is minimal in a certain
sense.
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In 1993 Conway formulated the conjecture that a positive quadratic form that rep-
resents all the positive integers up to and including 290 must be universal. This was
proved by Bhargava and Hanke [3].

290-Theorem. If a positive quadratic form in any number of variables represents all
the positive integers up to and including 290 then it is universal.

Indeed Bhargava and Hanke proved this result in the following stronger form.

Strong 290-Theorem. If a positive quadratic form in any number of variables repre-
sents all the twenty-nine integers

1, 2, 3, 5, 6, 7, 10, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29,

30, 31, 34, 35, 37, 42, 58, 93, 110, 145, 203, 290

then it is universal.

Bhargava and Hanke showed too that the set in the strong 290-theorem is also
minimal.

The beauty of these results is that given a positive quadratic form we have only to
check that it represents nine integers to know that it represents all positive integers in
the “all cross-product coefficients even” case and twenty-nine integers in the case that
the form has at least one odd cross-product coefficient. This leads us naturally to the
question “How do we check if a positive quadratic form represents a certain positive
integer?” The main result of this article provides a simple answer to this question. Let
us consider an example for guidance. We show for the quadratic form considered in
this example that for each positive integer n there are only finitely many represen-
tations of n by the form and moreover that all such representations lie in a certain
hypercube.

Example. We consider the quadratic form

G(x1, x2, x3, x4) := 3x2
1 + 44x2

2 + 13x2
3 + 18x2

4 + 2x1x2 + 6x1x3 + 8x1x4

+ 42x2x3 + 16x2x4 + 8x3x4. (1)

We note that in this example all the cross-product terms of G have even coefficients.
We leave it to the reader to check that G satisfies the determinantal conditions of
Frobenius so that G is a positive form. Alternatively we can see that G is a positive
form from the identity

4323G = 1441(3x1 + x2 + 3x3 + 4x4)
2 + 11(131x2 + 60x3 + 20x4)

2

+ 30(11x3 − 40x4)
2 + 2358x2

4 ,

which was found by first completing the square in x1 in G, then the square in x2 and
finally the square in x3. (The coefficients of the squares in this identity are all positive
and G can only be zero when

3x1 + x2 + 3x3 + 4x4 = 131x2 + 60x3 + 20x4 = 11x3 − 40x4 = x4 = 0,

that is when x1 = x2 = x3 = x4 = 0, so G is positive.)
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Our idea is to attempt to express G in the form

G(x1, x2, x3, x4) = G(0, x2 − t x1, x3 − ux1, x4 − vx1) + wx2
1

= 44(x2 − t x1)
2 + 13(x3 − ux1)

2 + 18(x4 − vx1)
2

+ 42(x2 − t x1)(x3 − ux1) + 16(x2 − t x1)(x4 − vx1)

+ 8(x3 − ux1)(x4 − vx1) + wx2
1

for some rational numbers t , u, v, and w. Clearly the coefficients of x2
2 , x2

3 , x2
4 , x2x3,

x2x4, and x3x4 agree so we have only to arrange the agreement of the coefficients of
x2

1 , x1x2, x1x3, and x1x4. Equating the coefficients of x1x2, x1x3, and x1x4, we obtain

2 = −88t − 42u − 16v,

6 = −42t − 26u − 8v,

8 = −16t − 8u − 36v.

Solving these linear equations for t , u, and v we obtain

t = 150

361
, u = −301

361
, v = − 80

361
.

Equating the coefficients of x2
1 , we have

3 = 44t2 + 13u2 + 18v2 + 42tu + 16tv + 8uv + w.

Using the values of t , u, and v in this equation, we deduce w = 10
361 . This shows that

G = 44

(
x2 − 150

361
x1

)2

+ 13

(
x3 + 301

361
x1

)2

+ 18

(
x4 + 80

361
x1

)2

+ 42

(
x2 − 150

361
x1

)(
x3 + 301

361
x1

)
+ 16

(
x2 − 150

361
x1

)(
x4 + 80

361
x1

)

+ 8

(
x3 + 301

361
x1

)(
x4 + 80

361
x1

)
+ 10

361
x2

1 .

Thus, if n is a positive integer which is represented by G, then there are integers y1,
y2, y3, and y4 such that G(y1, y2, y3, y4) = n and our expression for G gives

n = G(0, y2 − 150

361
y1, y3 + 301

361
y1, y4 + 80

361
y1) + 10

361
y2

1 .

As G(x1, x2, x3, x4) is a positive quadratic form so is G(0, x2, x3, x4) and we have

G(0, y2 − 150

361
y1, y3 + 301

361
y1, y4 + 80

361
y1) ≥ 0

and thus

n ≥ 10

361
y2

1 .

This shows that for a fixed positive integer n there are only finitely many possibilities
for the integer y1 given by

|y1| ≤
√

361

10
n.
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Similarly we obtain

G(x1, x2, x3, x4) = G(x1 − 45

19
x2, 0, x3 + 2x2, x4 + 10

19
x2) + 3

19
x2

2 ,

= G(x1 + 129

109
x3, x2 + 380

763
x3, 0, x4 − 200

763
x2) + 30

763
x2

3 ,

= G(x1 + 48

11
x4, x2 + 20

11
x4, x3 − 40

11
x4) + 6

11
x2

4 ,

so that

|y2| ≤
√

19

3
n, |y3| ≤

√
763

30
n, |y4| ≤

√
11

6
n.

In this example we have shown that there are only finitely many solutions in integers
y1, y2, y3, y4 to G(y1, y2, y3, y4) = n for a given positive integer n, and every such
solution vector (y1, y2, y3, y4) lies in the hypercube

|y1| ≤
√

361

10
n, |y2| ≤

√
19

3
n, |y3| ≤

√
763

30
n, |y4| ≤

√
11

6
n.

The main result of this article is the explicit determination of the corresponding hyper-
cube for a general positive quadratic form. Thus, in view of the 15- and 290-Theorems,
we have only to check the finite number of values of a given positive quadratic form
on the integral points of a hypercube to determine its universality or nonuniversality.
Before proving this result we make a few remarks about universal and nonuniversal
positive quadratic forms.

Universal and nonuniversal forms

Clearly a positive quadratic form in one variable cannot be universal. Such a form is
a1x2

1 , where a1 is a positive integer, and a1x2
1 cannot represent the positive integer 2a1.

What about positive quadratic forms in two variables? Such forms in two variables
are called binary. The general binary quadratic form is a1x2

1 + a12x1x2 + a2x2
2 , where

a1, a12 and a2 are integers. As

a1x2
1 + a12x1x2 + a2x2

2 = 1

4a1
(2a1x1 + a12x2)

2 + (4a1a2 − a2
12)

4a1
x2

2 ,

we see that the form is positive if and only if

a1 > 0, 4a1a2 − a2
1 2 > 0.

Proposition. A positive binary quadratic form a1x2
1 + a12x1x2 + a2x2

2 is never
universal.

Proof. The integer d := a2
12 − 4a1a2 is strictly negative so it is not a perfect square.

Thus, from the theory of quadratic residues modulo a prime, we know that there are
infinitely many primes p such that d is a quadratic nonresidue modulo p. Hence we
can choose the prime p to satisfy p > 4a1|d|. Suppose that a1x2

1 + a12x1x2 + a2x2
2 is

universal. Then it represents p and so there are integers u and v such that

p = a1u2 + a12uv + a2v
2.
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Hence

4a1 p = x2 − dy2, where x := 2a1u + a12v and y := v.

If p divides y then, from 4a1 p = x2 − dy2, we see that p divides x . Thus p2 divides
x2 − dy2 = 4a1 p. This is impossible as p > 4a1. Hence p does not divide y. Thus
there is an integer z such that yz ≡ 1 (mod p). Then (xz)2 ≡ d (mod p), contradicting
that d is a quadratic nonresidue modulo p. Therefore, a1x2

1 + a12x1x2 + a2x2
2 cannot

be universal.

What about a positive quadratic form in three variables? Such forms are called
ternary quadratic forms and they like binary quadratic forms can never be universal.
To prove that a general positive ternary quadratic form is never universal is much more
difficult than in the binary case. Proofs can be found in Albert [1, p. 291, Theorem
13] and Conway [4, p. 142]. In the diagonal case, which is when there are no cross-
product terms in the ternary form (so that the ternary form is a1x2

1 + a2x2 + a3x2
3 ), a

simple proof has been given by Dickson [8, p. 104, Theorem 95].
What about positive quadratic forms in four variables? These forms are called qua-

ternary. Can they represent all positive integers? Since a2 + b2 ≡ 0, 1, 2 (mod 4) for
any integers a and b, the form x2

1 + x2
2 + 4a3x2

3 + 4a4x2
4 , where a3 and a4 are positive

integers, cannot represent any positive integer n ≡ 3 (mod 4). Thus there are infinitely
many positive quaternary quadratic forms which are not universal. On the other hand,
Liouville and other mathematicians showed that there are positive quaternary quadratic
forms different from x2

1 + x2
2 + x2

3 + x2
4 , which are universal. An example of Liouville

[10, p. 271] follows easily from Lagrange’s theorem. Let n be a positive integer and let
a, b, c, and d be integers such that n = a2 + b2 + c2 + d2. Since there are only two pos-
sible residues for an integer modulo 2, namely 0 and 1, by Dirichlet’s box principle at
least two of b, c, and d must have the same residue modulo 2, say c ≡ d (mod 2). Then
n = a2 + b2 + 2e2 + 2 f 2, where e and f are the integers (c + d)/2 and (c − d)/2,
respectively. Thus the quadratic form x2

1 + x2
2 + 2x2

3 + 2x2
4 is universal. Ramanujan

[12] and Dickson [6, 8] determined all the universal positive quaternary quadratic
forms a1x2

1 + a2x2
2 + a3x2

3 + a4x2
4 , where a1, a2, a3, and a4 are positive integers sat-

isfying a1 ≤ a2 ≤ a3 ≤ a4. They proved that there are precisely 54 such forms. The
interested reader can find them listed in Dickson [8, p. 105]. Many examples of uni-
versal positive quaternary quadratic forms with nonzero cross-product terms have been
given by Dickson, see Dickson [7].

For forms in more than four variables there are infinitely many such forms which
are universal, for example x2

1 + x2
2 + x2

3 + x2
4 + a5x2

5 + · · · + an x2
n , where a5, . . . , an

are positive integers, and infinitely many forms which are not, for example x2
1 + x2

2+ 4a3x2
3 + · · · + 4an x2

n , where a3, . . . , an are positive integers.
These examples show the wide variety of possibilities for the universality or nonuni-

versality of positive quadratic forms and so demonstrate the simplicity and power of
the 15- and 290-Theorems.

Notation and Main Result

We now state and prove the central result of this article, which we have not found in
the literature. We denote the sets of integers, positive integers and rational numbers by
Z, N, and Q, respectively. The general quadratic form with integer coefficients in k
real variables x1, . . . , xk is given by

F(x1, . . . , xk) :=
∑

1≤i≤ j≤k

ai j xi x j , ai j ∈ Z. (2)
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We assume that F is positive so that the coefficients ai j satisfy the previously men-
tioned conditions of Frobenius. Let n be a positive integer. Our objective is to give an
explicit hypercube in Zk in which all the solutions in integers of F(x1, . . . , xk) = n (if
any) must lie.

The matrix of the form F is the k × k symmetric matrix

A :=

⎡
⎢⎢⎢⎣

a1 1
1
2 a1 2 · · · 1

2 a1 k

1
2 a1 2 a2 2 · · · 1

2 a2 k

· · · · · ·
1
2 a1 k

1
2 a2 k · · · ak k

⎤
⎥⎥⎥⎦ ,

where each entry of A is either an integer or half an odd integer. Thus for the quadratic
form G in the example (see (1)) we have

A =

⎡
⎢⎣

3 1 3 4
1 44 21 8
3 21 13 4
4 8 4 18

⎤
⎥⎦ .

If all the coefficients of the cross-product terms in F are even, then all the entries in
A are integers and the form F is said to be an integer-matrix form. The form F and
its matrix A are related by F = Xt AX , where t denotes the transpose of a matrix and
X = [x1 · · · xk]t . As F is a positive quadratic form, and A is the matrix of F , by the
determinantal conditions of Frobenius we have det A > 0. In the case of G we have
det A = 60.

For j = 1, 2, . . . , k with k ≥ 2 we let A j denote the (k − 1) × (k − 1) symmetric
matrix formed by deleting the j th row and j th column of A. The principal diagonal
of A j ( j = 1, 2, . . . , k) is part of the principal diagonal of A so, as F is a positive
quadratic form with matrix A, again by the Frobenius determinantal conditions for a
quadratic form to be positive, we have det A j > 0 ( j = 1, 2, . . . , k). In the case of G
we have

A1 =
⎡
⎣44 21 8

21 13 4
8 4 18

⎤
⎦ , A2 =

⎡
⎣3 3 4

3 13 4
4 4 18

⎤
⎦ , A3 =

⎡
⎣3 1 4

1 44 8
4 8 18

⎤
⎦ ,

A4 =
⎡
⎣3 1 3

1 44 21
3 21 13

⎤
⎦ ,

and

det A1 = 2166, det A2 = 380, det A3 = 1526, det A4 = 110.

We prove our main result by using some elementary computational matrix algebra
to express F(x1, . . . , xk) for r = 1, . . . , k in the form

F(x1 − t1xr , . . . , xr−1 − tr−1xr , 0, xr+1 − tr+1xr , . . . , xk − tk xr ) + ur x2
r

for some rational numbers t1, . . . , tr−1, tr+1, . . . , tk and an explicitly known rational
number ur as suggested by the example.

Theorem. Let k ∈ N be such that k ≥ 2. Let F be the integral positive quadratic form
in the k indeterminates x1, . . . , xk given in (2). Let n ∈ N. Then there are only finitely
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many solutions (y1, . . . , yk) ∈ Zk of

F(y1, . . . , yk) = n

and any such solution satisfies

|yr | ≤
⌊√

det Ar

det A

√
n

⌋
, r = 1, 2, . . . , k,

where �x	 denotes the floor of the real number x.

Proof. Fix r ∈ {1, 2, . . . , k}. As det Ar 
= 0 the system of k − 1 linear equations in the
k − 1 unknowns t1, . . . , tr−1, tr+1, . . . , tk

Ar

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

t1
...

tr−1

tr+1
...

tk

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
2 a1 r
...

− 1
2 ar−1 r

− 1
2 ar r+1

...

− 1
2 ar k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)

has a unique solution (t1, . . . , tr−1, tr+1, . . . , tk) ∈ Qk−1. Let T be the k × k matrix
defined by

T :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0 t1 0 · · · 0
...

... · · · ...
...

... · · · ...

0 0 · · · 1 tr−1 0 · · · 0
0 0 · · · 0 1 0 · · · 0
0 0 · · · 0 tr+1 1 · · · 0
...

... · · · ...
...

... · · · ...

0 0 . . . 0 tk 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where the column with first entry t1 is the r th column. Expanding the determinant of
T by the r th row we obtain det T = 1.

Suppose now that (x1, . . . , xk) ∈ Zk is a solution of F(x1, . . . , xk) = n. For
i = 1, 2, . . . , k define yi ∈ Q by

yi :=
{

xi − ti xr if i 
= r,
xr if i = r.

(4)

Let

X :=

⎡
⎢⎣

x1
...

xk

⎤
⎥⎦ , Y :=

⎡
⎢⎣

y1
...

yk

⎤
⎥⎦ ,

so that n = Xt AX and X = T Y . Hence

n = (T Y )t A(T Y ) = Y t(T t AT )Y. (5)
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We now determine the matrix T t AT . The matrix T t A is just the matrix A with the
r th row replaced by [u1 u2 · · · uk], where for i = 1, 2, . . . , k

ui = [
t1 · · · tr−1 1 tr+1 · · · tk

] [
1
2 a1 i · · · 1

2 ai−1 i ai i
1
2 ai i+1 · · · 1

2 ai k

]t
.

If i = r we have

ur =
r−1∑
j=1

1

2
a j r t j + ar r +

k∑
j=r+1

1

2
ar j t j .

If i < r we have

ui =
i−1∑
j=1

1

2
a j i t j + ai i ti +

r−1∑
j=i+1

1

2
ai j t j + 1

2
ai r +

k∑
j=r+1

1

2
ai j t j = 0,

appealing to (3). Similarly if i > r we have

ui =
r−1∑
j=1

1

2
a j i t j + 1

2
ar i +

i−1∑
j=r+1

1

2
a j i t j + ai i ti +

k∑
j=i+1

1

2
ai j t j = 0,

again appealing to (3). Thus the r th row of T t A is
[
0 · · · 0 ur 0 · · · 0

]
.

Hence the matrix T t AT is the same as the matrix A except that the r th row is
[0 · · · 0 ur 0 · · · 0] and the r th column is [0 · · · 0 ur 0 · · · 0]t . Thus by (5) we have

n = Y t(T t AT )Y =
∑

1 ≤ i ≤ j ≤ k
i, j 
= r

ai j yi y j + ur y2
r

= F(y1, . . . , yr−1, 0, yr+1, . . . , yk) + ur y2
r . (6)

As F is a positive form, we have F(y1, . . . , yr−1, 0, yr+1, . . . , yk) ≥ 0, and thus from
(4) and (6), we deduce

n ≥ ur x2
r . (7)

All that remains is to determine ur . Expanding det(T t AT ) by the r th row, we deduce
that

det(T t AT ) = ur det Ar .

As det T = 1 we have

det(T t AT ) = det(T t) det A det T = det A.

Hence

ur = det A

det Ar
. (8)

Finally, from (7) and (8), we obtain

|xr | ≤
√

det Ar

det A

√
n, r = 1, 2, . . . , k,

from which the theorem follows.
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We remark that the theorem is best possible in the sense that the hypercube cannot
in general be made smaller and still contain all the solutions (y1, . . . , yk) ∈ Zk of
F(y1, . . . , yk) = n. To see this take for example F(x1, x2, x3) = x2

1 + x2
2 + x2

3 (so that
k = 3) and n = 3. Here

A =
⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ , A1 = A2 = A3 =

[
1 0
0 1

]
,

so that detA = detA1 = detA2 = detA3 = 1 and as �√3	 = 1 the hypercube is

|yr | ≤ 1, r = 1, 2, 3.

The only solutions of y2
1 + y2

2 + y2
3 = 3 are (y1, y2, y3) = (±1, ±1, ±1) (8 choices of

sign) and all of these lie on the boundary of the hypercube.

Example (continued). We apply our theorem in conjunction with the strong
15-Theorem to show that G (defined in (1)) is universal. By the theorem any so-
lution (y1, y2, y3, y4) ∈ Z4 of G(y1, y2, y3, y4) = n must satisfy

|y1| ≤
⌊√

det A1

det A

√
n

⌋
=

⌊√
361

10

√
n

⌋
,

|y2| ≤
⌊√

det A2

det A

√
n

⌋
=

⌊√
19

3

√
n

⌋
,

|y3| ≤
⌊√

det A3

det A

√
n

⌋
=

⌊√
763

30

√
n

⌋
,

|y4| ≤
⌊√

det A4

det A

√
n

⌋
=

⌊√
11

6

√
n

⌋
.

We remark that these are the same bounds that we obtained previously in the example.
A simple computer search through these ranges for each n ∈ {1, 2, 3, 5, 6, 7, 10, 14, 15}
found a solution for each of the nine values of n.

n (y1, y2, y3, y4) n (y1, y2, y3, y4)

1 (−5,−2, 4, 1) 7 (−13,−5, 10, 3)

2 (−4,−2, 4, 1) 10 (−1, 0, 1, 0)

3 (−9,−4, 8, 2) 14 (−22,−9, 18, 5)

5 (−7,−3, 6, 2) 15 (−21,−9, 18, 5)

6 (−14,−6, 12, 3)

Thus, by the strong 15-Theorem, G(x1, x2, x3, x4) is universal.

The solutions (y1, y2, y3, y4) in the table are not unique since if (y1, y2, y3, y4)

is a solution so is (−y1, −y2, −y3, −y4). However, if we identify the two solutions
±(y1, y2, y3, y4) the solutions given in the table for n = 1 and n = 2 are unique. For
n = 6, with this identification, there are six solutions, namely,

±(2, 1, −2, −1), ±(4, 1, −2, −1), ±(6, 2, −4, −1),

±(6, 3, −6, −1), ±(12, 5, −10, −3), ±(14, 6, −12, −3).



VOL. 89, NO. 2, APRIL 2016 131

The solution ±(14, 6, −12, −3) lies on the boundary of the hypercube as⌊√
361

10

√
6

⌋
= 14,

⌊√
19

3

√
6

⌋
= 6,

⌊√
763

30

√
6

⌋
= 12,

⌊√
11

6

√
6

⌋
= 3,

again showing that in general the theorem is best possible.
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