

Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

Historical remark on a theorem of Zhang and Yue

Kenneth S. Williams

School of Mathematics and Statistics, Carleton University, Ottawa, Ontario, K1S 5B6, Canada

ARTICLE INFO

Theorem of Zhang and Yue Dirichlet's method Congruences

Keywords:

Article history: Received 24 July 2014 Received in revised form 3 August 2014 Accepted 19 August 2014 Available online 7 October 2014 Communicated by David Goss

ABSTRACT

The purpose of this historical remark is to observe that a slightly stronger form of a recent theorem of Zhang and Yue can be proved more easily using an elementary method given by Dirichlet in 1834.

© 2014 Elsevier Inc. All rights reserved.

Let d be a squarefree positive integer such that the class number of the real quadratic field $\mathbb{Q}(\sqrt{d})$ is odd and its fundamental integral unit $x + y\sqrt{d}(>1)$ has norm 1. Then it is known that d = p, 2p or p_1p_2 , where p, p_1 and $p_2(\neq p_1)$ are primes congruent to 3 modulo 4, see for example [1, p. 163]. Zhang and Yue [3] have recently proved some congruences for x and y. These are stated in Theorem 1.

Theorem 1. (See [3, Theorem 1.1].)

(1) If d = p with $p \equiv 3 \pmod{4}$ then $x \equiv 0 \pmod{2}$. Moreover $x \equiv 2 \pmod{4}$ if $p \equiv 3 \pmod{8}$ and $x \equiv 0 \pmod{4}$ if $p \equiv 7 \pmod{8}$.

E-mail address: kwilliam@connect.carleton.ca.

 $[\]label{eq:http://dx.doi.org/10.1016/j.jnt.2014.08.011} 0022-314 X/\odot 2014 Elsevier Inc. All rights reserved.$

- (2) If d = 2p with $p \equiv 3 \pmod{4}$ then $y \equiv 0 \pmod{2}$ and $x + y \equiv 3 \pmod{4}$.
- (3) If $d = p_1 p_2$ with $p_1 \equiv p_2 \equiv 3 \pmod{4}$ then $x \equiv 3 \pmod{4}$ and $y \equiv 0 \pmod{4}$.

The purpose of this remark is to point out that a slightly stronger form of Zhang and Yue's theorem can be proved easily using an elementary method given by Dirichlet [2] in 1834, see Theorem 2. This method requires only the fundamental theorem of arithmetic.

Theorem 2.

- (1) If d = p with $p \equiv 3 \pmod{4}$ then $x \equiv 0 \pmod{2}$. Moreover $x \equiv 2 \pmod{8}$ if $p \equiv 3 \pmod{8}$ and $x \equiv 0 \pmod{8}$ if $p \equiv 7 \pmod{8}$.
- (2) If d = 2p with $p \equiv 3 \pmod{4}$ then $y \equiv 0 \pmod{2}$. Moreover $x \equiv 5 \pmod{32}$, $y \equiv 2 \pmod{4}$ if $p \equiv 3 \pmod{8}$ and $x \equiv 15 \pmod{16}$, $y \equiv 0 \pmod{4}$ if $p \equiv 7 \pmod{8}$.
- (3) If $d = p_1 p_2$ with $p_1 \equiv p_2 \equiv 3 \pmod{4}$ then $x \equiv 7 \pmod{8}$ and $y \equiv 0 \pmod{4}$. Moreover $x \equiv 7 \pmod{16}$, $y \equiv 4 \pmod{8}$ if $(p_1, p_2) \equiv (3, 3) \pmod{8}$; $x \equiv 15 \pmod{16}$, $y \equiv 0 \pmod{8}$ if $(p_1, p_2) \equiv (7, 7) \pmod{8}$; and either $x \equiv 15 \pmod{16}$, $y \equiv 0 \pmod{8}$ or $x \equiv 7 \pmod{16}$, $y \equiv 4 \pmod{8}$ if $(p_1, p_2) \equiv (3, 7)$ or $(7, 3) \pmod{8}$.

Proof. As $x + y\sqrt{d}$ is the fundamental integral unit of $\mathbb{Q}(\sqrt{d})$ of norm 1, x and y are positive integers satisfying $x^2 - dy^2 = 1$ with y the least such integer.

We first use Dirichlet's method to prove (1). Suppose that $x \equiv 1 \pmod{2}$. Then $y \equiv 0 \pmod{2}$. Thus $\frac{x-1}{2}$, $\frac{x+1}{2}$ and $\frac{y}{2}$ are positive integers satisfying $\frac{x-1}{2} \cdot \frac{x+1}{2} = p(\frac{y}{2})^2$. Hence p divides either $\frac{x-1}{2}$ or $\frac{x+1}{2}$. Let $\epsilon = \pm 1$ be such that p divides $\frac{x-\epsilon}{2}$. Thus $\frac{x-\epsilon}{2p}$ and $\frac{x+\epsilon}{2}$ are positive integers such that $\frac{x-\epsilon}{2p} \cdot \frac{x+\epsilon}{2} = (\frac{y}{2})^2$. As $\frac{x-\epsilon}{2} - \frac{x+\epsilon}{2} = \pm 1$ the integers $\frac{x-\epsilon}{2p}$ and $\frac{x+\epsilon}{2}$ are coprime. Thus there exist coprime positive integers r and s such that

$$\frac{x-\epsilon}{2p} = r^2, \qquad \frac{x+\epsilon}{2} = s^2, \qquad \frac{y}{2} = rs.$$

Hence $s^2 - pr^2 = \epsilon$. As $p \equiv 3 \pmod{4}$ we must have $\epsilon = 1$, so $s^2 - pr^2 = 1$. But r < 2rs = y, which contradicts the minimality of y. Thus we must have $x \equiv 0 \pmod{2}$, and so $y \equiv 1 \pmod{2}$. Proceeding as above but now with y odd, we deduce that there are coprime positive odd integers r and s such that

$$x - \epsilon = pr^2, \qquad x + \epsilon = s^2, \qquad y = rs,$$

for some $\epsilon = \pm 1$. Hence $s^2 - pr^2 = 2\epsilon$. If $p \equiv 3 \pmod{8}$ then $2\epsilon \equiv 1 - p \equiv -2 \pmod{8}$ so $\epsilon = -1$ and $x = pr^2 - 1 \equiv 2 \pmod{8}$. If $p \equiv 7 \pmod{8}$ then $2\epsilon \equiv 1 - p \equiv 2 \pmod{8}$ so $\epsilon = 1$ and $x = pr^2 + 1 \equiv 0 \pmod{8}$.

Next we use Dirichlet's method to prove (2). If $y \equiv 1 \pmod{2}$ then $x^2 = 2py^2 + 1 \equiv 6y^2 + 1 \equiv 7 \pmod{8}$, which is impossible, so $y \equiv 0 \pmod{2}$ and $x \equiv 1 \pmod{2}$. Applying Dirichlet's method as before, we find that there are positive coprime integers r and s such that

$$x - 1 = 2pr^2$$
, $x + 1 = 4s^2$, $y = 2rs$, $r \equiv 1 \pmod{2}$, $s \equiv 0 \pmod{2}$

or

$$x - 1 = 4r^2$$
, $x + 1 = 2ps^2$, $y = 2rs$, $r \equiv 1 \pmod{2}$, $s \equiv 1 \pmod{2}$.

The first possibility gives $2s^2 - pr^2 = 1$ so $p \equiv pr^2 \equiv 2s^2 - 1 \equiv 7 \pmod{8}$, $x = 4s^2 - 1 \equiv 15 \pmod{16}$ and $y = 2rs \equiv 0 \pmod{4}$. The second possibility gives $ps^2 - 2r^2 = 1$ so $p \equiv ps^2 \equiv 2r^2 + 1 \equiv 3 \pmod{8}$, $x = 4r^2 + 1 \equiv 5 \pmod{32}$ and $y = 2rs \equiv 2 \pmod{4}$.

Finally we use Dirichlet's method to prove (3). If $y \equiv 1 \pmod{2}$ then $x^2 = p_1 p_2 y^2 + 1 \equiv 2 \pmod{4}$, which is impossible. Hence $y \equiv 0 \pmod{2}$ and $x \equiv 1 \pmod{2}$. Dirichlet's method shows that there exist coprime positive integers r and s with $r \equiv 1 \pmod{2}$ and $s \equiv 0 \pmod{2}$ such that

$$x - 1 = 2p_1r^2$$
, $x + 1 = 2p_2s^2$, $y = 2rs$, $p_1r^2 - p_2s^2 = -1$

or

$$x - 1 = 2p_2r^2$$
, $x + 1 = 2p_1s^2$, $y = 2rs$, $p_1s^2 - p_2r^2 = 1$.

Thus $x = 1 + 2(p_1 \text{ or } p_2)r^2 \equiv 1 + 6r^2 \equiv 7 \pmod{8}$ and $y = 2rs \equiv 0 \pmod{4}$.

If $(p_1, p_2) \equiv (3, 3) \pmod{8}$ we have $x = 1 + 2(p_1 \text{ or } p_2)r^2 \equiv 1 + 6 \equiv 7 \pmod{16}$. Then $8 \equiv x + 1 = 2(p_2 \text{ or } p_1)s^2 \equiv 6s^2 \pmod{16}$ so $s \equiv 2 \pmod{4}$ and $y = 2rs \equiv 4 \pmod{8}$.

If $(p_1, p_2) \equiv (7, 7) \pmod{8}$ we have $x = 1 + 2(p_1 \text{ or } p_2)r^2 \equiv 1 + 14 \equiv 15 \pmod{16}$. Then $0 \equiv x + 1 = 2(p_2 \text{ or } p_1)s^2 \equiv 14s^2 \pmod{16}$ so $s \equiv 0 \pmod{4}$ and $y = 2rs \equiv 0 \pmod{8}$.

If $(p_1, p_2) \equiv (3, 7)$ or $(7, 3) \pmod{8}$, interchanging p_1 and p_2 if necessary, we may suppose without loss of generality that $(p_1, p_2) \equiv (3, 7) \pmod{8}$. From the first possibility we obtain $x = 1 + 2p_1r^2 \equiv 1 + 6 \equiv 7 \pmod{16}$. Then $8 \equiv x + 1 = 2p_2s^2 \equiv 14s^2 \pmod{16}$ so $s \equiv 2 \pmod{4}$ and $y = 2rs \equiv 4 \pmod{8}$. From the second possibility we deduce $x = 1 + 2p_1r^2 \equiv 1 + 14 \equiv 15 \pmod{16}$. Then $0 \equiv x + 1 = 2p_1s^2 \equiv 6s^2 \pmod{16}$ so $s \equiv 0 \pmod{4}$ and $y = 2rs \equiv 0 \pmod{8}$. \Box

References

- P.E. Conner, J. Hurrelbrink, Class Number Parity, World Sci. Ser. Pure Math., vol. 8, World Scientific, Singapore, 1988.
- [2] P.G.L. Dirichlet, Einige neue Sätze über unbestimmte Gleichungen, Abh. Königlich Preussischen Akad. Wiss., 1834, pp. 649–664; Werke, Chelsea Pub. Co., NY, 1969, pp. 219–236.
- [3] Zhe Zhang, Qin Yue, Fundamental units of real quadratic fields of odd class number, J. Number Theory 137 (2014) 122–129.

693