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We prove a general theorem that evaluates the Legendre symbol ( A+B
√

m
p

) under cer-
tain conditions on the integers A, B, m and the prime p. The evaluation is in terms
of parameters appearing in a binary quadratic form representing p. The theorem has
applications to quartic residuacity.
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1. Introduction

Various Legendre symbols of the form (A+B
√

m
p ) have been evaluated in the litera-

ture; see for example [6, 9, 11, 13, 17–20, 22]. For a survey on the determination of
such symbols, see [10]. The main result of our paper is a general theorem that eval-
uates a large class of Legendre symbols (A+B

√
m

p ) in terms of parameters occurring
in binary quadratic forms representing the prime p. Our theorem is very different
from those in the papers cited above.

In this section, we state our theorem and give an application to quartic resid-
uacity. In Sec. 2, we prove the theorem. Then in Sec. 3, we present interesting
examples as corollaries. Special cases of some of our corollaries embrace results in
the literature that were obtained by different methods. Corollaries 11–14 provide
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infinite classes of examples of our theorem, as well as infinite classes of quartic
residuacity criteria.

Our theorem makes use of the Kronecker symbol

K(x, y) :=
(

x

y

)
,

as defined in [3, p. 28] for arbitrary integers x, y. Recall that the Kronecker symbol
coincides with the Jacobi symbol whenever the latter is defined. For (x, y) = 1, the
generalized quadratic reciprocity law(

x

y

)
=
(

yK(−1, y)
x

)
(1.1)

holds if and only if x and y are not both negative [3, p. 44]. We will need the
following periodicity property for the “numerator”:(

x + yz

z

)
=
(x

z

)
wz(x, y), when z > 0 and (x, z) = 1, (1.2)

where

wz(x, y) =

{−1 if 2‖z, 4 � y, and 4 � (x + yz/2),

1 otherwise.
(1.3)

This is easily proved by factoring the “denominator” z into a power of two times
an odd integer. A useful formula for wz(x, y) is given by

wz(x, y) = (−1)y(2x+yz)/4, when 2‖z. (1.4)

Theorem. Let δ ∈ {±1,±2} and let a, b, c, d, r, s and t be nonzero integers such
that

acr2 − bds2 = δt2 (1.5)

and

a > 0, d > 0, r > 0, s > 0, (a, s) = (d, r) = (r, s) = 1. (1.6)

Let p be an odd prime such that(
acδ

p

)
=
(

bdδ

p

)
= 1, p � t, (1.7)

so that
√

abcd can be taken as an integer whose square equals abcd modulo p. Suppose
that

p = cde2 − abf2, (1.8)

where e and f are integers such that

e > 0, f > 0. (1.9)
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Define A and B by

A := rce + sbf, B := sde + raf. (1.10)

Then(
rac + s

√
abcd

p

)

=
(

cK(−1, p)
f

)(
δK(−1, adp)

B

)(
rK(−1, af)

d

)(se

a

)

×
(

c

p

)
wf (cde2,−abf)wB(adA2,−bcB)wa(sde, rf )wd(raf, se), (1.11)

independent of the choice of square root of abcd modulo p.

While the right side of (1.11) does not look particularly simple, many choices
of the parameters yield elegant evaluations. This is illustrated in Sec. 3.

By (1.5) and (1.7), we have(
rac + s

√
abcd

p

)(
rac − s

√
abcd

p

)
=
(

r2a2c2 − s2abcd

p

)
=
(

acδ

p

)
= 1,

so that (
rac + s

√
abcd

p

)
=

(
rac − s

√
abcd

p

)
. (1.12)

Thus the Legendre symbol on the left side of (1.11) is independent of the choice of
the integer

√
abcd modulo p.

Suppose for the moment that p ≡ 1 (mod 4). Define σ := sgn bc. Then by (1.5),(√
abcd

p

)
=

(
rac − σs

√
abcd

p

)(
sbdσ + r

√
abcd

p

)(
δ

p

)
. (1.13)

The first symbol on the right side of (1.13) can be evaluated using (1.11), in view
of (1.12). If in addition to the hypotheses of the theorem, we have

(b, r) = (c, s) = 1, (1.14)

then the second symbol on the right side of (1.13) can also be evaluated using (1.11),
as follows: in (1.11), replace a by |b|; b by a sgn b; c by d sgn c; d by |c|; r by s; s by
r; and δ by −δσ. As a result, when (1.14) holds and p ≡ 1 (mod 4), our theorem
can be applied to evaluate the right side of (1.13), thus providing general criteria
for the quartic residuacity of integers having the form abcd modulo p. Examples of
quartic residuacity criteria are given throughout Sec. 3.

If in addition to the hypotheses of the theorem, we have(
a

p

)
=
(

b

p

)
,
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then
√

ab and
√

cd may be taken as integers whose squares respectively equal ab

and cd modulo p. In that case, from (1.11) and the identities(
ra
√

cd + sd
√

ab

p

)
=
(

c

p

)(√
cd

p

)(
rac + s

√
abcd

p

)
, (1.15)

(
rc
√

ab + sb
√

cd

p

)
=
(

a

p

)(√
ab

p

)(
rac + s

√
abcd

p

)
, (1.16)

we can give evaluations of the symbols on the left sides of (1.15) and (1.16), inde-
pendent of the choice of square roots of ab and cd modulo p.

2. Proof of Theorem

From (1.7) and (1.8), we have

(abf, cde) = (p, e) = (p, f) = (p, abcd) = 1. (2.1)

From (1.5), (1.8) and (1.10), we deduce

δpt2 = adA2 − bcB2. (2.2)

Note that by (1.6), (1.9) and (1.10),

B > 0. (2.3)

Since p �= 2, δ ∈ {±1,±2}, and p � abcdt, it follows from (2.2) that

(p, A) = (p, B) = 1. (2.4)

Next we show that

g := (A, B) = 1. (2.5)

From (1.10), we have the two congruences

rce ≡ −sbf (mod g), sde ≡ −raf (mod g). (2.6)

Multiplying them together, we obtain rs(cde2−abf2) ≡ 0 (mod g) so that by (1.8),
rsp ≡ 0 (mod g). Since (g, p) = 1 by (2.4), it follows that g | rs. By (2.6), g | bfs2

and g | des2, so that by (1.8), g | ps2. Thus g | s2. Also by (2.6), g | cer2 and g | afr2,
so that by (1.8), g | pr2. Thus g | r2. Since (r2, s2) = 1 by (1.6), we have g = 1. This
completes the proof of (2.5).

Now we show that

h := (B, t) = 1. (2.7)

By (2.2), we have h | adA2. Since (h, a) divides both B and a, it follows from (1.10)
that (h, a) | sde. Thus, by (1.8), (h, a) | sp. But p � a so (h, a) | s. Since (a, s) = 1
by (1.6), we have (h, a) = 1. Hence h | dA2, so that h | d(A2, B). But (A, B) = 1 by
(2.5), so we have h | d. As h |B and h | d, we have from (1.10) that h | raf . Since
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(d, r) = 1 by (1.6) and h | d, we have (h, r) = 1. Thus h | af . It follows that h | (d, af),
so that h = 1 by (2.1). This proves (2.7).

From (1.8), we have

±f
√

abcd ≡ cde (mod p). (2.8)

By (1.12), (2.1) and (2.8), it follows that(
rac + s

√
abcd

p

)
=
(

f

p

)(±sf
√

abcd + racf

p

)
=
(

c

p

)(
f

p

)(
B

p

)
. (2.9)

We proceed to evaluate ( f
p ) and (B

p ). By (1.1) and (1.8),

(
f

p

)
=
(

pK(−1, p)
f

)
=
(

K(−1, p)
f

)(
cde2 − abf2

f

)
,

so that by application of (1.2) to the rightmost symbol, we obtain(
f

p

)
=
(

cdK(−1, p)
f

)
wf (cde2,−abf). (2.10)

By (1.1), (2.2) and (2.7),

(
B

p

)
=
(

pK(−1, p)
B

)
=
(

δK(−1, p)
B

)(
adA2 − bcB2

B

)
,

so that by application of (1.2) to the rightmost symbol, we obtain(
B

p

)
=
( a

B

)( d

B

)(
δK(−1, p)

B

)
wB(adA2,−bcB). (2.11)

Arguing in the same fashion, we obtain

( a

B

)
=
(

K(−1, a)
B

)(
sde

a

)
wa(sde, rf) (2.12)

and (
d

B

)
=
(

K(−1, d)
B

)(
raf

d

)
wd(raf, se). (2.13)

By (1.1),

(a

d

)(d

a

)(
f

d

)(
d

f

)
=
(

K(−1, af)
d

)
. (2.14)

The desired result (1.11) now follows by combining (2.9)–(2.14). �
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3. Special Cases of Theorem

The first ten corollaries below involve discriminants ∆ of binary quadratic forms
for which there is one form class per form genus. For those without ready access to
Pari or Sage, this can be checked for |∆| ≤ 200 with the tables in [16, pp. 383–386].
Those tables also indicate the form classes. More extensive tables of form class
numbers (with −1500 ≤ ∆ ≤ 1600) may be found in [7, pp. 194–203], and the
formula in [13, Theorem 2.1] gives the sizes of corresponding groups of genera. For
example, when ∆ = 240 as in Corollary 9, the form class number is 4 and there
are four genera. The significance of “one class per genus” is that, by Gauss’s theory
of genera [5, p. 221; 16, p. 186; 7, p. 147] the congruence conditions for p in our
corollaries determine the binary quadratic form class representing p.

There are infinitely many examples with one class per genus that we could choose
from, because there exist infinite sets of positive discriminants with one class per
genus. Explicit examples of such sets are given in [4, Sec. 4]. It is conjectured
that there exist infinitely many positive fundamental discriminants with one class
per genus. (Of course this would be proved if one could prove the existence of
infinitely many real quadratic fields with class number 1.) The situation is different
for negative discriminants. Flath [7, p. 198] lists 101 negative discriminants with
one class per genus, and it is conjectured that this list is complete.

For any nonzero integer y modulo p, we write
√

y to denote either of the two
square roots of y modulo p. As in [2, p. 251], when u is a square modulo a prime
p ≡ 1 (mod 4) with (u, p) = 1, we define(

u

p

)
4

=

{
1 if u is a quartic residue modulo p,

−1 otherwise.

If m is a positive squarefree integer, we write εm for the fundamental unit of the
real quadratic field Q(

√
m).

Our first corollary is essentially equivalent to the classical result in alge-
braic number theory that an odd prime p splits completely in Q(

√
2 +

√
2) =

Q(cos(2π/16)) if and only if p ≡ ±1 (mod 16) [14, p. 247]. Corollary 13 will signi-
ficantly extend Corollary 1.

Corollary 1. Let p be a prime with p ≡ 1 or 7 (mod 8) so that 2 is a square modulo
p. Then (

2 +
√

2
p

)
=

{
(−1)(p−1)/8 if p ≡ 1 (mod 8),

(−1)(p+1)/8 if p ≡ 7 (mod 8),
(3.1)

and

(
1 +

√
2

p

)
=
(

ε2
p

)
=




(−1)(p−1)/8

(
2
p

)
4

if p ≡ 1 (mod 8),

(−1)(p+1)/8

(√
2

p

)
if p ≡ 7 (mod 8).

(3.2)
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In the last equality it is understood that the choice of
√

2 modulo p on the left side
is the same as that on the right side.

Proof. In (1.5), choose a = 2 and let each of the seven other parameters equal 1.
Let p be a prime such that ( 2

p ) = 1, so that p ≡ 1 or 7 (mod 8) and (1.7) holds.
From the table in [16] for discriminant 8, there are positive integers e and f such
that

p = e2 − 2f2,

i.e. (1.8) holds. Clearly e and B = e + 2f are odd, and{
f ≡ 0 (mod 2) if p ≡ 1 (mod 8),

f ≡ 1 (mod 2) if p ≡ 7 (mod 8).

First suppose that p ≡ 1 (mod 8), so that f is even. The theorem gives(
2 +

√
2

p

)
=
(e

2

)
w2(e, f) =

(
2
e

)
(−1)f/2.

Since (
2
e

)
(−1)f/2 = (−1)(4f+e2−1)/8 = (−1)(4f+2f2+p−1)/8 = (−1)(p−1)/8,

we obtain (3.1) when p ≡ 1 (mod 8).
Now suppose that p ≡ 7 (mod 8), so that f is odd. In view of (1.4), the theorem

gives(
2 +

√
2

p

)
=
(−1

fB

)(e

2

)
w2(e, f) =

(−1
fB

)(
2
e

)
(−1)(e+f)/2 =

(
2
e

)
.

Since (
2
e

)
= (−1)(e

2−1)/8 = (−1)(p+2f2−1)/8 = (−1)(p+1)/8,

we obtain (3.1) when p ≡ 7 (mod 8).
Finally, (3.2) follows by multiplying both sides of (3.1) by (

√
2

p ), since ( 2
p )4 =

(
√

2
p ) when p ≡ 1 (mod 8).

We remark that when p is a prime with p ≡ 1 (mod 8), it is a result going back
to Gauss and Dirichlet that (

2
p

)
4

= (−1)
p−1
8 +D,

where p = C2 + 8D2; see for example [10, Proposition 5.4, p. 156; 2, p. 226]. Then
from (3.2) we deduce (

ε2
p

)
= (−1)D,

which is a result of Barrucand and Cohn [1, 21].
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There are two genera of classes of forms of discriminant 24. The principal genus
contains the class of the form x2 − 6y2 and the nonprincipal genus contains the
class of the form −x2 + 6y2. The next two corollaries involve the representations of
primes p by each of these two forms x2 − 6y2 and −(x2 − 6y2).

Corollary 2. Let p be a prime congruent to 1 or 19 modulo 24, so that 6 is a square
modulo p. Then there are positive integers e and f satisfying

p = e2 − 6f2 (3.3)

such that

(
2 +

√
6

p

)
=




(−1)(p−1)/8

(−1
e

)
if p ≡ 1 (mod 24),

(−1)(p−3)/8

(−1
e

)
if p ≡ 19 (mod 24),

(3.4)

and

(
3 +

√
6

p

)
=




(−1)(p−1)/8

(−1
e

)(
6
p

)
4

if p ≡ 1 (mod 24),

(−1)(p+5)/8

(−1
e

)(√
6

p

)
if p ≡ 19 (mod 24).

(3.5)

Proof. Choose

a = 2, b = 3, c = d = r = s = t = 1, δ = −1.

Then (3.3) holds, in view of the table in [16] for discriminant 24. From (3.3), we see
that e and B = e + 2f are both odd, and{

f ≡ 0 (mod 2) if p ≡ 1 (mod 24),

f ≡ 1 (mod 2) if p ≡ 19 (mod 24).

If p ≡ 1 (mod 24), so that f is even, then

w2(e, f) = (−1)f/2,

so that the theorem gives(
2 +

√
6

p

)
=
(−1

B

)(e

2

)
w2(e, f) = (−1)f/2

(−2
e

)
. (3.6)

If p ≡ 19 (mod 24), so that f is odd, then

w2(e, f) = (−1)(e+f)/2,

so that the theorem gives(
2 +

√
6

p

)
=
(−1

f

)(e

2

)
w2(e, f) = (−1)(e+2f−1)/2

(
2
e

)
. (3.7)
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Suppose first that p ≡ 1 (mod 24). By (3.3),(
2
e

)
= (−1)(6f2+p−1)/8 = (−1)f/2(−1)(p−1)/8,

so that by (3.6), (
2 +

√
6

p

)
= (−1)(p−1)/8

(−1
e

)
.

This proves (3.4) in the case p ≡ 1 (mod 24). The case p ≡ 19 (mod 24) of (3.4)
follows from (3.7) in a similar manner. Finally, (3.5) follows by multiplying (3.4)
by (

√
6

p ).

Consider the special case of Corollary 2 where p ≡ 1 (mod 24). We have(
2 +

√
6

p

)
=

(
(2 +

√
6)2

p

)
4

=

(
2(5 + 2

√
6)

p

)
4

=
(

2
p

)
4

(
ε6
p

)
4

.

Hence, by (3.4),(
ε6
p

)
4

= (−1)(p−1)/8

(−1
e

)(
2
p

)
4

, when p ≡ 1 (mod 24),

which is equivalent to a result of Leonard and Williams [11, p. 103]. See (3.13) for
another formula for the left side of (3.5) when p ≡ 1 (mod 24).

Corollary 3. Let p �= 5 be a prime congruent to 5 modulo 24, so that 6 is a square
modulo p. Then there are positive integers e and f (with e odd and f odd) satisfying

−p = e2 − 6f2 (3.8)

such that (
12 + 7

√
6

p

)
=
(−1

f

)(
6
e

)
. (3.9)

Proof. Choose

a = 6, b = c = −1, d = 1, r = 2, s = 7, t = 5, δ = 1.

Then (3.8) holds, in view of the table in [16] for discriminant 24. From (3.8) and
the congruence p ≡ 5 (mod 8), we see that e, f and B = 7e + 12f are odd. Since
w6(7e, 2f) = −1, the theorem gives(

12 + 7
√

6
p

)
=
(−1

fB

)(e

6

)
w6(7e, 2f) = −

( −1
efB

)(
6
e

)
. (3.10)

We have (−1
B

)
=
( −1

7e + 12f

)
= −

(−1
e

)
, (3.11)

so we see that (3.9) follows from (3.10) and (3.11).
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It follows from Corollary 3 that(
6
p

)
4

=
(−1

f

)(
6
e

)
,

since (
7 + 2

√
6

p

)
=

(
(1 +

√
6)2

p

)
= 1.

Corollary 4. Let p be a prime congruent to 1 or 23 modulo 24, so that 6 is a square
modulo p. Then for each ε = ±1, there are positive integers e and f satisfying

p = ε(e2 − 24f2) (3.12)

and (
3 +

√
6

p

)
= (−1)f

(
3
e

)
. (3.13)

Proof. Choose

a = 6, b = 4ε, c = ε, d = r = s = t = 1, δ = 2ε.

Then (3.12) holds, in view of the table in [16] for discriminant 96. From (3.12), we
see that e and B = e + 6f are odd, and p ≡ ε (mod 8). The theorem gives(

6ε + 2
√

6
p

)
=
(

ε

p

)(−2
B

)(e

6

)
w6(e, f).

Multiplying both sides by ( ε
p ), we obtain(

6 + 2
√

6
p

)
=
(−2

B

)(e

6

)
w6(e, f) =

(−2
Be

)(
3
e

)
w6(e, f).

Since (−1
Be ) = (−1)f , it remains to prove that(

2
Be

)
= w6(e, f).

By (1.4), we have(
2

Be

)
= (−1)((e+6f)2−e2)/8 = (−1)f(e+3f)/2 = w6(e, f),

which completes the proof of (3.13).

Consider the special case of Corollary 4 where p ≡ 1 (mod 24). Then by (3.6),(
2 −√

6
p

)
= (−1)f

(−2
e

)
;



October 23, 2015 10:21 WSPC/S1793-0421 203-IJNT 1550115

Quartic residuacity and the quadratic character 2497

multiplying this by (3.13), we obtain the quartic residuacity criterion(
6
p

)
4

=
(−6

e

)
.

For the proofs of all remaining corollaries except Corollary 11, we omit the
details, giving only the values of the relevant parameters in (1.5).

Corollary 5. Let p be a prime congruent to 1 modulo 24, so that −6 is a square
modulo p. Then there are positive integers e and f (with e odd and f even) satisfying

p = e2 + 6f2

and (
12 +

√−6
p

)
=
(

6
e

)
.

Proof. Choose

a = 6, b = −1, c = d = s = 1, r = 2, t = 5, δ = 1.

As (−2
p ) = ( 3

p ) = ( 6
p ) = 1, (−1

p )4 = 1 and 12 +
√−6 =

√−6(
√

3 − √−2)2, it
follows from Corollary 5 that(

6
p

)
4

=
(−6

p

)
4

=
(√−6

p

)
=
(

12 +
√−6
p

)
=
(

6
e

)
.

Corollary 6. Let p be a prime congruent to ±1,±9 or ±25 modulo 56, so that 7 is
a square modulo p. Then for each ε = ±1, there are positive integers e and f (with
e odd and f even) satisfying

p = ε(e2 − 28f2)

and (
3 +

√
7

p

)
= (−1)f/2

(
2
e

)
.

Proof. Choose

a = 2, b = 14ε, c = ε, d = s = 1, r = 3, t = 2, δ = ε.

Consider the special case of Corollary 6 where ε = 1, so that p is congruent to
1, 9 or 25 modulo 56. We have(

3 +
√

7
p

)
=

(
(3 +

√
7)2

p

)
4

=

(
2(8 + 3

√
7)

p

)
4

=
(

2
p

)
4

(
ε7
p

)
4

.
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Hence, by Corollary 6, we obtain(
ε7
p

)
4

= (−1)f/2

(
2
e

)(
2
p

)
4

, when p ≡ 1, 9 or 25 (mod 56),

which is equivalent to a result of Leonard and Williams [11, p. 103].

Corollary 7. Let p be a prime congruent to ±1,±9 or ±25 modulo 56, so that 14
is a square modulo p. Then for each ε = ±1, there are positive integers e and f

(with e odd and f even) satisfying

p = ε(e2 − 14f2)

and (
4 +

√
14

p

)
=
(

2
e

)
.

Proof. Choose

a = 2, b = 7ε, c = ε, d = s = t = 1, r = 2, δ = ε.

For p ≡ 1, 9 or 25 (mod 56) we have(
4 +

√
14

p

)
=

(
(4 +

√
14)2

p

)
4

=

(
2(15 + 4

√
14)

p

)
4

=
(

2
p

)
4

(
ε14
p

)
4

.

Hence, by Corollary 7, we deduce(
ε14
p

)
4

=
(

2
e

)(
2
p

)
4

, when p ≡ 1, 9 or 25 (mod 56),

which is equivalent to a result of Leonard and Williams [11, p. 103].

Corollary 8. Let p be a prime congruent to 1 or 9 modulo 40, so that 10 is a square
modulo p. Then there are positive integers e and f (with e odd) satisfying

p = e2 − 40f2

and (
ε10
p

)
=

(
3 +

√
10

p

)
=
(−1

e

)
(−1)f .

Proof. Choose

a = 2, b = 20, c = d = s = 1, r = 3, t = 1, δ = −2.

Corollary 9. Let p be a prime congruent to ±1 or ±49 modulo 120, so that 15 is
a square modulo p. Then for each ε = ±1 there are positive integers e and f (with e
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odd and f even) satisfying

p = ε(15e2 − 4f2)

and (
5 +

√
15

p

)
=
(

f

5

)(
2
e

)
(−1)f/2.

Proof. Choose

a = 2, b = 2ε, c = 5ε, d = 3, r = s = 1, t = 2, δ = ε.

Consider the special case of Corollary 9 where ε = −1, so that p is congruent to
1 or 49 modulo 120. With

a = 2, b = −2, c = −3, d = 5, r = s = 1, t = 2, δ = 1,

the theorem gives (
3 +

√
15

p

)
=
(−3

f

)(
2
e

)
(−1)f/2.

Together with Corollary 9, this yields the quartic residuacity formula(
15
p

)
4

=
(−15

f

)
.

Corollary 10. Let p be a prime congruent to 1, 9, 25, 49 or 81 modulo 88, so that
22 is a square modulo p. Then there are positive integers e and f (with e odd and
f odd) satisfying

p = 11e2 − 2f2

and (
2 +

√
22

p

)
=
(−2

e

)
.

Proof. Choose

a = 2, b = c = 1, d = 11, r = s = 1, t = 3, δ = −1.

Each of our last four corollaries below provides an infinite class of examples,
one for each q. Every quadratic form in these corollaries represents infinitely many
primes in any arithmetic progression compatible with the form’s generic characters,
by a classical theorem of Meyer [12]. (See [15, p. 72] for additional references.)
Hence, no example below is vacuous.
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Corollary 11. For any fixed odd integer u, let q := u2 +2 (so that q ≡ 3 (mod 8)).
Let p be a prime congruent to 1 modulo 8 with (p, qu) = 1 such that

p = qe2 − 2f2

for positive odd integers e and f . Then(
2 +

√
2q

p

)
=
(−2

e

)
,

(
q +

√
2q

p

)
=
(

q

f

)
, (3.14)

and (
2q

p

)
4

=
(−2

e

)(
q

f

)
. (3.15)

Proof. To prove the first equality in (3.14), choose

a = 2, b = c = 1, d = q, r = s = 1, t = u, δ = −1.

Since e and q are odd, so is B = qe + 2f . By (1.4),

w2(qe, f) =
(−1

ef

)
.

The theorem thus gives(
2 +

√
2q

p

)
=
(−1

f

)(e

2

)
w2(qe, f) =

(−1
e

)(e

2

)
,

and the first equality in (3.14) follows. For the second equality in (3.14), choose

a = 1, b = 2, c = q, d = r = s = 1, t = u, δ = 1.

Then B = e + f is even. By the theorem, the first factor on the right side of (1.11)
equals ( q

f ), and each of the remaining eight factors equals 1. This proves the second
equality in (3.14). Finally, (3.15) follows from the two equalities in (3.14).

Observe that Corollary 10 can be deduced from the case u = 3 of Corollary 11.
If u = 1 (so that q = 3 and p ≡ 1 (mod 24)), then Corollary 11 shows that the unit√

2 +
√

3 satisfies (√
2 +

√
3

p

)
=
(

2
p

)
4

(−2
e

)
=
(

3
p

)
4

(
3
f

)
.

Corollary 12. For any fixed nonzero integer u, let q := 4u2 + 1 (so that q≡ 1
(mod 4)). Let p be a prime congruent to 1 modulo 4 with (p, qu) = 1 such that

p = qe2 − 4f2

for positive integers e and f . Then(
1 +

√
q

p

)
=
(−1

e

)
,

(
q +

√
q

p

)
=
(

2f

q

)
(−1)f , (3.16)
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and (
q

p

)
4

=
(−1

e

)(
2f

q

)
(−1)f . (3.17)

Proof. To prove the first equality in (3.16), choose

a = 2, b = 2, d = q, c = r = s = 1, t = 2u, δ = −2.

For the second equality in (3.16), choose

a = 2, b = 2, c = q, d = r = s = 1, t = 2u, δ = 2.

Finally, (3.17) follows from the two equalities in (3.16).

Suppose that the prime p is congruent to 1 or 9 modulo 20. Then the hypotheses
of Corollary 12 hold with u = 1 and q = 5, by the table in [16] for discriminant 80.
Thus by (3.16), (

ε5
p

)
=
(−1

e

)(
2
p

)
. (3.18)

This is equivalent to a result of Leonard and Williams [11, p. 102]. By (3.17),(
5
p

)
4

=
(−1

e

)(
f

5

)
(−1)f+1. (3.19)

(A different criterion for the quartic residuacity of 5 may be found in [2, p. 217].)
Combining (3.18) and (3.19), we see that

(
ε5
p

)
=
(

5
p

)
4

(
2
p

)(
f

5

)
(−1)f+1 =




+
(

5
p

)
4

if p ≡ 1 (mod 20),

−
(

5
p

)
4

if p ≡ 9 (mod 20),

which is a result of Lehmer [8, Eq. (11)].

Corollary 13. For any fixed odd integer u, let q := u2−2 (so that q ≡ 7 (mod 8)).
Let p be a prime with (p, qu) = 1 such that either

p = qe2 + 2f2 (3.20)

or

p = e2 + 2qf2 (3.21)

for positive integers e and f . (In particular, p ≡ ±1 (mod 8).) Then

(
2 +

√−2q

p

)
=




(
2
e

)
if 2 � f,

(
2
e

)
(−1)f/2 if 2 | f.

(3.22)



October 23, 2015 10:21 WSPC/S1793-0421 203-IJNT 1550115

2502 R. J. Evans & K. S. Williams

and when p ≡ 1 (mod 8),

(
q +

√−2q

p

)
=




(
q

f

)
if 2 � f,

(q

e

)
(−1)f/2 if 2 | f.

(3.23)

Thus when p ≡ 1 (mod 8), we have

(−2q

p

)
4

=




(
2
e

)(
q

f

)
if 2 � f,

(
2q

e

)
if 2 | f.

(3.24)

Proof. To prove (3.22) when (3.20) holds, choose

a = 2, b = −1, d = q, c = r = s = 1, t = u, δ = 1.

To prove (3.22) when (3.21) holds, choose

a = 2, b = −q, c = d = r = s = 1, t = u, δ = 1.

Now suppose that p ≡ 1 (mod 8). To prove (3.23) when (3.20) holds, choose

a = 1, b = −2, c = q, d = r = s = 1, t = u, δ = 1.

To prove (3.23) when (3.21) holds, choose

a = q, b = −2, c = d = r = s = 1, t = u, δ = 1.

Finally, (3.24) follows by multiplying together (3.22) and (3.23).

From the case u = 1 of (3.22), we can deduce (3.1).

Corollary 14. For any fixed odd integer u, let q := (u2 + 1)/2 (so that
q≡ 1 (mod 4)). Let p be a prime with (p, qu) = 1 such that

p = e2 − 2qf2

for positive integers e and f (so that p ≡ (−1)f (mod 8)). Then

(
2q +

√
2q

p

)
=




(
2q

e

)
if 2 � f,

(
2q

e

)
(−1)f/2 if 2 | f.

(3.25)

Moreover, when f is even, we have(
1 +

√
2q

p

)
=
(−1

e

)
(−1)f/2,

(
2q

p

)
4

=
(−2q

e

)
. (3.26)
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Proof. To prove (3.25), choose

a = 2q, b = c = d = r = s = 1, t = u, δ = 1.

To prove (3.26) when f is even, choose

a = 1, b = 2q, c = d = r = s = 1, t = u, δ = −1.
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