Historical remark on a theorem of Zhang and Yue

Kenneth S. Williams
School of Mathematics and Statistics, Carleton University, Ottawa, Ontario, K1S 5B6, Canada

A R T I C L E I N F O

Article history:

Received 24 July 2014
Received in revised form 3 August 2014
Accepted 19 August 2014
Available online 7 October 2014
Communicated by David Goss

Keywords:

Theorem of Zhang and Yue
Dirichlet's method
Congruences

A B S T R A C T

The purpose of this historical remark is to observe that a slightly stronger form of a recent theorem of Zhang and Yue can be proved more easily using an elementary method given by Dirichlet in 1834.
© 2014 Elsevier Inc. All rights reserved.

Let d be a squarefree positive integer such that the class number of the real quadratic field $\mathbb{Q}(\sqrt{d})$ is odd and its fundamental integral unit $x+y \sqrt{d}(>1)$ has norm 1 . Then it is known that $d=p, 2 p$ or $p_{1} p_{2}$, where p, p_{1} and $p_{2}\left(\neq p_{1}\right)$ are primes congruent to 3 modulo 4 , see for example [1, p. 163]. Zhang and Yue [3] have recently proved some congruences for x and y. These are stated in Theorem 1.

Theorem 1. (See [3, Theorem 1.1].)
(1) If $d=p$ with $p \equiv 3(\bmod 4)$ then $x \equiv 0(\bmod 2)$. Moreover $x \equiv 2(\bmod 4)$ if $p \equiv 3(\bmod 8)$ and $x \equiv 0(\bmod 4)$ if $p \equiv 7(\bmod 8)$.

[^0](2) If $d=2 p$ with $p \equiv 3(\bmod 4)$ then $y \equiv 0(\bmod 2)$ and $x+y \equiv 3(\bmod 4)$.
(3) If $d=p_{1} p_{2}$ with $p_{1} \equiv p_{2} \equiv 3(\bmod 4)$ then $x \equiv 3(\bmod 4)$ and $y \equiv 0(\bmod 4)$.

The purpose of this remark is to point out that a slightly stronger form of Zhang and Yue's theorem can be proved easily using an elementary method given by Dirichlet [2] in 1834, see Theorem 2. This method requires only the fundamental theorem of arithmetic.

Theorem 2.

(1) If $d=p$ with $p \equiv 3(\bmod 4)$ then $x \equiv 0(\bmod 2)$. Moreover $x \equiv 2(\bmod 8)$ if $p \equiv 3(\bmod 8)$ and $x \equiv 0(\bmod 8)$ if $p \equiv 7(\bmod 8)$.
(2) If $d=2 p$ with $p \equiv 3(\bmod 4)$ then $y \equiv 0(\bmod 2)$. Moreover $x \equiv 5(\bmod 32)$, $y \equiv 2(\bmod 4)$ if $p \equiv 3(\bmod 8)$ and $x \equiv 15(\bmod 16), y \equiv 0(\bmod 4)$ if $p \equiv 7(\bmod 8)$.
(3) If $d=p_{1} p_{2}$ with $p_{1} \equiv p_{2} \equiv 3(\bmod 4)$ then $x \equiv 7(\bmod 8)$ and $y \equiv 0(\bmod 4)$. Moreover $x \equiv 7(\bmod 16), y \equiv 4(\bmod 8)$ if $\left(p_{1}, p_{2}\right) \equiv(3,3)(\bmod 8) ; x \equiv 15(\bmod 16)$, $y \equiv 0(\bmod 8)$ if $\left(p_{1}, p_{2}\right) \equiv(7,7)(\bmod 8) ;$ and either $x \equiv 15(\bmod 16), y \equiv 0(\bmod 8)$ or $x \equiv 7(\bmod 16), y \equiv 4(\bmod 8)$ if $\left(p_{1}, p_{2}\right) \equiv(3,7)$ or $(7,3)(\bmod 8)$.

Proof. As $x+y \sqrt{d}$ is the fundamental integral unit of $\mathbb{Q}(\sqrt{d})$ of norm $1, x$ and y are positive integers satisfying $x^{2}-d y^{2}=1$ with y the least such integer.

We first use Dirichlet's method to prove (1). Suppose that $x \equiv 1(\bmod 2)$. Then $y \equiv 0(\bmod 2)$. Thus $\frac{x-1}{2}, \frac{x+1}{2}$ and $\frac{y}{2}$ are positive integers satisfying $\frac{x-1}{2} \cdot \frac{x+1}{2}=p\left(\frac{y}{2}\right)^{2}$. Hence p divides either $\frac{x-1}{2}$ or $\frac{x+1}{2}$. Let $\epsilon= \pm 1$ be such that p divides $\frac{x-\epsilon}{2}$. Thus $\frac{x-\epsilon}{2 p}$ and $\frac{x+\epsilon}{2}$ are positive integers such that $\frac{x-\epsilon}{2 p} \cdot \frac{x+\epsilon}{2}=\left(\frac{y}{2}\right)^{2}$. As $\frac{x-\epsilon}{2}-\frac{x+\epsilon}{2}= \pm 1$ the integers $\frac{x-\epsilon}{2 p}$ and $\frac{x+\epsilon}{2}$ are coprime. Thus there exist coprime positive integers r and s such that

$$
\frac{x-\epsilon}{2 p}=r^{2}, \quad \frac{x+\epsilon}{2}=s^{2}, \quad \frac{y}{2}=r s
$$

Hence $s^{2}-p r^{2}=\epsilon$. As $p \equiv 3(\bmod 4)$ we must have $\epsilon=1$, so $s^{2}-p r^{2}=1$. But $r<2 r s=y$, which contradicts the minimality of y. Thus we must have $x \equiv 0(\bmod 2)$, and so $y \equiv 1(\bmod 2)$. Proceeding as above but now with y odd, we deduce that there are coprime positive odd integers r and s such that

$$
x-\epsilon=p r^{2}, \quad x+\epsilon=s^{2}, \quad y=r s
$$

for some $\epsilon= \pm 1$. Hence $s^{2}-p r^{2}=2 \epsilon$. If $p \equiv 3(\bmod 8)$ then $2 \epsilon \equiv 1-p \equiv-2(\bmod 8)$ so $\epsilon=-1$ and $x=p r^{2}-1 \equiv 2(\bmod 8)$. If $p \equiv 7(\bmod 8)$ then $2 \epsilon \equiv 1-p \equiv 2(\bmod 8)$ so $\epsilon=1$ and $x=p r^{2}+1 \equiv 0(\bmod 8)$.

Next we use Dirichlet's method to prove (2). If $y \equiv 1(\bmod 2)$ then $x^{2}=2 p y^{2}+1 \equiv$ $6 y^{2}+1 \equiv 7(\bmod 8)$, which is impossible, so $y \equiv 0(\bmod 2)$ and $x \equiv 1(\bmod 2)$. Applying Dirichlet's method as before, we find that there are positive coprime integers r and s such that

$$
x-1=2 p r^{2}, \quad x+1=4 s^{2}, \quad y=2 r s, \quad r \equiv 1(\bmod 2), \quad s \equiv 0(\bmod 2)
$$

or

$$
x-1=4 r^{2}, \quad x+1=2 p s^{2}, \quad y=2 r s, \quad r \equiv 1(\bmod 2), \quad s \equiv 1(\bmod 2) .
$$

The first possibility gives $2 s^{2}-p r^{2}=1$ so $p \equiv p r^{2} \equiv 2 s^{2}-1 \equiv 7(\bmod 8), x=4 s^{2}-1 \equiv$ $15(\bmod 16)$ and $y=2 r s \equiv 0(\bmod 4)$. The second possibility gives $p s^{2}-2 r^{2}=1$ so $p \equiv p s^{2} \equiv 2 r^{2}+1 \equiv 3(\bmod 8), x=4 r^{2}+1 \equiv 5(\bmod 32)$ and $y=2 r s \equiv 2(\bmod 4)$.

Finally we use Dirichlet's method to prove (3). If $y \equiv 1(\bmod 2)$ then $x^{2}=p_{1} p_{2} y^{2}+1 \equiv$ $2(\bmod 4)$, which is impossible. Hence $y \equiv 0(\bmod 2)$ and $x \equiv 1(\bmod 2)$. Dirichlet's method shows that there exist coprime positive integers r and s with $r \equiv 1(\bmod 2)$ and $s \equiv 0(\bmod 2)$ such that

$$
x-1=2 p_{1} r^{2}, \quad x+1=2 p_{2} s^{2}, \quad y=2 r s, \quad p_{1} r^{2}-p_{2} s^{2}=-1
$$

or

$$
x-1=2 p_{2} r^{2}, \quad x+1=2 p_{1} s^{2}, \quad y=2 r s, \quad p_{1} s^{2}-p_{2} r^{2}=1
$$

Thus $x=1+2\left(p_{1}\right.$ or $\left.p_{2}\right) r^{2} \equiv 1+6 r^{2} \equiv 7(\bmod 8)$ and $y=2 r s \equiv 0(\bmod 4)$.
If $\left(p_{1}, p_{2}\right) \equiv(3,3)(\bmod 8)$ we have $x=1+2\left(p_{1}\right.$ or $\left.p_{2}\right) r^{2} \equiv 1+6 \equiv 7(\bmod 16)$. Then $8 \equiv x+1=2\left(p_{2}\right.$ or $\left.p_{1}\right) s^{2} \equiv 6 s^{2}(\bmod 16)$ so $s \equiv 2(\bmod 4)$ and $y=2 r s \equiv 4(\bmod 8)$.

If $\left(p_{1}, p_{2}\right) \equiv(7,7)(\bmod 8)$ we have $x=1+2\left(p_{1}\right.$ or $\left.p_{2}\right) r^{2} \equiv 1+14 \equiv 15(\bmod 16)$. Then $0 \equiv x+1=2\left(p_{2}\right.$ or $\left.p_{1}\right) s^{2} \equiv 14 s^{2}(\bmod 16)$ so $s \equiv 0(\bmod 4)$ and $y=2 r s \equiv 0(\bmod 8)$.

If $\left(p_{1}, p_{2}\right) \equiv(3,7)$ or $(7,3)(\bmod 8)$, interchanging p_{1} and p_{2} if necessary, we may suppose without loss of generality that $\left(p_{1}, p_{2}\right) \equiv(3,7)(\bmod 8)$. From the first possibility we obtain $x=1+2 p_{1} r^{2} \equiv 1+6 \equiv 7(\bmod 16)$. Then $8 \equiv x+1=2 p_{2} s^{2} \equiv 14 s^{2}(\bmod 16)$ so $s \equiv 2(\bmod 4)$ and $y=2 r s \equiv 4(\bmod 8)$. From the second possibility we deduce $x=1+2 p_{1} r^{2} \equiv 1+14 \equiv 15(\bmod 16)$. Then $0 \equiv x+1=2 p_{1} s^{2} \equiv 6 s^{2}(\bmod 16)$ so $s \equiv 0(\bmod 4)$ and $y=2 r s \equiv 0(\bmod 8)$.

References

[1] P.E. Conner, J. Hurrelbrink, Class Number Parity, World Sci. Ser. Pure Math., vol. 8, World Scientific, Singapore, 1988.
[2] P.G.L. Dirichlet, Einige neue Sätze über unbestimmte Gleichungen, Abh. Königlich Preussischen Akad. Wiss., 1834, pp. 649-664; Werke, Chelsea Pub. Co., NY, 1969, pp. 219-236.
[3] Zhe Zhang, Qin Yue, Fundamental units of real quadratic fields of odd class number, J. Number Theory 137 (2014) 122-129.

[^0]: E-mail address: kwilliam@connect.carleton.ca.

