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Abstract. The recent exciting results by Bhargava, Conway, Hanke, Kaplansky, Rouse, and
Schneeberger concerning the representabiltity of integers by positive integral quadratic forms
in any number of variables are presented. These results build on the earlier work of Dickson,
Halmos, Ramanujan, and Willerding on quadratic forms. Two results of this type for positive
diagonal ternary forms are proved. These are the “four integers” and “five integers” theorems
of the title.

An integral quadratic form in the variables x1, . . . , xk is a homogeneous polynomial

f (x1, . . . , xk) =
∑

1�i� j�k

ai j xi x j ,

where the ai j are integers. Clearly f (0, . . . , 0) = 0. If k = 2 the quadratic form is
called binary, if k = 3 ternary, and if k = 4 quaternary. The matrix of the form f is
the k × k symmetric matrix

F :=

⎛
⎜⎜⎝

a11
1
2 a12 . . . 1

2 a1k
1
2 a12 a22 . . . 1

2 a2k

· · · · · ·
1
2 a1k

1
2 a2k . . . akk

⎞
⎟⎟⎠ .

The form f is said to be diagonal if the matrix F is a diagonal matrix; that is a12 =
a13 = · · · = ak−1 k = 0, so that f = a11x2

1 + · · · + akk x2
k . The form f is said to be an

integer-matrix form if all the entries of F are integers; that is a12, a13, . . . , ak−1 k are
all even integers.

If f (x1, . . . , xk) > 0 for all integers x1, . . . , xk with (x1, . . . , xk) �= (0, . . . , 0) we
say that the form f is positive. We consider only positive forms throughout this article.
Frobenius gave a necessary and sufficient condition for a quadratic form to be positive
in 1894, see for example [18, p. 400].

An integer n is said to be represented by f if there exist integers y1, . . . , yk such
that n = f (y1, . . . , yk). The set of integers represented by a positive form f comprises
a certain set of positive integers together with 0. If f represents every positive integer,
then f is said to be universal. Two positive integral quadratic forms f (x1, . . . , xk) and
g(x1, . . . , xk) with matrices F and G, respectively, are said to be equivalent if there
exists a k × k matrix U with integral entries and det U = ±1 such that G = U T FU ,
where U T denotes the transpose of the matrix U . The class [ f ] of the form f is the set
of forms g which are equivalent to f . As forms in the same class represent the same
integers, we usually identify a form with its class when discussing representability and
universality.
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It is a classical theorem due to Lagrange [14] that every positive integer is the sum
of four integral squares; that is the positive diagonal quaternary integral quadratic form
x2

1 + x2
2 + x2

3 + x2
4 represents every positive integer, and so is a universal form. Liou-

ville [16] (and other mathematicians) determined further universal positive diagonal
quaternary integral quadratic forms such as x2

1 + x2
2 + 2x2

3 + 2x2
4 . On the other hand,

the form x2
1 + x2

2 + 5x2
3 + 5x2

4 is not universal as it does not represent 3. Liouville [15]
showed that it represents every positive integer except 3. Liouville [17] also showed
that the form x2

1 + x2
2 + 4x2

3 + 4x2
4 represents every positive integer except the in-

finitely many integers 4m + 3 (m = 0, 1, 2, . . .). Ramanujan [20] and Dickson [6]
determined all positive diagonal quaternary integral quadratic forms which are uni-
versal. There are precisely 54 of them. Ramanujan had claimed there were 55 such
forms but Dickson noted that one of Ramanujan’s forms was not universal. Willerd-
ing [23, 24] treated (classes of) positive integer-matrix quaternary quadratic forms
which are universal and claimed that there are 178 (classes of) such forms. This count
was later shown to be incorrect. As regards universality of positive integral quadratic
forms, the case of four variables is a “threshold” since in more than four variables
there are infinitely many universal forms. For example x2

1 + x2
2 + x2

3 + x2
4 + mx2

5 is
universal for any positive integer m (in this connection see Dickson [5]), whereas in
fewer than four variables there are no universal forms. We can easily see this in the
case of positive diagonal ternary quadratic forms ax2

1 + bx2
2 + cx2

3 , where a, b, and c
are positive integers with a � b � c. This follows since to represent 1 we must have
a = 1, to represent 2 we must have b = 1 or b = 2, and x2 + y2 + cz2 does not rep-
resent 7 if c = 1; 14 if c = 2; 6 if c = 3, and 3 if c � 4, and x2 + 2y2 + cz2 does not
represent 7 if c = 2; 10 if c = 3; 14 if c = 4; 10 if c = 5; and 5 if c � 6. A proof
that no positive ternary integral quadratic form is universal is given in Conway’s book
[3, p. 42].

In 1938 Halmos [11] observed from the work of Ramanujan that a necessary and
sufficient condition for the positive diagonal quaternary integral quadratic form a1x2

1 +
a2x2

2 + a3x2
3 + a4x2

4 to be universal is that it represents the first fifteen positive inte-
gers. This condition provides a very convenient way of determining whether a given
form a1x2

1 + a2x2
2 + a3x2

3 + a4x2
4 is universal or not. Instead of remembering a list of

54 forms, or looking the list up, we have only to check whether the form of interest
represents each of the integers 1, 2, . . . , 15. For example it is easily checked that the
form x2

1 + 2x2
2 + 4x2

3 + 14x2
4 does represent each of these integers and so is univer-

sal, whereas the form x2
1 + 2x2

2 + 5x2
3 + 5x2

4 does not represent 15 and so is clearly
not universal. In fact the set {1, 2, . . . , 15} is not minimal. It is enough to check the
representability of each integer in the set {1, 2, 3, 5, 6, 7, 10, 14, 15} in order to deter-
mine whether the form is universal or not. This set is minimal in the sense that if m ∈
{1, 2, 3, 5, 6, 7, 10, 14, 15}, then there is a diagonal form a1x2

1 + a2x2
2 + a3x2

3 + a4x2
4

that does not represent m but represents every other positive integer. Such forms were
called almost-universal forms by Halmos [11]. He showed for example that the form
2x2

1 + 3x2
2 + 4x2

3 + 5x2
4 represents every positive integer except 1.

The observation of Halmos was not pursued for many years until 1993 when it
was taken up by Conway in a graduate course on quadratic forms at Princeton Uni-
versity. Conway and his student Schneeberger were able to extend the “15 theorem”
from positive diagonal quaternary integral quadratic forms to all positive integer-
matrix quadratic forms. They proved but did not publish the proof of the following
theorem.

15-Theorem. If a positive integer-matrix quadratic form in any number of variables
represents all the positive integers up to and including 15 then it is universal.
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The details of their work are given in [4, 22]. In 2000 Bhargava [1] gave a new, beau-
tiful, brilliant proof of the 15-theorem in the following stronger form.

Strong 15-Theorem. If a positive integer-matrix quadratic form in any number of
variables represents all the nine integers

1, 2, 3, 5, 6, 7, 10, 14, 15

then it is universal.

Bhargava showed that the set {1, 2, 3, 5, 6, 7, 10, 14, 15} is minimal in the sense that
if m is any one of these numbers then there is a positive diagonal quaternary integral
quadratic form that fails to represent m but represents every positive integer different
from m. Bhargava also established that there are exactly 204 positive universal quater-
nary integer-matrix quadratic forms. This corrected the work of Willerding [23, 24].

In 1993 Conway formulated the conjecture that a positive integral quadratic form
that represents all the positive integers up to and including 290 must be universal. This
was proved by Bhargava and Hanke [2].

290-Theorem. If a positive integral quadratic form in any number of variables repre-
sents all the positive integers up to and including 290, then it is universal.

Indeed Bhargava and Hanke proved this result in the following stronger form.

Strong 290-Theorem. If a positive integral quadratic form in any number of variables
represents all the twenty-nine integers

1, 2, 3, 5, 6, 7, 10, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29,

30, 31, 34, 35, 37, 42, 58, 93, 110, 145, 203, 290

then it is universal.

Bhargava and Hanke showed too that the set in the strong 290-theorem is minimal
in the sense that we have already explained. The 290-theorem allowed Bhargava and
Hanke to determine all positive universal quaternary integral quadratic forms. They
found that there are exactly 6436 such forms. Dickson’s theorems [7] on universal
quaternary quadratic integral forms follow from the Strong 290-theorem.

A positive integral quadratic form that represents every positive integer in the arith-
metic progression {km + � | m = 0, 1, 2, . . .}, where k and � are positive integers with
1 � � � k is called (k, �)-universal. Thus a positive integral quadratic form that repre-
sents all odd natural numbers is (2, 1)-universal. No positive ternary integral quadratic
form can be (k, k)-universal for any positive integer k. To see this, suppose on the con-
trary that a positive ternary integral quadratic form q(x1, x2, x3) represents all positive
multiples of the positive integer k. Then the rational positive ternary quadratic form
1
k q(x1, x2, x3) represents all positive integers. But it is known that a rational positive
ternary quadratic form fails to represent rationally some full congruence class of in-
tegers. This is the required contradiction. This argument can be found for example in
Conway’s delightful book [3, p. 142], see also [3, pp. 81–83] for a related amusing
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theorem concerning the little Methuselah form x2 + 2y2 + yz + 4z2. Thus, in partic-
ular, a positive ternary integral quadratic form cannot represent every positive even
integer. A proof of this for diagonal ternaries was given by Panaitopol [19]. Euler
conjectured in 1748 that the positive ternary integral quadratic form x2

1 + x2
2 + 2x2

3
represents every positive odd integer, see [10, p. 206]. Dickson [6] proved that the
positive diagonal ternary integral quadratic forms

x2
1 + x2

2 + 2x2
3 , x2

1 + 2x2
2 + 3x2

3 , x2
1 + 2x2

2 + 4x2
3 (1)

represent all positive odd integers. More generally, in 1995 Kaplansky [13] gave a
list of 23 positive ternary integral quadratic forms which must contain all the (2,1)-
universal ternary integral quadratic forms. He proved the (2, 1)-universality of 19 of
the 23 forms in his list. All of the diagonal ternaries in his list were among the 19
for which he proved (2, 1)-universality. These were precisely the three listed in (1).
Thus the only positive diagonal ternary quadratic integral forms that represent all pos-
itive odd integers are the three listed in (1). Another proof of this has been given by
Panaitopol [19]. In 1996 Jagy [12] proved that one of the Kaplansky’s four leftover
forms, namely x2 + 3y2 + 11z2 + xy + 7yz, is (2, 1)-universal. It appears to be very
difficult to decide whether the remaining three forms

x2 + 2y2 + 5z2 + xz, x2 + 3y2 + 6z2 + xy + 2yz, x2 + 3y2 + 7z2 + xy + xz
(2)

are (2, 1)-universal or not. Rouse [21] remarks that at present there is no general algo-
rithm for determining the integers represented by a positive ternary integral quadratic
form. Assuming that the three forms in (2) do in fact represent all positive odd inte-
gers, Rouse [21] has shown that a positive integral quadratic form in any number of
variables is (2, 1)-universal if and only if it represents the positive odd integers 1 to
451 inclusive.

451-Theorem. Assuming that the three ternary forms in (2) represent all positive
odd integers, then a positive integral quadratic form in any number of variables is
(2, 1)-universal if and only if it represents all the odd integers from 1 to 451 inclusive.

Rouse’s main result [21] was the minimal set of positive odd integers needed for
(2, 1)-universality.

Strong 451-Theorem. Assuming that the three ternary forms in (2) represent all pos-
itive odd integers, then a positive integral quadratic form in any number of variables
is (2, 1)-universal if and only if it represents all of the 46 integers:

1, 3, 5, 7, 11, 13, 15, 17, 19, 21, 23, 29, 31, 33, 35, 37, 39, 41, 47,

51, 53, 57, 59, 77, 83, 85, 87, 89, 91, 93, 105, 119, 123, 133, 137,

143, 145, 187, 195, 203, 205, 209, 231, 319, 385, 451.

Prior to Rouse’s work, Bhargava had shown (but not published) that a positive integer-
matrix quadratic form in any number of variables is (2, 1)-universal if and only if
it represents all of the seven integers 1, 3, 5, 7, 11, 15, 33. This 33-theorem is stated
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by Conway [4]. If we restrict attention to positive diagonal ternaries, then we know
which ones are (2, 1)-universal from the work of Dickson and Kaplansky and we can
determine the subset of the set in the 33-theorem (or the strong 451-theorem) which
they must represent in order to be recognized as (2, 1)-universal. Our “four integers”
theorem gives this subset.

Theorem A: Four Integers Theorem. If the ternary quadratic form ax2 + by2 + cz2,
where a, b, and c are positive integers, represents the four integers

1, 3, 5 and 15,

then it is (2, 1)-universal.

We also show that there is a “five integers” theorem for positive diagonal ternary
integral quadratic forms representing all positive integers which are congruent to 2
modulo 4.

Theorem B: Five Integers Theorem. If the ternary quadratic form ax2 + by2 + cz2,
where a, b, and c are positive integers, represents the five integers

2, 6, 10, 14 and 30,

then it is (4, 2)-universal.

As we have already mentioned, there are precisely three ternary quadratic forms
ax2 + by2 + cz2 (a, b, c positive integers with a � b � c) representing every odd nat-
ural number, namely x2 + y2 + 2z2, x2 + 2y2 + 3z2, and x2 + 2y2 + 4z2. We will show
that there are exactly nine such forms representing every natural number ≡ 2 (mod 4),
namely x2 + y2 + z2, x2 + y2 + 4z2, x2 + y2 + 5z2, x2 + 2y2 + 2z2, x2 + 2y2 + 6z2,
x2 + 2y2 + 8z2, 2x2 + 2y2 + 4z2, 2x2 + 4y2 + 6z2, and 2x2 + 4y2 + 8z2.

The following simple lemma enables us to bound the coefficients of a ternary
quadratic form ax2 + by2 + cz2 in terms of the integers it represents. We state the
result more generally for an arbitrary positive diagonal integral quadratic form.

Bounding Lemma. Let k be a positive integer. Let a1, . . . , ak be positive integers with
a1 � a2 � · · · � ak. Set

q := a1x2
1 + · · · + ak x2

k , q1 := 0,

and for i = 2, . . . , k let

qi := a1x2
1 + · · · + ai−1x2

i−1.

If q represents a positive integer n, but for some i ∈ {1, 2, . . . , k} qi does not represent
n, then ai � n.

Proof. As q represents n there are integers y1, . . . , yk such that

n = a1 y2
1 + · · · + ak y2

k .
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If (yi , . . . , yk) = (0, . . . , 0), then

n =
{

a1 y2
1 + · · · + ai−1 y2

i−1 if 2 � i � k,

0 if i = 1,

contradicting that qi does not represent n when i � 2 and contradicting that n > 0
when i = 1. Hence (yi , . . . , yk) �= (0, . . . , 0) and so y2

i + · · · + y2
k � 1. Thus

n = a1 y2
1 + · · · + ak y2

k � ai y2
i + · · · + ak y2

k � ai (y2
i + · · · + y2

k ) � ai ,

as claimed.

We make extensive use of the bounding lemma in the proofs of Theorems A and B.

Proof of Theorem A. Suppose that the ternary quadratic form ax2 + by2 + cz2, where
a, b, and c are positive integers, represents the integers 1, 3, 5, and 15. Without loss of
generality we may suppose that a � b � c.

As ax2 + by2 + cz2 represents 1, by the bounding lemma we have a = 1. As
x2 + by2 + cz2 represents 3 and 3 �= r 2 for any integer r , by the bounding lemma
we have 1 � b � 3. When b = 1, as x2 + y2 + cz2 represents 3 and 3 �= r 2 + s2

for any integers r and s, by the bounding lemma we have 1 � c � 3. When b = 2,
as x2 + 2y2 + cz2 represents 5 and 5 �= r 2 + 2s2 for any integers r and s, by the
bounding lemma we have 2 � c � 5. When b = 3 as x2 + 3y2 + cz2 represents 5
and 5 �= r 2 + 3s2 for any integers r and s, by the bounding lemma we have 3 � c � 5.
Thus we have 10 forms to examine, namely

(A) x2 + y2 + z2 (B) x2 + y2 + 2z2 (C) x2 + y2 + 3z2

(D) x2 + 2y2 + 2z2 (E) x2 + 2y2 + 3z2 (F) x2 + 2y2 + 4z2

(G) x2 + 2y2 + 5z2 (H) x2 + 3y2 + 3z2 (I) x2 + 3y2 + 4z2

(J) x2 + 3y2 + 5z2.

The forms (A), (C), (D), (G), (I), and (J) do not represent 15. The form (H) does not
represent 5. This leaves only the forms (B), (E), and (F). By the aforementioned results
of Dickson and Kaplansky, these three forms represent all positive odd integers. This
completes the proof of Theorem A.

The set {1, 3, 5, 15} is minimal as 2x2 + 3y2 + 4z2 represents 3, 5, and 15 but not
1, x2 + y2 + 5z2 represents 1, 5, and 15 but not 3, x2 + 2y2 + 6z2 represents 1, 3, and
15 but not 5, and x2 + y2 + z2 represents 1, 3, and 5 but not 15.

To prove Theorem B we require the following results. For the proofs of these results
we refer the reader to [6], [8], and [9, Chapter 5].

(I) A positive integer n is represented by the form x2 + y2 + z2 if and only if
n �= 4k(8l + 7) for any nonnegative integers k and l.

(II) A positive integer n is represented by the form x2 + y2 + 4z2 if and only if
n �= 8l + 3 and n �= 4k(8l + 7) for any nonnegative integers k and l.

(III) A positive integer n is represented by the form x2 + y2 + 5z2 if and only if
n �= 4k(8l + 3) for any nonnegative integers k and l.

(IV) A positive integer n is represented by the form x2 + 2y2 + 2z2 if and only if
n �= 4k(8l + 7) for any nonnegative integers k and l.

(V) A positive integer n is represented by the form x2 + 2y2 + 6z2 if and only if
n �= 4k(8l + 5) for any nonnegative integers k and l.

June–July 2015] A FOUR INTEGERS THEOREM AND A FIVE INTEGERS THEOREM 533



(VI) A positive integer n is represented by the form x2 + 2y2 + 8z2 if and only if
n �= 8l + 5 and n �= 4k(8l + 7) for any nonnegative integers k and l.

Proof of Theorem B. Suppose that ax2 + by2 + cz2, where a, b, and c are positive
integers, represents the integers 2, 6, 10, 14, and 30. Without loss of generality we may
suppose that a � b � c.

As ax2 + by2 + cz2 represents 2, by the bounding lemma we have 1 � a � 2.
When a = 1, as x2 + by2 + cz2 represents 2 and 2 �= r 2 for any integer r , by the

bounding lemma we have 1 � b � 2. When a = 1 and b = 1, as x2 + y2 + cz2 rep-
resents 6 and 6 �= r 2 + s2 for any integers r and s, by the bounding lemma we have
1 � c � 6. When a = 1 and b = 2 as x2 + 2y2 + cz2 represents 10 and 10 �= r 2 + 2s2

for any integers r and s, by the bounding lemma we have 2 � c � 10.
When a = 2, as 2x2 + by2 + cz2 represents 6 and 6 �= 2r 2 for any integer r , by

the bounding lemma we have 2 � b � 6. When a = 2 and b = 2, as 2x2 + 2y2 +
cz2 represents 6 and 6 �= 2r 2 + 2s2 for any integers r and s, by the bounding lemma
we have 2 � c � 6. When a = 2 and b = 3, as 2x2 + 3y2 + cz2 represents 6 and
6 �= 2r 2 + 3s2 for any integers r and s, by the bounding lemma we have 3 � c � 6.
When a = 2 and b = 4, as 2x2 + 4y2 + cz2 represents 10 and 10 �= 2r 2 + 4s2 for
any integers r and s, by the bounding lemma we have 4 � c � 10. When a = 2 and
b = 5, as 2x2 + 5y2 + cz2 represents 6 and 6 �= 2r 2 + 5s2 for any integers r and s,
we have 5 � c � 6. When a = 2 and b = 6, as 2x2 + 6y2 + cz2 represents 10 and
10 �= 2r 2 + 6s2 for any integers r and s, we have 6 � c � 10. Hence we have 38
forms to examine:

(1) x2 + y2 + z2 (2) x2 + y2 + 2z2 (3) x2 + y2 + 3z2

(4) x2 + y2 + 4z2 (5) x2 + y2 + 5z2 (6) x2 + y2 + 6z2

(7) x2 + 2y2 + 2z2 (8) x2 + 2y2 + 3z2 (9) x2 + 2y2 + 4z2

(10) x2 + 2y2 + 5z2 (11) x2 + 2y2 + 6z2 (12) x2 + 2y2 + 7z2

(13) x2 + 2y2 + 8z2 (14) x2 + 2y2 + 9z2 (15) x2 + 2y2 + 10z2

(16) 2x2 + 2y2 + 2z2 (17) 2x2 + 2y2 + 3z2 (18) 2x2 + 2y2 + 4z2

(19) 2x2 + 2y2 + 5z2 (20) 2x2 + 2y2 + 6z2 (21) 2x2 + 3y2 + 3z2

(22) 2x2 + 3y2 + 4z2 (23) 2x2 + 3y2 + 5z2 (24) 2x2 + 3y2 + 6z2

(25) 2x2 + 4y2 + 4z2 (26) 2x2 + 4y2 + 5z2 (27) 2x2 + 4y2 + 6z2

(28) 2x2 + 4y2 + 7z2 (29) 2x2 + 4y2 + 8z2 (30) 2x2 + 4y2 + 9z2

(31) 2x2 + 4y2 + 10z2 (32) 2x2 + 5y2 + 5z2 (33) 2x2 + 5y2 + 6z2

(34) 2x2 + 6y2 + 6z2 (35) 2x2 + 6y2 + 7z2 (36) 2x2 + 6y2 + 8z2

(37) 2x2 + 6y2 + 9z2 (38) 2x2 + 6y2 + 10z2.

Forms (3), (17), (19), (23), and (32) do not represent 6. Forms (8), (10), (21), (22),
(24), (26), (28), (30), (33), (34), (35), and (37) do not represent 10. Forms (2), (9),
(12), (14), (16), and (25) do not represent 14. Forms (6), (15), (20), (31), (36), and
(38) do not represent 30.

This leaves the 9 forms (1), (4), (5), (7), (11), (13), (18), (27), and (29). By Theorem
1 the forms x2 + y2 + 2z2, x2 + 2y2 + 3z2, and x2 + 2y2 + 4z2 represent every odd
positive integer. Hence their doubles, namely forms (18), (27), and (29), represent
every positive integer congruent to 2 modulo 4. Let N0 = {0, 1, 2, . . .}. Let m ∈ N0.
As 4m + 2 �= 4k(8l + 7) for any k, l ∈ N0, by (I) the form (1) represents every positive
integer congruent to 2 modulo 4. As 4m + 2 �= 8l + 3, 4k(8l + 7) for any k, l ∈ N0,
by (II) the form (4) represents every positive integer congruent to 2 modulo 4. As
4m + 2 �= 4k(8l + 3) for any k, l ∈ N0, by (III) the form (5) represents every positive
integer congruent to 2 modulo 4. As 4m + 2 �= 4k(8l + 7) for any k, l ∈ N0, by (IV)
the form (7) represents every positive integer congruent to 2 modulo 4. As 4m + 2 �=
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4k(8l + 5) for any k, l ∈ N0, by (V) the form (11) represents every positive integer
congruent to 2 modulo 4. As 4m + 2 �= 8l + 5, 4k(8l + 7) for any k, l ∈ N0, by (VI)
the form (13) represents every positive integer congruent to 2 modulo 4.

This completes the proof of Theorem B.

The set {2, 6, 10, 14, 30} is minimal as x2 + 5y2 + 5z2 represents 6, 10, 14, and
30 but not 2, x2 + y2 + 3z2 represents 2, 10, 14, and 30 but not 6, x2 + 2y2 + 3z2

represents 2, 6, 14, and 30 but not 10, x2 + 2y2 + 7z2 represents 2, 6, 10, and 30 but
not 14, and x2 + y2 + 6z2 represents 2, 6, 10, and 14 but not 30.

It is natural to ask whether the elementary approach used in this article to determine
all positive diagonal ternary integral quadratic forms which are (2,1)-universal and
(4,2)-universal can also be used to find those such ternaries that are (8,4)-universal. In
attempting to do this, one encounters the form x2 + y2 + 11z2, which represents every
positive integer ≡ 4 (mod 8) up to 300 but not 308, as well as the form x2 + 2y2 + 9z2,
which appears to represent every positive integer ≡ 4 (mod 8). The proof of the (8, 4)-
universality of the form x2 + 2y2 + 9z2 may be difficult to prove. Assuming that the
first form in (2) represents all odd positive integers, the author (Acta Arithmetica 166.4
(2014), 391–396) has determined all positive diagonal ternary quadratic forms which
are (8,4)-universal. It turned out that proving the (8,4)-universality of the form just
mentioned was not difficult.

The author would like to thank the two referees for their valuable comments which
led to significant improvements in this article.
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100 Years Ago This Month in The American Mathematical Monthly
Edited by Vadim Ponomarenko

Professor H. S. WHITE, of Vassar College, was elected a member of the Na-
tional Academy of Sciences at the annual meeting held last April in Washington,
D.C. The other members representing pure mathematics in this Academy are
Professors BÔCHER, BOLZA, DICKSON, MOORE, OSGOOD, STOREY, and VAN
VLECK.

The cover for the May issue was dated “April” by an oversight of the printer.
The printed slip herewith may be used to correct the error. The next issue of the
MONTHLY, will be for September, 1915.

—Excerpted from “Notes and News” 22 (1915) 213–214.
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