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Ternary quadratic forms ax2 + by2 + cz2

representing all positive integers 8k + 4

by

Kenneth S. Williams (Ottawa)

1. Introduction. Let N denote the set of positive integers. Dickson [D2,
Theorems V, X and VII] showed that the three ternary quadratic forms

(1.1) x2 + y2 + 2z2, x2 + 2y2 + 3z2, x2 + 2y2 + 4z2

represent all positive integers n≡1 (mod 2), and Kaplansky [K, pp. 212–213]
proved that there are no other such ternary forms with this property (see
also Panaitopol [P, Theorem 1]).

Williams [W] has shown that the only ternary quadratic forms ax2 + by2

+cz2 (a, b, c ∈ N, a ≤ b ≤ c) representing all positive integers n ≡ 2 (mod 4)
are the nine forms

x2 + y2 + z2, x2 + y2 + 4z2, x2 + y2 + 5z2,

x2 + 2y2 + 2z2, x2 + 2y2 + 6z2, x2 + 2y2 + 8z2,(1.2)

2x2 + 2y2 + 4z2, 2x2 + 4y2 + 6z2, 2x2 + 4y2 + 8z2.

In this note, subject to the validity of the following conjecture, we determine
all ternary forms ax2 + by2 + cz2 (a, b, c ∈ N, a ≤ b ≤ c) that represent all
positive integers n ≡ 4 (mod 8).

Conjecture 1.1. The ternary quadratic form x2 + 2y2 + 5z2 + xz rep-
resents all odd positive integers.

The form x2 + 2y2 + 5z2 +xz was given by Kaplansky [K, no. 20, p. 213]
as a candidate for representing all odd positive integers. Elkies (see [K,
p. 209]) has checked that this form represents all odd positive integers up to
16383. Rouse in his work on quadratic forms representing all odd positive
integers formulated the conjecture that Kaplansky’s form x2+2y2+5z2+xz
represents all odd positive integers [RO, Conjecture 1], and proved that the
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Generalized Riemann Hypothesis implies the truth of Conjecture 1.1 [RO,
Theorem 7]. We prove

Theorem 1.1. Assuming the truth of Conjecture 1.1, the only ternary
quadratic forms (a, b, c) := ax2 + by2 + cz2 (a, b, c ∈ N, a ≤ b ≤ c) that
represent all positive integers n ≡ 4 (mod 8) are the 28 forms

(1, 1, 2), (1, 1, 8), (1, 1, 10), (1, 2, 3), (1, 2, 4), (1, 2, 9), (1, 2, 11),

(1, 2, 12), (1, 2, 16), (1, 2, 19), (1, 3, 8), (1, 4, 8), (1, 5, 6), (1, 8, 11),

(1, 8, 12), (1, 8, 16), (1, 8, 19), (2, 2, 2), (2, 2, 8), (2, 2, 10), (2, 3, 4),

(2, 4, 4), (2, 4, 12), (2, 4, 16), (3, 4, 8), (4, 4, 8), (4, 8, 12), (4, 8, 16).

Further we show that the forms in Theorem 1.1 can be identified by a
finite set of integers that they represent.

Theorem 1.2. Let a, b and c denote positive integers. Under the as-
sumption of the truth of Conjecture 1.1, if the ternary quadratic form ax2 +
by2 + cz2 represents the eight integers

(1.3) 4, 12, 20, 28, 52, 60, 140, 308,

then it represents every positive integer n ≡ 4 (mod 8).

The set of integers in (1.3) is minimal in the sense that for any one of
the integers in the list (say h) there is a ternary quadratic form that does
not represent h but does represent all the other integers in (1.3). Namely:

(2, 3, 7) represents 12, 20, 28, 52, 60, 140, 308 but not 4,
(1, 1, 6) represents 4, 20, 28, 52, 60, 140, 308 but not 12,
(1, 2, 10) represents 4, 12, 28, 52, 60, 140, 308 but not 20,
(1, 10, 11) represents 4, 12, 20, 52, 60, 140, 308 but not 28,
(1, 2, 17) represents 4, 12, 20, 28, 60, 140, 308 but not 52,
(1, 1, 3) represents 4, 12, 20, 28, 52, 140, 308 but not 60,
(1, 1, 7) represents 4, 12, 20, 28, 52, 60, 308 but not 140,
(1, 1, 11) represents 4, 12, 20, 28, 52, 60, 140 but not 308.

2. Proof of Theorems 1.1 and 1.2. We begin with some lemmas.

Lemma 2.1. The 21 ternary quadratic forms

(1, 1, 2), (1, 1, 8), (1, 2, 3), (1, 2, 4), (1, 2, 12), (1, 2, 16), (1, 3, 8),

(1, 4, 8), (1, 8, 12), (1, 8, 16), (2, 2, 2), (2, 2, 8), (2, 2, 10), (2, 3, 4),

(2, 4, 4), (2, 4, 12), (2, 4, 16), (3, 4, 8), (4, 4, 8), (4, 8, 12), (4, 8, 16),

represent all positive integers n ≡ 4 (mod 8).

Proof. This is a consequence of (1.1) and (1.2), and the following two
simple observations, where k, m and n denote positive integers:
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(2.1) If n is represented by (a, b, c) then kn is represented by (ka, kb, kc).
(2.2) If n is represented by (a, b, c) and m2 | c then n is represented by

(a, b, c/m2).

We just treat the form (1, 3, 8) as the other forms can be handled similarly.
Let n ∈ N satisfy n ≡ 4 (mod 8). Then n/4 ≡ 1 (mod 2). Hence, by (1.1),
n/4 is represented by (1, 2, 3). Thus, by (2.1), n is represented by (4, 8, 12).
Finally, by (2.2), as 22 | 4 and 22 | 12, n is represented by (4/22, 8, 12/22) =
(1, 8, 3) and so by (1, 3, 8).

Lemma 2.2. The ternary quadratic form (1, 2, 9) represents all positive
integers n ≡ 4 (mod 8).

Proof. Let n ≡ 4 (mod 8). Then n/2 ≡ 2 (mod 4). Hence, by (1.2), there
are integers u, v and w such that

n/2 = u2 + v2 + w2.

If u ≡ v (mod 3) or u ≡ w (mod 3) or v ≡ w (mod 3), we may suppose
that u ≡ v (mod 3) by interchanging v and w or u and w as necessary.
If u 6≡ v (mod 3), u 6≡ w (mod 3) and v 6≡ w (mod 3), we can permute
u, v and w so that (u, v, w) ≡ (2, 1, 0) (mod 3). Then replacing u by −u we
obtain u ≡ v (mod 3). Hence we can define integers x, y and z by

x = u+ v, y = w, z = (u− v)/3.

Then

x2 + 2y2 + 9z2 = (u+ v)2 + 2w2 + (u− v)2 = 2(u2 + v2 + w2) = n,

so that (1, 2, 9) represents n.

Lemma 2.3. The ternary form (1, 1, 10) represents all positive integers
n ≡ 4 (mod 8).

Proof. The ternary quadratic form (1, 1, 10) is known as Ramanujan’s
form. Ramanujan [RA, p. 14] stated that “. . . the even numbers which are
not of the form x2 + y2 + 10z2 are the numbers 4λ(16µ + 6) . . .”. Dickson
[D1, Corollary, p. 341] proved that x2+y2+10z2 represents all even positive
integers except those of the form 4λ(16µ+6), where λ and µ are nonnegative
integers. As 4λ(16µ+6) 6= 8k+4 the form (1, 1, 10) represents every positive
integer n ≡ 4 (mod 8).

Lemma 2.4. The ternary forms (1, 2, 11) and (1, 8, 11) represent all pos-
itive integers n ≡ 4 (mod 8).

Proof. Let n ≡ 4 (mod 8). Then n/4 ≡ 1 (mod 2). From Kaplansky [K,
no. 12, p. 213] there are integers u, v and w such that

n/4 = u2 + 2v2 + 3w2 + uw.
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Define integers x, y and z by

x = 2u+ w, y = v, z = w.

Then
x2 + 8y2 + 11z2 = 4(u2 + 2v2 + 3w2 + uw) = n,

so that (1, 8, 11) represents n. Then, by (2.2), (1, 2, 11) represents n.

Lemma 2.5. The ternary form (1, 5, 6) represents all positive integers
n ≡ 4 (mod 8).

Proof. Let n ≡ 4 (mod 8). Then n/4 ≡ 1 (mod 2). From Kaplansky [K,
no. 14, p. 213] there are integers u, v and w such that

u2 + 3v2 + 3w2 + uv + uw = n/4.

Define integers x, y and z by

x = 2u+ v + w, y = v + w, z = v − w.
Then

x2 + 5y2 + 6z2 = 4(u2 + 3v2 + 3w2 + uv + uw) = n,

so that (1, 5, 6) represents n.

Lemma 2.6. Assuming the truth of Conjecture 1.1, the ternary quadratic
forms (1, 2, 19) and (1, 8, 19) represent all positive integers n ≡ 4 (mod 8).

Proof. Let n ≡ 4 (mod 8). Then n/4 ≡ 1 (mod 2). Assuming the truth
of Conjecture 1.1, there are integers u, v and w such that

u2 + 2v2 + 5w2 + uw = n/4.

Define integers x, y and z by

x = 2u+ w, y = v, z = w.

Then
x2 + 8y2 + 19z2 = 4(u2 + 2v2 + 5w2 + uw) = n,

so that (1, 8, 19) represents n. By (2.2), (1, 2, 19) also represents n.

Let n be an odd positive integer. Then 4n ≡ 4 (mod 8). If the ternary
form (1, 8, 19) represents all positive integers ≡ 4 (mod 8) then there are
integers x, y and z such that

x2 + 8y2 + 19z2 = 4n.

Thus x ≡ z (mod 2). Hence we can define integers u, v and w by

u =
x− z

2
, v = y, w = z,

and we obtain

n =
x2 + 8y2 + 19z2

4
= u2 + uw + 5w2 + 2v2.
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Thus we have shown that the conjecture that the ternary quadratic form
(1, 8, 19) represents all positive integers ≡ 4 (mod 8) is in fact equivalent to
Conjecture 1.1.

Proof of Theorem 1.1. Suppose that the ternary form ax2 + by2 + cz2,
where a, b and c are positive integers with a ≤ b ≤ c, represents all positive
integers n ≡ 4 (mod 8).

As ax2 + by2 + cz2 represents 4, we have

1 ≤ a ≤ 4.

If a = 1, as x2 + by2 + cz2 represents 12 we have

1 ≤ b ≤ 12.

If a = b = 1, as x2 + y2 6= 12 and x2 + y2 + cz2 represents 12 we have
1 ≤ c ≤ 12, giving 12 candidate forms

(2.1) x2 + y2 + cz2, c = 1, 2, . . . , 12.

If a = 1, b = 2, as x2 + 2y2 6= 20 and x2 + 2y2 + cz2 represents 20 we have
2 ≤ c ≤ 20, giving 19 candidate forms

(2.2) x2 + 2y2 + cz2, c = 2, 3, . . . , 20.

If a = 1, b = 3, as x2 + 3y2 6= 20 and x2 + 3y2 + cz2 represents 20 we have
3 ≤ c ≤ 20, giving 18 candidate forms

(2.3) x2 + 3y2 + cz2, c = 3, 4, . . . , 20.

Continuing in this way, we arrive at 12+19+18+9+8+7+ · · ·+2+9 = 236
ternary forms to consider. They are

(1, 1, c), c = 1, . . . , 12, (2, 3, c), c = 3, 4,

(1, 2, c), c = 2, . . . , 20, (2, 4, c), c = 4, . . . , 20,

(1, 3, c), c = 3, . . . , 20, (3, 3, c), c = 3, 4,

(1, 4, c), c = 4, . . . , 12, (3, 4, c), c = 4, . . . , 20,

(1, 5, c), c = 5, . . . , 12, (4, 4, c), c = 4, . . . , 12,

(1, 6, c), c = 6, . . . , 12, (4, 5, c), c = 5, . . . , 12,

(1, 7, c), c = 7, . . . , 12, (4, 6, c), c = 6, . . . , 12,

(1, 8, c), c = 8, . . . , 20, (4, 7, c), c = 7, . . . , 12,

(1, 9, c), c = 9, . . . , 12, (4, 8, c), c = 8, . . . , 20,

(1, 10, c), c = 10, 11, 12, (4, 9, c), c = 9, . . . , 12,

(1, 11, c), c = 11, . . . , 28, (4, 10, c), c = 10, 11, 12,

(1, 12, c), c = 12, . . . , 20, (4, 11, c), c = 11, 12,

(2, 2, c), c = 2, . . . , 12, (4, 12, c), c = 12, . . . , 20.
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It is easy to check that in this list of 236 forms, the 208 forms which are not
in the list in Theorem 1.1 do not represent at least one of the eight inte-
gers 4, 12, 20, 28, 52, 60, 140, 308 and so cannot represent all n ≡ 4 (mod 8).
The remaining 28 forms (those given in Theorem 1.1) do represent all
n ≡ 4 (mod 8) by Lemmas 2.1–2.6.

Proof of Theorem 1.2. Suppose the ternary quadratic form ax2+by2+cz2

(a, b, c ∈ N) represents the integers 4, 12, 20, 28, 52, 60, 140, 308. From the
proof of Theorem 1.1 we have only to examine the 236 forms listed there.
As already noted, 208 of these forms do not represent at least one of the
eight integers 4, 12, 20, 28, 52, 60, 140, 308. Thus (a, b, c) must be one of the
remaining 28 forms listed in Theorem 1.1 and so represents all positive
integers n ≡ 4 (mod 8).

Acknowledgements. The author thanks the referee for helpful com-
ments on his paper.
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