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In his famous paper, “On certain arithmetical functions”, Ramanujan offers for the
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1. Introduction

In his famous paper, On certain arithmetical functions [22], Ramanujan offers for
the first time the Euler product for what is now known as Ramanujan’s Dirichlet
series. More precisely, if τ(n) denotes Ramanujan’s tau-function, then [22, p. 153]

∞∑
n=1

τ(n)
ns

=
∏
p

1
1 − τ(p)p−s + p11−2s

, σ = Re s >
13
2

, (1.1)
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where the product is over all primes p. It should be emphasized that (1.1) is prefaced
by the words, “For it appears that”. Thus, at the time he wrote [22], Ramanujan
did not have a proof of (1.1), and we are uncertain if he later devised a proof or
not. In the same article, Ramanujan states further Euler products for the Dirichlet
series associated with special cases of

q{(1 − q24/α)(1 − q48/α)(1 − q72/α) · · · }α =:
∞∑

n=1

Ψα(n)qn, α|24,

for which he also does not provide proofs. Proofs were given by Mordell in 1917
[17, p. 121].

Published with the lost notebook is a more complete list of Ramanujan’s discov-
eries about such Euler products [24, pp. 233–235]. In particular, in his paper [22],
Ramanujan examines only Euler products corresponding to powers of the Dedekind
eta-function, while in the manuscript in [24], Ramanujan examines Dirichlet series
arising from powers of the eta-function multiplied by certain Eisenstein series. This
list of 46 modular forms with their corresponding Euler products is examined in
the last section of the present paper. It is to be emphasized that in this list, the
associated modular form contains a power of only one eta-function.

At scattered places in his lost notebook, Ramanujan offers further examples of
Euler products that we relate below. Most of these were claimed to have been proven
by Rangachari [25] using the theory of modular forms, but his proofs are incomplete,
and he failed to notice that several of Ramanujan’s claims need corrections. See
also Rangachari’s paper [26] for a discussion of some of these results. Raghavan [21]
disproved one of Ramanujan’s claims, but did not offer a corrected version. Being
in the original lost notebook, these scattered results were most likely discovered
during the last year of Ramanujan’s life, after he had returned to India. Thus, from
time to time, he was clearly seeking further theorems along the lines of what he
wrote in [22], and it is unfortunate that he did not live longer to further develop
his ideas.

The results are dispersed somewhat randomly, and we shall examine them in the
order in which they appear in [24]. After we examine the scattered claims, we focus
our attention on the list given in [24, pp. 233–235]. It is doubtful that few, if any, of
our arguments coincide with those found by Ramanujan. In particular, we use ideas,
for example, from the theory of modular forms, with which Ramanujan would have
been unfamiliar. We have attempted to present proofs that are as elementary as
possible, but even these proofs are unlikely to be close to any found by Ramanujan.
It would be of enormous interest if one could discern how Ramanujan discovered
these beautiful theorems on Euler products.

In our accounts that follow, we employ Ramanujan’s notations for theta func-
tions and Eisenstein series. As usual, set

(a; q)∞ =
∞∏

n=0

(1 − aqn), |q| < 1.
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Ramanujan’s function f(−q) is defined by

f(−q) =
∞∑

n=−∞
(−1)nq(3n2−n)/2 = (q; q)∞ =: q−1/24η(z), q = e2πiz , z ∈ H, (1.2)

where the second equality above is the pentagonal number theorem, where η(z)
denotes the Dedekind eta-function, and where H = {z : Im z > 0}. Ramanujan’s
Eisenstein series are defined for |q| < 1 by

P (q) := 1 − 24
∞∑

n=1

nqn

1 − qn
, (1.3)

Q(q) := 1 + 240
∞∑

n=1

n3qn

1 − qn
, (1.4)

R(q) := 1 − 504
∞∑

n=1

n5qn

1 − qn
. (1.5)

2. Scattered Entries on Euler Products

Entry 2.1 (p. 54). If f(−q) is defined by (1.2) and
∞∑

n=1

anqn := qf3(−q)f3(−q7), (2.1)

then
∞∑

n=1

an

ns
=

1
1 + 71−s

∏
p

1
1 − p2(1−s)

∏
q

1
1 + 2cqq−s + q2(1−s)

, (2.2)

where the first product is over all primes p ≡ 3, 5, 6 (mod7), the second product is
over all primes q ≡ 1, 2, 4 (mod7), and

cq =




3
2
, if q = 2,

7v2 − u2, if q = u2 + 7v2.

(2.3)

Entry 2.1 was essentially established by Rangachari [25]; see formula (5) under
(b) in his paper. However, like Ramanujan, he failed to see that c2 had to be defined
separately from the remaining cases when q ≡ 1, 2, 4 (mod7).

Ramanujan records another form of Entry 2.1 in his manuscript on the partition
and tau-functions; in particular, see [24, p. 146] or [1, p. 105].

Entry 2.2 (p. 146). Define the coefficients an, n ≥ 1, by (2.1). Then
∞∑

n=1

an

ns
=

1
1 + 71−s

∏
p≡3,5,6 (mod 7)

1
1 − p2(1−s)

×
∏

p≡1,2,4 (mod7)

1
1 + Cpp−s + p2(1−s)

, (2.4)
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where

Cp = 2p − a2 (2.5)

with

4p = a2 + 7b2. (2.6)

If p is odd, then the equality p = u2 + 7v2 implies that 4p = (2u)2 + 7(2v)2.
Conversely, if 4p = a2 + 7b2 and p is odd, then a and b are even and p = (a/2)2 +
7(b/2)2. Hence, (2.2) is equivalent to (2.4) when p is odd, and, in particular,

Cp = 2p − a2 = 2(p − 2u2) = 2(u2 + 7v2 − 2u2) = 2(7v2 − u2) = 2cp.

When p is even, it is easy to check that C2 is equal to 2c2. We thus see that Entries
2.1 and 2.2 are equivalent.

Entry 2.2 was discussed by Berndt and Ono in their paper [2, Eq. (8.4)], and
they remarked that it could be proved with two applications of Jacobi’s identity

(q; q)3∞ =
∞∑

n=0

(−1)n(2n + 1)qn(n+1)/2, (2.7)

but they did not supply a complete proof; see also [1, p. 145]. The first complete
proof was given by Chan, Cooper and Liaw [3], and it is their proof that we now
give below.

Proof of (2.3). As indicated in [2, 25], using the Dedekind eta-function η(z), which
is defined in (1.2), we see that

F (z) :=
∞∑

n=1

anqn = η3(z)η3(7z) = qf3(−q)f3(−q7), q = e2πiz , z ∈ H,

is in S := S3(Γ0(7), ( ·
7 )), the space of weight 3 cusp forms on Γ0(7) with the

Legendre symbol ( ·
7 ) as the character, which can be deduced by applying Newman’s

criterion for η-products [19]. The space S is one dimensional [5, Théorème 1], and
hence F (z) is an eigenform. Consequently, the corresponding Dirichlet series has an
Euler product expansion [14, p. 163]

∞∑
n=1

an

ns
=
∏
p

1

1 − app−s +
(p

7

)
p2(1−s)

. (2.8)

It remains to determine ap for all primes p.
We write Jacobi’s identity (2.7) in the form

η3(z) =
∞∑

α=−∞
α≡1 (mod 4)

αqα2/8. (2.9)
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Therefore,

η3(z)η3(7z) =
∞∑

α,β=−∞
α,β≡1 (mod4)

αβq(α2+7β2)/8. (2.10)

Hence, for all positive integers n, we have, from (2.1) and (2.10),

an =
∞∑

α,β=−∞
(α,β)≡(1,1) (mod4)

8n=α2+7β2

αβ. (2.11)

First, we take n = 2 in (2.11). The only pair (α, β) ∈ Z2 satisfying 16 = α2+7β2

and (α, β) ≡ (1, 1) (mod 4) is (α, β) = (−3, 1). Hence, a2 = −3. This gives the value
of c2 in (2.3).

Second, we take n = 7 in (2.11). The only pair (α, β) ∈ Z2 satisfying 56 =
α2 + 7β2 and (α, β) ≡ (1, 1) (mod 4) is (α, β) = (−7, 1). Hence, a7 = −7. This gives
the first factor in (2.2).

Now let n denote a prime p ≡ 3, 5, 6 (mod7), so that (−7
p ) = −1, in (2.11), where

(n
p ) denotes the Legendre symbol. In this case, 8p �= α2 + 7β2 for any odd integers

α and β, for otherwise, 8p = α2 + 7β2 and thus(−7
p

)
=
(−7β2

p

)
=
(

α2 − 8p

p

)
=
(

α2

p

)
= 1,

which is a contradiction. Thus, ap = 0 for p ≡ 3, 5, 6 (mod7), and we obtain the
second product on the right-hand side of (2.2).

Finally, we let n denote a prime p ≡ 1, 2, 4 (mod7), with p �= 2, in (2.11).
In this case there exist integers A and B such that p = A2 + 7B2 [10, Exercise 8,
p. 309]. Since p is odd, all such pairs (A, B) satisfy A+B ≡ 1 (mod 2). The mapping
(A, B) �→ (−A,−B) shows that half of these pairs satisfy A + B ≡ 1 (mod 4), with
the other half satisfying A + B ≡ 3 (mod 4). Let

S := {(A, B) ∈ Z2 : p = A2 + 7B2, A + B ≡ 1 (mod 4)}
and

T := {(α, β) ∈ Z2 : 8p = α2 + 7β2, α ≡ β ≡ 1 (mod 4)}.
We note that if (α, β) ∈ T , then α ≡ β (mod 8). The mapping λ : S �→ T given by

λ((A, B)) = (A − 7B, A + B) (2.12)

is a bijection. Hence, applying (2.12) in (2.11), we obtain

ap =
∑

(α,β)∈T

αβ =
∑

(A,B)∈S

(A − 7B)(A + B)

=
∑

(A,B)∈Z
2

p=A2+7B2

A+B≡1 (mod 4)

(A − 7B)(A + B) =
1
2

∑
(A,B)∈Z

2

p=A2+7B2

(A − 7B)(A + B). (2.13)
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If (A, B) ∈ Z2 is any solution of p = A2 +7B2, all the solutions are (A, B), (A,−B),
(−A, B), (−A,−B), so that by (2.13),

ap =
1
2
((A − 7B)(A + B) + (A + 7B)(A − B) + (−A − 7B)(−A + B)

+ (−A + 7B)(−A − B)) = 2(A2 − 7B2).

This completes the proof of (2.3) and the derivation of the third factor in (2.2) for
primes p �= 2.

Entry 2.3 (p. 207). If
∞∑

n=1

q(n)qn := qf4(−q)f4(−q5), (2.14)

then
∞∑

n=1

q(n)
ns

=
1

1 + 51−s

∏
p

1
1 − q(p)p−s + p3−2s

, (2.15)

where the product is over all primes p except p = 5. Furthermore, q(2) = −4,

q(3) = 2, q(5) = −5, q(7) = 6, and generally q2(p) < 4p3.

Entry 2.3 was not discussed by Rangachari [25]. However, it does fall under the
theory outlined in his paper. We have corrected a misprint in the lost notebook [24];
Ramanujan had written p3−s instead of p3−2s in the last term in the denominator
on the right-hand side of (2.15). The values of q(n), n = 2, 3, 5, 7, calculated by
Ramanujan are correct. It is doubtful that Ramanujan had a proof of the inequality
q2(p) < 4p3, which follows from the deep work of Deligne [6]. It would be extremely
interesting to know how Ramanujan deduced it. At the end of our proof of Entry
2.3, we provide an elementary proof of a much weaker result.

Proof of Entry 2.3. The coefficients q(n), n ≥ 1, are defined by (2.14). By a
paper by Martin [16, Table 1, p. 4852], q(n) is a multiplicative function of n. From
a paper of Newman [18, p. 487], q(pα), where p is a prime not equal to 5, satisfies
the recurrence relation

q(pα) − q(p)q(pα−1) + p3q(pα−2) = 0, α ∈ N, α ≥ 2, (2.16)

and

q(5α) = (−5)α, α ∈ N0. (2.17)

Hence, for p �= 5, by (2.16),

(1 − q(p)p−s + p3−2s)
∞∑

α=0

q(pα)
pαs

=
∞∑

α=0

q(pα)
pαs

− q(p)
∞∑

α=0

q(pα)
p(α+1)s

+ p3
∞∑

α=0

q(pα)
p(α+2)s
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=
∞∑

α=0

q(pα)
pαs

− q(p)
∞∑

α=1

q(pα−1)
pαs

+ p3
∞∑

α=2

q(pα−2)
pαs

= q(1) +
(

q(p)
ps

− q(p)q(1)
ps

)
+

∞∑
α=2

q(pα) − q(p)q(pα−1) + p3q(pα−2)
pαs

= 1. (2.18)

It follows from (2.18) that
∞∑

α=0

q(pα)
pαs

=
1

1 − q(p)p−s + p3−2s
, p �= 5. (2.19)

Also, from (2.17),
∞∑

α=0

q(5α)
5αs

=
∞∑

α=0

(−51−s)α =
1

1 + 51−s
. (2.20)

Thus, as q(n) is multiplicative, we deduce from (2.19) and (2.20) that
∞∑

n=1

q(n)
ns

=
∞∑

α=0

q(5α)
5αs

∏
p�=5

∞∑
α=0

q(pα)
pαs

=
1

1 + 51−s

∏
p�=5

1
1 − q(p)p−s + p3−2s

,

and so the proof of Entry 2.3 is complete, except for the inequality for q(p).

To obtain an elementary bound for q(n), we use Ramanujan’s two famous iden-
tities [1, p. 98]

(q; q)5∞
(q5; q5)∞

= 1 − 5
∞∑

n=1


∑

d|n

(
5
d

)
d


 qn

and

q
(q5; q5)5∞
(q; q)∞

=
∞∑

m=1


∑

e|m

(
5

m/e

)
e


 qm,

where
( ·

n

)
denotes the Kronecker symbol, to deduce that

q(q; q)4∞(q5; q5)4∞

=
∞∑

m=1


∑

e|m

(
5

m/e

)
e


 qm − 5

∞∑
N=1


 ∞∑

m,n=1
m+n=N

∑
d|n

∑
e|m

(
5

dm/e

)
de


 qN .

Hence, writing d = a, e = b, m = by, and n = ax, we deduce that, for N ≥ 1,

q(N) =
∑
d|N

(
5

N/d

)
d − 5

∑
(a,b,x,y)∈N

4

ax+by=N

(
5
ay

)
ab.
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Thus, using below an evaluation from [22; 23, Table IV, no. 1, p. 146], we find that

|q(N)| <
∑
d|N

d + 5
∑

(a,b,x,y)∈N
4

ax+by=N

ab

= σ(N) + 5
N−1∑
r=1

σ(r)σ(N − r)

= σ(N) + 5
(

5
12

σ3(N) +
(

1
12

− 1
2
N

)
σ(N)

)

=
25
12

σ3(N) +
(

17
12

− 5
2
N

)
σ(N)

<
25
12

σ3(N).

In particular, if N = p is a prime,

|q(p)| <
25
12

σ3(p) =
25
12

(13 + p3) <
25
6

p3,

which is much weaker than Ramanujan’s assertion.

Entry 2.4 (p. 247). If
∞∑

n=1

φ(n)qn := qf12(−q2), (2.21)

then
∞∑

n=1

φ(n)
ns

=
∏
p

1
1 − φ(p)p−s + p5−2s

, (2.22)

where the product is over all odd primes p.

Entry 2.4 is actually a special case of a general claim made without proof in
Ramanujan’s paper [22, p. 162]. Entry 2.4 was proved by Mordell [17, p. 121]; it is
the case a = 6 in Mordell’s paper. A proof was also given by Rangachari [25].

Entry 2.5 (p. 247). If
∞∑

n=1

φ(n)qn := qf(−q2)f(−q22), (2.23)

then
∞∑

n=1

φ(n)
ns

=
1

1 − 11−s

∏
p

1
1 + p−s + p−2s

∏
q

1
1 − q−2s

∏
r

1
(1 − r−s)2

, (2.24)

where the first product is over all primes p such that p ≡ 1, 3, 4, 5, 9 (mod11), the
second product is over all odd primes q such that q ≡ 2, 6, 7, 8, 10 (mod11), and
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the third product is over all primes r such that r can be written in the form r =
11A2 + B2.

Entry 2.5 is formula (2) under part (b) in Rangachari’s paper. Unfortunately,
Rangachari failed to notice that Entry 2.5 is incorrect, and so therefore is his claim
to a proof. Entry 2.5 was first proved in its corrected form by Sun and Williams
[30, Theorem 7.2, p. 386].

Entry 2.6 (p. 247). If
∞∑

n=1

φ(n)qn := qf(−q3)f(−q21), (2.25)

then
∞∑

n=1

φ(n)
ns

=
1

1 + 7−s

∏
p

1
1 + p−2s

∏
q

1
1 − q−2s

×
∏
r

1
(1 + r−s)2

∏
t

1
(1 − t−s)2

, (2.26)

where the first product is over all odd primes p such that p ≡ 2, 8, 11 (mod21),
the second product is over all primes q such that q ≡ 5, 17, 20 (mod21), the third
product is over all primes r such that r can be written in the form r = 9A2 + 7B2,

and the fourth product is over all primes t such that t can be written in the form
t = A2 + 63B2.

Entry 2.6 is formula (1) under part (b) in Rangachari’s paper [25]. Entry 2.6
is incorrect, and so therefore is Rangachari’s proof. The first proof of a corrected
version of Entry 2.6 was given by Sun and Williams [30, Theorem 8.2(i), p. 388].
The proofs of corrected versions of Entries 2.5 and 2.6 by Sun and Williams are
discussed in more detail in Sec. 3, which is devoted to their methods.

Entry 2.7 (p. 249). Define
∞∑

n=1

φ(n)qn := qf4(−q6)R(q6), (2.27)

where R(q) is defined in (1.5). Then
∞∑

n=1

φ(n)
ns

=
∏
p

1
1 − φ(p)p−s + p7−2s

, (2.28)

where the product is over all primes p exceeding 3 and

φ(p) =

{
0, if p ≡ −1 (mod 6),

(A + iB
√

3)7 + (A − iB
√

3)7, if p ≡ 1 (mod 6).
(2.29)

where A and B are determined by p = A2 + 3B2.
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Entry 2.7 can also be found under List I on pp. 233–235 of [24] or in List I in
Sec. 4 below.

In Ramanujan’s formulation, he wrote “where A and B are the same as before.”

Proof of Entry 2.7. Let

ω =
1 +

√−3
2

.

For the convenience of future calculations, we record the values

ω2 =
−1 +

√−3
2

= −1 + ω, ω4 =
−1 −√−3

2
= −ω, ω5 =

1 −√−3
2

= 1 − ω,

√−3 = −1 + 2ω, ω
√−3 = −2 + ω, ω2

√−3 = −1 − ω.

We briefly review basic facts about the ring of integers Z + Zω = {x+ yω|x, y ∈ Z}
in the imaginary quadratic field Q(

√−3), which has discriminant −3. It is well
known that Z + Zω is a unique factorization domain. The group of units in Z + Zω

is the cyclic group of order 6 generated by ω. The Eisenstein integer 2 + 2ω is the
product of two irreducible integers, namely, 2 and 1 + ω.

We now define a character χ on Z + Zω modulo 2 + 2ω. Let x + yω ∈ Z + Zω.
First, observe that

2| gcd(x + yω, 2 + 2ω) ⇔ x ≡ y ≡ 0 (mod 2),

(1 + ω)| gcd(x + yω, 2 + 2ω) ⇔ x ≡ y (mod 3).

Hence,

gcd(x + yω, 2 + 2ω) = 1

⇔ (x, y) ≡ (0, 1), (1, 0), or (1, 1) (mod 2) and x �≡ y (mod 3).

For those x + yω coprime with 2 + 2ω,

x + yω ≡ 1 (mod 2 + 2ω), if (x, y) ≡ (1, 0) (mod 2) and x − y ≡ 1 (mod 3),

x + yω ≡ ω (mod 2 + 2ω), if (x, y) ≡ (0, 1) (mod 2) and x − y ≡ 2 (mod 3),

x + yω ≡ ω2 (mod 2 + 2ω), if (x, y) ≡ (1, 1) (mod 2) and x − y ≡ 1 (mod 3),

x + yω ≡ ω3 (mod 2 + 2ω), if (x, y) ≡ (1, 0) (mod 2) and x − y ≡ 2 (mod 3),

x + yω ≡ ω4 (mod 2 + 2ω), if (x, y) ≡ (0, 1) (mod 2) and x − y ≡ 1 (mod 3),

x + yω ≡ ω5 (mod 2 + 2ω), if (x, y) ≡ (1, 1) (mod 2) and x − y ≡ 2 (mod 3).

Hence, we can define a character χ of order 6 on Z + Zω (mod 2 + 2ω) by

χ(x + yω) =

{
ω−�, if x + yω ≡ ω� (mod 2 + 2ω) for some 
 ∈ {0, 1, 2, 3, 4, 5},
0, if gcd(x + yω, 2 + 2ω) �= 1.
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In particular, note that

χ(ω) = ω−1 = ω.

If ε is a unit in Z + Zω, then ε = ω� for some 
 ∈ {0, 1, 2, 3, 4, 5} and

χ(ε)ε7 = χ(ω�)ω7� = χ�(ω)ω7� = (ω−1)�ω� = 1.

Thus, by [15, Eqs. (5.8) and (5.9)], the Hecke theta series θ8(−3, χ, z) is given by

θ8(−3, χ, z) =
1
6

∑
x+yω∈Z+Zω

χ(x + yω)(x + yω)7e2πi(x+yω)(x+yω)z, (2.30)

where z ∈ H. Noting that (x + yω)(x + yω) = x2 + xy + y2, we define, for each

 ∈ {0, 1, 2, 3, 4, 5},

A� := ω−�
∑

(x,y)∈Z
2

x+yω≡ω� (mod 2+2ω)

(x + yω)7qx2+xy+y2
, q = e2πiz .

Then,

1
6

5∑
�=0

A� =
1
6

5∑
�=0

ω−�
∑

(x,y)∈Z
2

x+yω≡ω� (mod 2+2ω)

(x + yω)7qx2+xy+y2

=
1
6

5∑
�=0

∑
(x,y)∈Z

2

x+yω≡ω� (mod2+2ω)

χ(x + yω)(x + yω)7qx2+xy+y2

=
1
6

∑
x+yω∈Z+Zω

gcd(x+yω,2+2ω)=1

χ(x + yω)(x + yω)7qx2+xy+y2

=
1
6

∑
x+yω∈Z+Zω

χ(x + yω)(x + yω)7e2πi(x+yω)(x+yω)z

= θ8(−3, χ, z), (2.31)

by (2.30).
Next, we evaluate A0, A1, . . . , A5 by making the indicated changes of variable

in the corresponding series:

A0: (x, y) = (r − s, 2s),

A1: (x, y) = (2s, r − s),

A2: (x, y) = (−r + s, r + s),

A3: (x, y) = (−r − s, 2s),

A4: (x, y) = (2s,−r − s),

A5: (x, y) = (r + s,−r + s).
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We calculate one of the sums; the other calculations are similar. To that end,

A5 = ω−5
∑

(x,y)∈Z
2

(x,y)≡(1,1) (mod2)
x−y≡2 (mod3)

(x + yω)7qx2+xy+y2

= ω
∑

(r,s)∈Z
2

r−s≡1 (mod3)
r≡1 (mod 2)

(r(1 − ω) + s(1 + ω))7qr2+3s2

= ω
∑

(r,s)∈Z
2

r−s≡1 (mod3)
r≡1 (mod 2)

(−rω2 − sω2
√−3)7qr2+3s2

=
∑

(r,s)∈Z
2

r−s≡1 (mod 3)
r≡1 (mod2)

(r + s
√−3)7qr2+3s2

.

In summary, we find that

A0 = A4 = A5 =
∑

(r,s)∈Z
2

r−s≡1 (mod2)
r≡1 (mod 3)

(r + s
√−3)7qr2+3s2

, (2.32)

A1 = A2 = A3 =
∑

(r,s)∈Z
2

r−s≡1 (mod2)
r≡1 (mod 3)

(r − s
√−3)7qr2+3s2

. (2.33)

Hence, by (2.32) and (2.33),
5∑

�=0

A� = 3
∑

(r,s)∈Z
2

r−s≡1 (mod2)
r≡1 (mod 3)

((r + s
√−3)7 + (r − s

√−3)7)qr2+3s2
,

and so, by (2.31),

θ8(−3, χ, z) =
1
2

∑
(r,s)∈Z

2

r−s≡1 (mod 2)
r≡1 (mod3)

((r + s
√−3)7 + (r − s

√−3)7)qr2+3s2
. (2.34)

Now [15, p. 122],

θ8(−3, χ, z) = qf4(−q6)R(q6). (2.35)

Thus, from (2.27), (2.35), and (2.34),

φ(n) =
1
2

∑
(r,s)∈Z

2

r−s≡1 (mod 2)
r≡1 (mod3)

r2+3s2=n

((r + s
√−3)7 + (r − s

√−3)7). (2.36)
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As the only solution to r2+3s2 = 1, r−s ≡ 1 (mod 2), r ≡ 1 (mod 3) is (r, s) = (1, 0),
we find from (2.36) that

φ(1) = 1. (2.37)

The conditions r − s ≡ 1 (mod2), r2 + 3s2 = n imply that n ≡ 1 (mod2). Hence,

φ(n) = 0, if 2|n. (2.38)

The conditions r ≡ 1 (mod 3), r2 + 3s2 = n imply that n ≡ 1 (mod 3). Hence,

φ(n) = 0, if 3|n. (2.39)

If p is a prime with p ≡ −1 (mod6) and n is odd, then there are no integers r and
s such that pn = r2 + 3s2. Thus,

φ(pn) = 0, if p ≡ −1 (mod 6), n odd. (2.40)

If p is a prime with p ≡ 1 (mod 6), then there are integers A and B such that
p = A2+3B2. Replacing A by −A, if necessary, we may suppose that A ≡ 1 (mod3).
Replacing B by −B, if necessary, we may suppose that B > 0. All solutions of
p = x2 + 3y2 are given by (x, y) = (A, B), (A,−B), (−A, B), (−A,−B). Thus,

φ(p) =
1
2
(((A + B

√−3)7 + (A − B
√−3)7) + ((A − B

√−3)7 + (A + B
√−3)7))

= (A + B
√−3)7 + (A − B

√−3)7, (2.41)

where A and B are given uniquely by p = A2 + 3B2, A ≡ 1 (mod3), B > 0.
The Hecke theta series

θ8(−3, χ, z) =
∞∑

n=1

φ(n)e2πinz , (2.42)

where φ(n) is given by (2.36), is a modular form of weight 8 on the group Γ0(36)
[15, p. 77]. We also know [15, p. 70] that φ(n) is multiplicative and satisfies the
recursion relation

φ(pm) − φ(p)φ(pm−1) + p7φ(pm−2) = 0, (2.43)

for each integer m ≥ 2 and each prime p with p ≡ 1 (mod6) [15, Eq. (5.7)], and the
exact formula

φ(p2m) = (−p7)m, (2.44)

for each positive integer m and each prime p with p ≡ −1 (mod6) [15, p. 71].
Hence, for p ≡ −1 (mod6), by (2.37), (2.40), and (2.44),

∞∑
m=0

φ(pm)
pms

=
∞∑

m=0

φ(p2m)
p2ms

=
∞∑

m=0

(−p7)m

p2ms

=
∞∑

m=0

(−p7−2s)m =
1

1 + p7−2s
=

1
1 − φ(p)p−s + p7−2s

, (2.45)

by (2.40) once again.
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For p ≡ 1 (mod6), by (2.43),

(1 − φ(p)p−s + p7−2s)
∞∑

m=0

φ(pm)
pms

=
∞∑

m=0

φ(pm)
pms

− φ(p)
∞∑

m=0

φ(pm)
p(m+1)s

+ p7
∞∑

m=0

φ(pm)
p(m+2)s

=
∞∑

m=0

φ(pm)
pms

− φ(p)
∞∑

m=1

φ(pm−1)
pms

+ p7
∞∑

m=2

φ(pm−2)
pms

= 1 +
φ(p) − φ(p)φ(1)

ps
+

∞∑
m=2

φ(pm) − φ(p)φ(pm−1) + p7φ(pm−2)
pms

= 1. (2.46)

Thus, by (2.45) and (2.46),

∞∑
m=0

φ(pm)
pms

=
1

1 − φ(p)p−s + p7−2s
, p > 3. (2.47)

Clearly, by (2.38) and (2.39),

∞∑
m=0

φ(2m)
2ms

= 1 =
∞∑

m=0

φ(3m)
3ms

, (2.48)

respectively. Thus, as φ(n) is multiplicative, by (2.47) and (2.48),

∞∑
n=0

φ(n)
ns

=
∞∑

m=0

φ(2m)
2ms

·
∞∑

m=0

φ(3m)
3ms

·
∏
p>3

p prime

∞∑
m=0

φ(pm)
pms

=
∏
p>3

p prime

1
1 − φ(p)p−s + p7−2s

.

This completes the proof of Entry 2.7.

Before discussing the next entry, we offer a remark on the convergence of the
series and product in (2.28). The number of solutions (x, y) ∈ Z2 of n = x2 + 3y2 is
	ε nε, for each ε > 0 [11, Corollary 9.1(a)]. Hence, by (2.36),

|φ(n)| 	ε n
7
2+ε,

for each ε > 0. Therefore, the Dirichlet series on the left-hand side of (2.28) con-
verges absolutely for Re s > 9

2 , and, moreover, we see that the product on the
right-hand side of (2.28) also converges absolutely for Re s > 9

2 .
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Entry 2.8 (p. 328). If
∞∑

n=1

anqn := q3f18(−q4), (2.49)

then
∞∑

n=1

an

ns
=

1
1 − 78 · 3−s + 38−2s

1
1 + 510 · 5−s + 58−2s

1
1 + 1404 · 7−s + 78−2s

· · ·

− 1
1 + 78 · 3−s + 38−2s

1
1 − 510 · 5−s + 58−2s

1
1 − 1404 · 7−s + 78−2s

· · · .

(2.50)

Ramanujan writes a plus sign in front of 510 in each of the products above. Since
one of the signs is likely to be incorrect, we have accordingly changed the second
sign. Raghavan [21] numerically disproved Ramanujan’s formula as he had written
it. However, even with our slight change, Entry 2.8 is still incorrect. In searching
for an appropriate linear combination of products of eta-functions and Eisenstein
series in order to correct Entry 2.8, we are led to

78q3f18(−q4) + qf6(−q4)R(q4) = q + 78q3 − 510q5 − 1404q6 + · · · ,

where R(q) is defined in (1.5). From this calculation, it is possible that Ramanujan
thought that 78q3f18(−q4)+qf6(−q4)R(q4) has an Euler-product, which, however,
is not the case. Nonetheless, Ramanujan later discovered the correct Euler product
involving q3f18(−q4), which is given in Entry 4.4.

We quote Ramanujan in the next entry. We emphasize that he does not provide
any product representations.

Entry 2.9 (p. 328). Presumably there are analogous results for
∑∞

n=1 ann−s where∑∞
n=1 anqn is any of the functions

q5f10(−q12),

q7f14(−q12),

q5f20(−q6),

q11f22(−q12).

Rangachari [25] established these Euler products, but they can also be found
in Ramanujan’s list of 46 products given in Sec. 4. Euler products corresponding
to the first, second, and fourth functions above can be found in List IV, while the
Euler product associated with the third modular form above can be found in List I.

Entry 2.10 (p. 329). Define

F (q) := qf16(−q3) =:
∞∑

n=1

Anqn (2.51)
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and

F1(q) := qf8(−q3)Q(q3) =:
∞∑

n=1

anqn, (2.52)

where Q(q) is defined in (1.4). Then
∞∑

n=1

an + 6An

√
10

ns
=

1
1 − 6

√
10 · 2−s + 27−2s

1
1 + 96

√
10 · 5−s + 57−2s

× 1
1 − 260 · 7−s + 77−2s

1
1 + 1920

√
10 · 11−s + 117−2s

· · ·
(2.53)

and
∞∑

n=1

an − 6An

√
10

ns
=

1
1 + 6

√
10 · 2−s + 27−2s

1
1 − 96

√
10 · 5−s + 57−2s

× 1
1 − 260 · 7−s + 77−2s

1
1 − 1920

√
10 · 11−s + 117−2s

· · · .

(2.54)

In his definition of F (q) in (2.51), Ramanujan inadvertently wrote the factor q2

instead of q on the right-hand side of (2.51). This result is also given in Part II of
Sec. 4, where an and An above are replaced by Ω′′

2(n) and Ω′
2(n), respectively. It

is noteworthy that Ramanujan had found a linear combination of modular forms
having an Euler product, which is work for which Hecke later became famous [8; 9,
pp. 644–707].

3. The Approach of Zhi-Hong Sun and Kenneth Williams
Through the Theory of Binary Quadratic Forms

As previously noted in Entries 2.5 and 2.6, on p. 247 of his “lost” notebook, Ramanu-
jan [24] recorded without proof Euler products for the Dirichlet series

∑∞
n=1 a(n)n−s

and
∑∞

n=1 b(n)n−s, where the arithmetic functions a(n) and b(n) are defined by

∞∑
n=1

a(n)qn = q
∞∏

n=1

(1 − q2n)(1 − q22n), q ∈ C, |q| < 1, (3.1)

and
∞∑

n=1

b(n)qn = q
∞∏

n=1

(1 − q3n)(1 − q21n), q ∈ C, |q| < 1. (3.2)

In [25] Rangachari outlined proofs of Ramanujan’s formulas for the Euler products
using class field theory and modular forms. Unfortunately, Ramanujan’s formulas
are incorrect, and so Rangachari’s proofs are invalid. The proofs given by Sun and
Williams [30] of corrected forms of Ramanujan’s formulas are based on the classical
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theory of binary quadratic forms and so are elementary. The corrected forms of
Ramanujan’s conjectures [30, Theorems 7.2 and 8.2] are

∞∑
n=1

a(n)
ns

=
1

1 − 11−s

∏
p≡2,6,7,8,10 (mod11)

p�=2

1
1 − p−2s

×
∏

p=3x2+2xy+4y2

1
1 + p−s + p−2s

∏
p=x2+11y2 �=11

1
(1 − p−s)2

(3.3)

and
∞∑

n=1

b(n)
ns

=
1

1 + 7−s

∏
p≡3,5,6 (mod7)

p�=3

1
1 − p−2s

∏
p≡2,8,11 (mod 21)

1
1 + p−2s

×
∏

p=x2+xy+16y2

1
(1 − p−s)2

∏
p=4x2+xy+4y2 �=7

1
(1 + p−s)2

, (3.4)

which are valid for s ∈ C with Re s > 1. Before describing the approach taken by
Sun and Williams in [30], we describe briefly the results we need from the theory
of binary quadratic forms.

A binary quadratic form is a polynomial ax2 + bxy + cy2 with a, b, c ∈ Z. We
always assume that ax2 + bxy + cy2 is positive-definite, equivalently a > 0 and
b2 − 4ac < 0, and primitive, equivalently gcd(a, b, c) = 1. For brevity, we write
(a, b, c) for the form ax2 + bxy + cy2. The discriminant d of the form (a, b, c) is the
negative integer d = b2 − 4ac. We note that d ≡ 0, 1 (mod 4). For n ∈ N we define

R((a, b, c); n) := card{(x, y) ∈ Z2 | ax2 + bxy + cy2 = n}
so that R((a, b, c); n) counts the number of representations of n by the form (a, b, c).
The class of the form (a, b, c) is the set of forms

[a, b, c] := {a(rx + sy)2 + b(rx + sy)(tx + uy)

+ c(tx + uy)2 | r, s, t, u ∈ Z, ru − st = 1}.
Each form in [a, b, c] is positive-definite, primitive, and of discriminant d. Clearly
the class [a, b, c] contains the form (a, b, c). Furthermore, if (A, B, C) ∈ [a, b, c], then
[A, B, C] = [a, b, c]. Moreover the number of representations of n ∈ N by any form
in the class [a, b, c] is the same, so we can define

R([a, b, c]; n) := R((a, b, c); n).

Gauss proved that each positive-definite, primitive, binary quadratic form of dis-
criminant d belongs to one and only one of a finite set H(d) of form classes. We
denote the number of such form classes by h(d). With respect to Gaussian compo-
sition, which we write multiplicatively, the set H(d) is a finite abelian group. The
identity of the group is I = [1, 0,−d/4] if d ≡ 0 (mod 4) and I = [1, 1, (1 − d)/4]
if d ≡ 1 (mod 4). The inverse A−1 of the form class A = [a, b, c] is the form class
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[a,−b, c]. As H(d) is a finite abelian group, there exist r ∈ N, A1, . . . , Ar ∈ H(d),
and h1, . . . , hr ∈ N with h1 · · ·hr = h(d), such that

H(d) = {Ak1
1 · · ·Akr

r | k1 = 0, 1, . . . , h1 − 1, . . . , kr = 0, 1, . . . , hr − 1}.
For n ∈ N and M = Am1

1 · · ·Amr
r ∈ H(d), we define [29, Definition 7.1]

F (M, n) :=
1

w(d)

h1−1,...,hr−1∑
k1=0,...,kr=0

cos 2π

(
k1m1

h1
+ · · · + krmr

hr

)
R(Ak1

1 · · ·Akr
r ; n),

where

w(d) =




6, if d = −3,

4, if d = −4,

2, if d < −4.

Since each of H(−3) and H(−4) is the trivial group, we have w(d) = 2 if H(d)
is nontrivial. From [29, Theorem 7.2] we know that F (M, n) is a multiplicative
function of n ∈ N. Sun and Williams [30, p. 372] proved that in {s ∈ C |Re s > 1}
the Dirichlet series

∑∞
n=1 F (M, n)n−s converges absolutely, is an analytic function

of s, and has an Euler product.
For our purposes we are interested in the function F when H(d) is a cyclic

group of order 3 or 4 (so that w(d) = 2). If H(d) is a cyclic group of order 3, say,
H(d) = {I, A, A2} with A3 = I, A �= I, then

F (A, n) =
1
2
(R(I, n) − R(A, n)) (3.5)

is a multiplicative function of n, which is given explicitly in [29, Theorem 10.1].
Similarly, if H(d) is a cyclic group of order 4, say, H(d) = {I, A, A2, A3} with
A4 = I, A2 �= I, then

F (A, n) =
1
2
(R(I, n) − R(A2, n)) (3.6)

is a multiplicative function of n, whose value is given in [29, Theorem 11.1]. If H(d)
is a cyclic group of order ≥ 5 generated by A, then F (A, n) does not have a simple
representation such as (3.5) and (3.6); see [29, Theorem 7.4].

We are now in a position to describe the approach taken by Sun and Williams
[30]. To keep notation consistent with that of Ramanujan, we replace their function
φ(q) by f(−q), which is defined in (1.2). Next they defined, for k ∈ {1, 2, 3, . . . , 12},
the arithmetic function φk : N → Z by

qf(−qk)f(−q24−k) =
∞∑

n=1

φk(n)qn, q ∈ C, |q| < 1, (3.7)

so that we are interested in φ2(n) = a(n) and φ3(n) = b(n). Using (1.2) in the
left-hand side of (3.7), and manipulating the resulting product of series, Sun and
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Williams [30, Theorem 2.2] found, on equating coefficients, explicit formulas for
φk(n), k ∈ {1, 2, 3, . . . , 12}, namely,

φ1(n) =
1
2
(R([1, 1, 6]; n)− R([2, 1, 3]; n)) (d = −23, H(d) 
 Z/3Z),

φ2(n) =
1
2
(R([1, 0, 11]; n)− R([3, 2, 4]; n)) (d = −44, H(d) 
 Z/3Z),

φ3(n) =
1
2
(R([1, 1, 16]; n)− R([4, 1, 4]; n)) (d = −63, H(d) 
 Z/4Z),

φ4(n) =
1
2
(R([1, 0, 20]; n)− R([4, 0, 5]; n)) (d = −80, H(d) 
 Z/4Z),

φ5(n) =
1
2
(R([1, 1, 24]; n)− R([4, 1, 6]; n)) (d = −95, H(d) 
 Z/8Z),

φ6(n) =
1
2
(R([1, 0, 27]; n)− R([4, 2, 7]; n)) (d = −108, H(d) 
 Z/3Z),

φ7(n) =
1
2
(R([1, 1, 30]; n)− R([4, 3, 8]; n)) (d = −119, H(d) 
 Z/10Z),

φ8(n) =
1
2
(R([1, 0, 32]; n)− R([4, 4, 9]; n)) (d = −128, H(d) 
 Z/4Z),

φ9(n) =
1
2
(R([1, 1, 34]; n)− R([4, 3, 9]; n)) (d = −135, H(d) 
 Z/6Z),

φ10(n) =
1
2
(R([1, 0, 35]; n)− R([4, 2, 9]; n)) (d = −140, H(d) 
 Z/6Z),

φ11(n) =
1
2
(R([1, 1, 36]; n)− R([4, 1, 9]; n)) (d = −143, H(d) 
 Z/10Z),

φ12(n) =
1
2
(R([1, 0, 36]; n)− R([4, 0, 9]; n)) (d = −144, H(d) 
 Z/4Z).

In each line of the list above, the value of d is the discriminant of each of the two
forms appearing in the formula for φk(n). For k = 1, 2, . . . , 12, we have d = k(k−24).
The first form class in each line is the identity class of discriminant d. All of the
form class groups H(k(k−24)), k = 1, 2, . . . , 12, are cyclic. Moreover, exactly seven
of them have H(k(k − 24)) 
 Z/3Z or Z/4Z.

For k = 1, 2, 6, we have d = −23,−44,−108, respectively, and

H(−23) = {I, A, A2}, where I = [1, 1, 6], A = [2, 1, 3], A2 = [2,−1, 3], A3 = I,

H(−44) = {I, A, A2}, where I = [1, 0, 11], A = [3, 2, 4], A2 = [3,−2, 4], A3 = I,

H(−108) = {I, A, A2}, where I = [1, 0, 27], A = [4, 2, 7], A2 = [4,−2, 7], A3 = I.

For these three values of k, we see from the list that

φk(n) =
1
2
(R(I, n) − R(A, n)) = F (A, n). (3.8)
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Thus φk(n) (k = 1, 2, 6) is a multiplicative function of n, whose value is given by
[29, Theorem 10.1]; see [30, Theorem 4.4]. Using these evaluations, Sun and Williams
[30, Theorem 7.2] deduced that

∞∑
n=1

φ1(n)
ns

=
1

1 − 23−s

∏
“ p

23

”
=−1

1
1 − p−2s

×
∏

p=2x2+xy+3y2

1
1 + p−s + p−2s

∏
p=x2+xy+6y2 �=23

1
(1 − p−s)2

, (3.9)

∞∑
n=1

φ2(n)
ns

=
1

1 − 11−s

∏
p≡2,6,7,8,10 (mod 11)

p�=2

1
1 − p−2s

×
∏

p=3x2+2xy+4y2

1
1 + p−s + p−2s

∏
p=x2+11y2 �=11

1
(1 − p−s)2

, (3.10)

and

∞∑
n=1

φ6(n)
ns

=
∏

p≡5 (mod 6)

1
1 − p−2s

∏
p=x2+27y2

1
(1 − p−s)2

×
∏

p=4x2+2xy+7y2

1
1 + p−s + p−2s

. (3.11)

For k = 3, 4, 8, 12, we have d = −63,−80,−128,−144, respectively, and

H(−63) = {I, A, A2, A3},
where I = [1, 1, 16], A = [2, 1, 8], A2 = [4, 1, 4], A3 = [2,−1, 8], A4 = I,

H(−80) = {I, A, A2, A3},
where I = [1, 0, 20], A = [3, 2, 7], A2 = [4, 0, 5], A3 = [3,−2, 7], A4 = I,

H(−128) = {I, A, A2, A3},
where I = [1, 0, 32], A = [3, 2, 11], A2 = [4, 4, 9], A3 = [3,−2, 11], A4 = I,

H(−144) = {I, A, A2, A3},
where I = [1, 0, 36], A = [5, 4, 8], A2 = [4, 0, 9], A3 = [5,−4, 8], A4 = I.

(3.12)

For these four values of k, we see from the list that

φk(n) =
1
2
(R(I, n) − R(A2, n)) = F (A, n).

Thus φk(n), k = 3, 4, 8, 12, is a multiplicative function of n, whose value is given
by [29, Theorem 11.1]; see [30, Theorem 4.5]. Using these evaluations, Sun and
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Williams [30, Theorem 8.2] deduced that

∞∑
n=1

φ3(n)
ns

=
1

1 + 7−s

∏
p≡3,5,6 (mod7)

p�=3

1
1 − p−2s

∏
p≡2,8,11 (mod 21)

1
1 + p−2s

×
∏

p=x2+xy+16y2

1
(1 − p−s)2

∏
p=4x2+xy+4y2 �=7

1
(1 + p−s)2

, (3.13)

∞∑
n=1

φ4(n)
ns

=
1

1 + 5−s

∏
p≡11,13,17,19 (mod20)

1
1 − p−2s

∏
p≡3,7 (mod20)

1
1 + p−2s

×
∏

p=x2+20y2

1
(1 − p−s)2

∏
p=4x2+5y2 �=5

1
(1 + p−s)2

, (3.14)

∞∑
n=1

φ8(n)
ns

=
∏

p≡5,7 (mod 8)

1
1 − p−2s

∏
p≡3 (mod 8)

1
1 + p−2s

×
∏

p=x2+32y2

1
(1 − p−s)2

∏
p=4x2+4xy+9y2 �=7

1
(1 + p−s)2

, (3.15)

and

∞∑
n=1

φ12(n)
ns

=
∏

p≡3 (mod 4)
p�=3

1
1 − p−2s

∏
p≡5 (mod 12)

1
1 + p−2s

×
∏

p=x2+36y2

1
(1 − p−s)2

∏
p=4x2+9y2

1
(1 + p−s)2

. (3.16)

Formulas (3.10) and (3.13) are the corrected formulas (3.3) and (3.4) of Ramanujan.
Formulas (3.9), (3.11), (3.14), (3.15), and (3.16) were not stated by Ramanujan.

4. A Partial Manuscript on Euler Products

Pages 233–235 in [24] are devoted to a manuscript by Ramanujan on Euler products
in four sections, but in the handwriting of G. N. Watson. The original manuscript
can be found in the library of Trinity College, Cambridge. We copy the manuscript
section by section and then offer proofs and commentary after each section. As
we shall see, Ramanujan discovered many Euler products associated with linear
combinations of modular forms. We do not have any ideas on how Ramanujan
found these Euler products without invoking the theory of modular forms. It would
be extremely interesting to find a new, more elementary method to attack these
formulas. In our transcription, we have taken the liberty of introducing standard
notation for q-products. Recall also that Ramanujan’s Eisenstein series P (q), Q(q),
and R(q) are defined by (1.3)–(1.5), respectively.
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The following proposition is useful in deducing that Ω1(n) = nΩ0(n) in the first
two series of formulas below.

Proposition 4.1. Let α be a divisor of 24. Then

q
d

dq
fα(z) = fα(z)P (αz),

where fα(z) = η24/α(αz).

Proof. Since

log fα(z) = log q +
24
α

∞∑
n=1

log(1 − qαn),

we arrive at

q
d

dq
fα(z) = fα(z)

(
1 − 24

∞∑
n=1

qαn

1 − qαn

)
= fα(z)P (αz),

as desired.

Another simple proof can be constructed using the theory of modular forms.
Observe that q d

dqfα(z)− fα(z)P (αz) is a modular form of weight 12
α + 2 with level

576
α2 with a proper quadratic character. Using Sturm’s bound, we only need to check
that the first few terms vanish. Note that this method only works for modular forms
of integral weight, i.e. when 24/α is an even number.

In the following four lists, except for the aforementioned notational simplifica-
tions, we quote Ramanujan. In our proofs, we frequently appeal to dimensions of
certain spaces of modular forms, all of which can be found in [5] or which can be
calculated using MAGMA.

Entry 4.2 (List I). Suppose that A and B are any two integers such that A2 +
3B2 = p and A ≡ 1 (mod 3), p being a prime of the form 6k + 1. Let

∞∑
n=1

Ω0(n)qn/6 = q1/6(q; q)4∞, (4.1)

∞∑
n=1

Ω1(n)qn/6 = q1/6(q; q)4∞P (q), (4.2)

∞∑
n=1

Ω2(n)qn/6 = q1/6(q; q)4∞Q(q),

∞∑
n=1

Ω3(n)qn/6 = q1/6(q; q)4∞R(q), (4.3)

∞∑
n=1

Ω′
4(n)qn/6 = q1/6(q; q)4∞Q2(q), (4.4)
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∞∑
n=1

Ω′′
4(n)qn/6 = q5/6(q; q)20∞, (4.5)

Ω4(n) = Ω′
4(n) + 288ω

√
70Ω′′

4(n), ω2 = 1, (4.6)
∞∑

n=1

Ω5(n)qn/6 = q1/6(q; q)4∞Q(q)R(q),

∞∑
n=1

Ω′
7(n)qn/6 = q1/6(q; q)4∞Q2R(q), (4.7)

∞∑
n=1

Ω′′
7(n)qn/6 = q5/6(q; q)20∞R(q), (4.8)

Ω7(n) = Ω′
7(n) + 10080ω

√
286Ω′′

7(n), ω2 = 1. (4.9)

In all these cases,
∞∑

n=1

Ωλ(n)
ns

=
∏
p

1
1 − Ωλ(p)p−s + p2λ+1−2s

,

where p assumes all prime values greater than 3. If λ = 0, 2, 3, 5, then

Ωλ(p) =

{
0, p ≡ −1 (mod 6),

(A + iB
√

3)2λ+1 + (A − iB
√

3)2λ+1, p ≡ 1 (mod 6).

Ω1(n) = nΩ0(n) for all values of n. But Ω4(n) and Ω7(n) do not seem to have such
simple laws.

In our arguments below, we always work with forms supported only on integral
exponents. This enables us to avoid the use of multiplier systems. Moreover, we
note that we proceeded in this fashion throughout Secs. 2 and 3.

Proof of (4.1). For the following facts, we refer to [7, Chap. 3]. The right-hand
side of (4.1) equals η4(6z), and this is a modular form of weight 2 and level 36
with trivial character. Though the dimension of this space is 12, its new-space has
dimension 1 and its basis element is the unique new form η4(6z). Therefore, its
Euler product is given as [12, p. 118]

∞∑
n=1

Ω0(n)
ns

=
∏
p

1
1 − Ω0(p)p−s + p1−2s

.

Now, we give an elementary proof of the explicit formula for Ω0(p). First, note that,
by the pentagonal number theorem and Jacobi’s identity, respectively,

η(z) =
∞∑

n=−∞
n≡1 (mod 6)

(−1)(n−1)/6qn2/24,
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η3(z) =
∞∑

n=−∞
n≡1 (mod4)

nqn2/8.

Therefore,

Ω0(p) =
∑

n2+3k2=4p
n≡1 (mod 6), k≡1 (mod4)

(−1)(n−1)/6k. (4.10)

For integers n and k satisfying the conditions in (4.10), we define

A :=
n + 3k

4
and B :=

n − k

4
, if n ≡ 1 (mod 12),

A :=
n − 3k

4
and B :=

n + k

4
, if n ≡ 7 (mod 12).

Thus, A and B are integers satisfying A2 +3B2 = p, with A ≡ 1 (mod3). Therefore,
from (4.10),

Ω0(p) =
∑

A2+3B2=p
A≡1 (mod 3)

(A − B).

Note that if (A, B) satisfies the foregoing conditions, then so does (A,−B). There-
fore, we deduce that

Ω0(p) =

{
2A, if p ≡ 1 (mod 6), p = A2 + 3B2, and B > 0,

0, otherwise,

which completes the proof.

The form η4(6z) is associated with the elliptic curve y2 = x3 + 1, i.e.

Ω0(p) = 1 + p − a(p),

where a(p) is the number of points on this elliptic curve after reducing modulo p.
Observe that (4.2) follows from Proposition 4.1 and (4.1).
The remaining Euler products with explicit formulas for the pth coefficients can

be derived from the fact that these are modular forms with complex multiplication,
or, in other words, newforms associated with a certain Hecke Grössencharacter. For
the following description, we refer to Ono’s monograph [20].

For the field K = Q(
√−3), we can define a Hecke Grössencharacter φ by

φ((α)) = αk−1,

where k ≥ 2 is an integer, and α is a generator of the ideal (α), such that α ≡
1 (modΛ), where Λ = (3). Then,

Φ(z) :=
1
2

∑
a

φ(a)qN(a) =
1
2

∞∑
n=1

a(n)qn
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is a newform of weight k of level 36 with a trivial character. Moreover, the ideal (p)
is inert if p ≡ 5 (mod6), and if p ≡ 1 (mod6), then (p) splits in the form

(p) = (x + i
√

3y)(x − i
√

3y),

where x and y are integers such that x ≡ 1 (mod 3). From these, we deduce that

a(p) = φ((x + i
√

3y)) + φ((x − i
√

3y)) = (x + i
√

3y)k−1 + (x − i
√

3y)k−1,

which implies Ramanujan’s claim (4.3). Actually (4.3) is identical to Entry 2.7, for
which a complete proof was given earlier.

Now we examine the entries that are represented as linear combinations of two
forms.

For Ω4(n), note that fΩ′
4
(z) = η4(6z)Q2(6z) and fΩ′′

4
(z) = η20(6z) are in

Snew
10 (Γ0(36)), the new space of cusp forms. The dimension of Snew

10 (Γ0(36)) is 4,
but there are only two forms for which the exponents are supported on one residue
class modulo 6. Note that if f(z) = qa

∑
a(n)q6n ∈ Snew

10 (Γ0(36)), then a must be
coprime to 6.

By a simple calculation for the Hecke operator T5, we see that

T5fΩ′
4
(z) = 5806000fΩ′′

4
(z),

T5fΩ′′
4
(z) = fΩ′

4
(z).

The eigenvalues of the matrix (
0 5806000

1 0

)

are ±288
√

70. Therefore,

fΩ4(z) = fΩ′
4
(z) ± 288

√
70fΩ′′

4
(z)

is an eigenform for T5.
Since Tp and T5 are commutative, where p is a prime larger than 5, we can

conclude that fΩ4(z) is a Hecke eigenform as was claimed. Thus, the verifications
of (4.4)–(4.6) have been demonstrated.

For Ω7(n), the argument is exactly the same as that above. In particular,

T5(η4(6z)Q2(6z)R(6z)) = 29059430400η20(6z)R(6z),

T5(η20(6z)R(6z)) = η4(6z)Q2(6z)R(6z).

Therefore, the verifications of (4.7)–(4.9) follow.

Entry 4.3 (List II). Suppose that A and B are defined as in List I and let
∞∑

n=1

Ω0(n)qn/3 = q1/3(q; q)8∞, (4.11)

∞∑
n=1

Ω1(n)qn/3 = q1/3(q; q)8∞P (q), (4.12)
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∞∑
n=1

Ω′
2(n)qn/3 = q1/3(q; q)8∞Q(q),

∞∑
n=1

Ω′′
2(n)qn/3 = q1/3(q; q)16∞,

Ω2(n) = Ω′
2(n) + 6ω

√
10Ω′′

2(n), ω2 = 1,
∞∑

n=1

Ω3(n)qn/3 = q1/3(q; q)8∞R(q),

∞∑
n=1

Ω′
4(n)qn/3 = q1/3(q; q)8∞Q2(q),

∞∑
n=1

Ω′′
4(n)qn/3 = q2/3(q; q)16∞Q(q),

Ω4(n) = Ω′
4(n) + 6ω

√
70Ω′′

4(n), ω2 = 1,
∞∑

n=1

Ω′
5(n)qn/3 = q1/3(q; q)8∞Q(q)R(q),

∞∑
n=1

Ω′′
5(n)qn/3 = q2/3(q; q)16∞R(q),

Ω5(n) = Ω′
5(n) + 12ω

√
55Ω′′

5(n), ω2 = 1,
∞∑

n=1

Ω′
7(n)qn/3 = q1/3(q; q)8∞Q2(q)R(q),

∞∑
n=1

Ω′′
7(n)qn/3 = q2/3(q; q)16∞Q(q)R(q),

Ω7(n) = Ω′
7(n) + 12ω

√
910Ω′′

7(n), ω2 = 1.

In all these cases,
∞∑

n=1

Ωλ(n)
ns

=
∏
p

1
1 − Ωλ(p)p−s + p2λ+3−2s

,

where p assumes all prime values except 3. If λ = 0 or 3, then

Ωλ(p) =

{
0, if p ≡ −1 (mod 3),

(A + iB
√

3)2λ+3 + (A − iB
√

3)2λ+3, if p ≡ 1 (mod 3).

Ω1(n) = nΩ0(n).

Note that (4.12) follows from (4.11) and Proposition 4.1. First observe that
η8(3z) is a modular form of weight 4 and level 9 with trivial character. Though the
dimension of this space is 4, its new-space has dimension 2, and η8(3z) is a basis
element and eigenform.
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It should be possible to derive explicit formulas by using Hecke Grössen-
characters, which we have used in the previous entry. Note that, except for p = 2,
every prime is congruent to 1 (mod 2). Thus, there is no essential difference between
the explicit formulas (4.3) in List I and (4.11) in List II. For the formulas for Ω4,
Ω5, and Ω7, the derivations are like those above, and so are omitted.

Here we give another proof for the first entry, (4.11). From [13, p. 373],

q(q3; q3)8 =
1
6

∑
(x,y)∈Z

2

x≡2 (mod 3)

x3qx2+3xy+3y2
.

Therefore, for n ∈ N,

Ω0(n) =
1
6

∑
(x,y)∈Z

2

x≡2 (mod 3)

x2+3xy+3y2=n

x3.

Let n be a prime p. If p = x2 + 3xy + 3y2, then p ≡ x2 ≡ 0, 1 (mod3). Hence,
if p ≡ 2 (mod 3), then p �= x2 + 3xy + 3y2 and so Ω0(p) = 0. Now suppose that
p ≡ 1 (mod3). We can define integers A and B uniquely by

p = A2 + 3B2, A ≡ 1 (mod 3), B > 0.

We consider the sum ∑
(x,y)∈Z

2

x≡2 (mod3)

x2+3xy+3y2=p

x3.

If y = 0, then p = x2, which is not feasible. If x + y = 0, then y = −x, so p = x2,
which is also not possible. If x + 2y = 0, then x = −2y, and so p = y2, which leads
to a contradiction. Therefore,

y �= 0, x + y �= 0, x + 2y �= 0.

Moreover, as p ≡ 1 (mod 3), (x, y) �≡ (0, 0) (mod2). Thus, we arrive at

x = −A − 3B, y = 2B, if (x, y) ≡ (1, 0) (mod 2) and y > 0,

x = −A + 3B, y = −2B, if (x, y) ≡ (1, 0) (mod 2) and y < 0,

x = −A + 3B, y = A − B, if (x, y) ≡ (1, 1) (mod 2) and x + y > 0,

x = −A − 3B, y = −A + B, if (x, y) ≡ (1, 1) (mod 2) and x + y < 0,

x = 2A, y = −A + B, if (x, y) ≡ (0, 1) (mod 2) and x + 2y > 0,

x = 2A, y = −A − B, if (x, y) ≡ (0, 1) (mod 2) and x + 2y < 0.
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In summary, for p ≡ 1 (mod 3),∑
(x,y)∈Z

2

x≡2 (mod 3)

x2+3xy+3y2=p

x3 = 12A3 − 108AB2,

so Ω0(p) = 1
6 (12A3 − 108AB2) = 2A3 − 18AB2. Finally, we can easily check that

Ω0(3) = 0, which completes the proof.

Entry 4.4 (List III). Suppose that A and B are integers such that A2 + 4B2 = p

where p is of the form 4k + 1.
∞∑

n=1

Ω0(n)qn/4 = q1/4(q; q)6∞, (4.13)

∞∑
n=1

Ω1(n)qn/4 = q1/4(q; q)6∞P (q), (4.14)

∞∑
n=1

Ω2(n)qn/4 = q1/4(q; q)6∞Q(q),

∞∑
n=1

Ω′
3(n)qn/4 = q1/4(q; q)6∞R(q),

∞∑
n=1

Ω′′
3 (n)qn/4 = q3/4(q; q)18∞,

Ω3(n) = Ω′
3(n) + 24ω

√
35Ω′′

3(n), ω2 = −1,
∞∑

n=1

Ω4(n)qn/4 = q1/4(q; q)6∞Q2(q),

∞∑
n=1

Ω′
5(n)qn/4 = q1/4(q; q)6∞Q(q)R(q),

∞∑
n=1

Ω′′
5 (n)qn/4 = q3/4(q; q)18∞Q(q),

Ω5(n) = Ω′
5(n) + 24ω

√
1155Ω′′

5(n), ω2 = −1,
∞∑

n=1

Ω′
7(n)qn/4 = q1/4(q; q)6∞Q2(q)R(q),

∞∑
n=1

Ω′′
7 (n)qn/4 = q3/4(q; q)18∞Q2(q),

Ω7(n) = Ω′
7(n) + 120ω

√
3003Ω′′

7 (n), ω2 = −1.

In all these cases,
∞∑

n=1

Ωλ(n)
ns

=
∏

1

∏
2
,
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where ∏
1

=
∏
p

1
1 − Ωλ(p)p−s − p2λ+2−2s

,

p assuming prime values of the form 4k − 1 and∏
2

=
∏
p

1
1 − Ωλ(p)p−s + p2λ+2−2s

,

p assuming prime values of the form 4k + 1. If λ = 0, 2, or 4, then

Ωλ(p) =

{
0, p ≡ −1 (mod 4),

(A + 2iB)2λ+2 + (A − 2iB)2λ+2, p ≡ 1 (mod 4).

Ω1(n) = nΩ0(n).

As before, (4.14) is a consequence of (4.13) and Proposition 4.1.

Proof of (4.13). First, η6(4z) is again the unique newform in the space
Snew

3 (16, (−4
· )). We derive explicit formulas for each pth coefficient. Let K = Q(i)

and Λ = (2). Define a Hecke Grössencharacter by

φ((α)) = αk−1,

where k is an integer at least equal to 2. Then

Φ(z) :=
1
4

∑
a

φ(a)qN(a) =
1
4

∞∑
n=1

a(n)qn

is a newform in the space Snew
k (16, (−4

· )). Now p ≡ −1 (mod 4) is inert in K, and
for the primes p ≡ 1 (mod4), we have the splitting

a(p) = (x + iy)k−1 + (x − iy)k−1,

where x is an odd integer and y is an even integer. (Ramanujan sets y = 2B.) This
argument also explains the Euler products for Ω2 and Ω4, with k = 7 and k = 11,
respectively.

Now we give an elementary proof of the explicit formula for η6(4z) =∑∞
n=1 Ω0(n)qn. Again, we use Jacobi’s identity in the form

η3(z) =
∞∑

n=1
n≡1 (mod4)

nqn2/8.

Using our previous argument, we arrive at

Ω0(p) =
∑

(C,D)≡(1,1) (mod 4)

2p=C2+D2

CD. (4.15)

Now we define

A :=
C + D

2
and B :=

C − D

2
,
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which imply that A is an odd number and B is an even number. Thus, from (4.15),

Ω0(p) =
∑

A2+B2=p
(A,B)≡(1,0) (mod2)

(A+B,A−B)≡(1,1) (mod4)

A2 − B2.

Note that if (A, B) satisfies the conditions in the summand, then (A,−B) is the
only other pair satisfying the conditions. In summary, we have deduced that

Ω0(p) =

{
2(A2 − 4B2), if p ≡ 1 (mod 4) and p = A2 + 4B2,

0, if p ≡ −1 (mod 4),

which completes the proof.

For Ω3(n), Ω5(n), and Ω7(n), the derivations are similar to those above.
Now, we give Hecke relations for Ω3(n), with ω2 = −1 for these entries. For the

Hecke operator T3,

T3(η6(4z)R(q4)) = −20160η18(4z),

T3(η18(4z)) = η6(4z)R(q4).

As T3 and Tp commute for all primes p > 3 and the eigenvalues of the matrix(
0 −20160

1 0

)

are ±24
√

35, we can conclude that

fΩ3(q) := η6(4z)R(q4) + ω24
√

35η18(4z)

is a Hecke eigenform. The other claims can be derived via exactly the same argu-
ment, and so we omit the proofs.

Entry 4.5 (List IV). Let
∞∑

n=1

Ω0(n)qn/12 = q1/12(q; q)2∞, (4.16)

∞∑
n=1

Ω1(n)qn/12 = q1/12(q; q)2∞P (q),

∞∑
n=1

Ω′
2(n)qn/12 = q1/12(q; q)2∞Q(q),

∞∑
n=1

Ω′′
2(n)qn/12 = q5/12(q; q)10∞, (4.17)

Ω2(n) = Ω′
2(n) + 48ω Ω′′

2 (n), ω2 = 1,
∞∑

n=1

Ω′
3(n)qn/12 = q1/12(q; q)2∞R(q),
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∞∑
n=1

Ω′′
3(n)qn/12 = q7/12(q; q)14∞,

Ω3(n) = Ω′
3(n) + 360ω

√
3 Ω′′

3(n), ω2 = −1,

∞∑
n=1

Ω′
4(n)qn/12 = q1/12(q; q)2∞Q2(q),

∞∑
n=1

Ω′′
4(n)qn/12 = q5/12(q; q)10∞Q(q),

Ω4(n) = Ω′
4(n) + 672ω Ω′′

4 (n), ω2 = 1,

∞∑
n=1

Ω′
5(n)qn/12 = q1/12(q; q)2∞Q(q)R(q),

∞∑
n=1

Ω′′
5(n)qn/12 = q5/12(q; q)10∞R(q),

∞∑
n=1

Ω′′′
5 (n)qn/12 = q7/12(q; q)14∞Q(q),

∞∑
n=1

Ω′′′′
5 (n)qn/12 = q11/12(q; q)22∞,

Ω5(n) = Ω′
5(n) + 96ω1

√
1045Ω′′

5 (n) + 216ω2

√
7315Ω′′′

5 (n)

+ 103680ω1ω2

√
7Ω′′′′

5 (n), ω2
1 = 1, ω2

2 = −1, (4.18)
∞∑

n=1

Ω′
7(n)qn/12 = q1/12(q; q)2∞Q2(q)R(q),

∞∑
n=1

Ω′′
7(n)qn/12 = q5/12(q; q)10∞Q(q)R(q),

∞∑
n=1

Ω′′′
7 (n)qn/12 = q7/12(q; q)14∞Q2(q),

∞∑
n=1

Ω′′′′
7 (n)qn/12 = q11/12(q; q)22∞Q(q),

Ω7(n) = Ω′
7(n) + 48ω1

√
910 · 2911Ω′′

7(n) + 216ω2

√
5005 · 2911Ω′′′

7 (n)

− 471744ω1ω2

√
22Ω′′′′

7 (n), ω2
1 = 1, ω2

2 = −1.

Ramanujan did not provide Euler product formulas for the entries in his final
list, Entry 4.5. However, we can provide the missing product formula with

∞∑
n=1

Ωλ(n)
ns

=
∏
p

1
1 − Ωλ(p)p−s + χ(p)p2λ−2s

,
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where χ is the quadratic character modulo 12 defined by

χ(p) =

{
1, if p ≡ 1, 5 (mod 12),

−1, if p ≡ 7, 11 (mod 12).
(4.19)

These Euler products follow from the general theory of Hecke eigenforms, for exam-
ple, in [12, Eq. (6.98), p. 118].

First, we give an elementary argument for the evaluation of a(p), where
η2(12z) =

∑∞
n=1 a(n)qn.

Proof of (4.16). Using the pentagonal number theorem in the form

η(z) =
∞∑

n=−∞
n≡1 (mod 6)

(−1)(n−1)/6qn2/24,

we see that

a(p) =
∑

C2+D2=2p
(C,D)≡(1,1) (mod6)

(−1)(C+D−2)/6.

Setting

A :=
C + D

2
and B :=

C − D

2
,

we observe that A ≡ 1 (mod 3), B ≡ 0 (mod 3), and p = A2 + B2. To satisfy
these conditions, p should be congruent to 1 (mod 12), since p ≡ 1 (mod 4) and
p ≡ 1 (mod 3). On the other hand, when p ≡ 1 (mod 12) and p = A2 + B2, then
A ≡ ±1 (mod3) and B ≡ 0 (mod 3). By employing an argument similar to that used
before, we conclude that

a(p) =

{
2(−1)(A−1)/3, if p ≡ 1 (mod 12) and p = A2 + 9B2 with A ≡ 1 (mod 3),

0, otherwise.

Serre [27] proved that every L-series associated to a weight one newform is an
Artin L-function attached to an irreducible two-dimensional complex linear repre-
sentation of Gal(Q/Q). In the case of qf2(−q12), it is related to the dihedral group,
D4. Consult [27, pp. 242–244] for further information.

Another Proof of (4.16). We give an elementary proof of (4.16). Throughout
the proof, we use the notation from Sec. 3. Recall that from (3.12),

H(−144) = {I, A, A2, A3} = 〈A〉 ∼= Z/4Z,

where

I = [1, 0, 36], A = [5, 4, 8], A2 = [4, 0, 9], A3 = [5,−4, 8], and A4 = I.
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By [28, Theorem 3.1, p. 16] with a = b = 1,

(q; q)2∞ = 1 +
∞∑

n=1

1
2
(R(I, 12n + 1) − R(A2, 12n + 1))qn.

As R(I, 1) = 2 and R(A2, 1) = 0, we deduce that

(q; q)2∞ =
∞∑

n=0

1
2
(R(I, 12n + 1) − R(A2, 12n + 1))qn. (4.20)

With the notation in (3.8),

(q; q)2∞ =
∞∑

n=0

φ12(12n + 1)qn. (4.21)

From (4.20) and (4.21), we deduce that
∞∑

n=1

Ω0(n)q(n−1)/12 =
∞∑

n=0

φ12(12n + 1)qn,

so that

Ω0(n) =

{
φ12(n), if n ≡ 1 (mod 12),

0, if n �≡ 1 (mod 12).
(4.22)

By [30, Theorem 4.5(iv), p. 371],

φ12(n) = 0, if n �≡ 1 (mod 12). (4.23)

Thus, from (4.22) and (4.23), we deduce that

Ω0(n) = φ12(n), n ∈ N. (4.24)

By (4.24) and (3.16) (see [30, Theorem 8.2(iv), p. 389]), we obtain
∞∑

n=1

Ω0(n)
ns

=
∞∑

n=1

φ12(n)
ns

=
∏

p≡3 (mod4)
p�=3

1
1 − p−2s

∏
p≡5 (mod12)

1
1 + p−2s

×
∏

p=x2+36y2

1
(1 − p−s)2

∏
p=4x2+9y2

1
(1 + p−s)2

. (4.25)

Let

Fs(p) :=
1

1 − Ω0(p)p−s + χ(p)p−2s
. (4.26)

By (4.24) and [30, Theorem 4.5(iv), p. 371],

Ω0(p) = φ12(p) =




2, if p ≡ 1 (mod 12), p = x2 + 36y2,

−2, if p ≡ 1 (mod 12), p = 4x2 + 9y2,

0, if p �≡ 1 (mod 12).

(4.27)
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From the definition of χ(p) in (4.19), (4.26), and (4.27), we deduce that

Fs(2) = 1, (4.28)

Fs(3) = 1, (4.29)

Fs(p) =




1
1 − 2p−s + p−2s

=
1

(1 − p−s)2
, if p ≡ 1 (mod 12), p = x2 + 36y2,

1
1 + 2p−s + p−2s

=
1

(1 + p−s)2
, if p ≡ 1 (mod 12), p = 4x2 + 9y2,

1
1 + p−s

, if p ≡ 5 (mod 12),

1
1 − p−2s

, if p ≡ 3 (mod 4), p �= 3.

(4.30)

Thus, appealing to (4.25), (4.28)–(4.30), and (4.26), we obtain
∞∑

n=1

Ω0(n)
ns

=
∏
p

Fs(p) =
∏
p

1
1 − Ω0(p)p−s + χ(p)p−2s

as asserted.
We have shown that Ramanujan’s missing product formula for λ = 0 in Entry

4.5 is the formula (3.16) of Sun and Williams. By [29, Theorem 7.4(ii)], φ12(n)
is a multiplicative function of n, so by (4.24), Ω0(n) is a multiplicative function
of n.

For Ω2, Ω3, and Ω4, we can verify Ramanujan’s claims by using the same argu-
ment, so we omit the proofs here. For Ω5(n), we give a more detailed verifica-
tion. Note that f1(q) := η2(12z)Q(q12)R(q12), f5(q) := η10(12z)R(q12), f7(q) :=
η14(12z)Q(q12), and f11(q) := η22(12z) are in the space Snew

11 (Γ0(144), χ), where
χ is defined in (4.19). Moreover, each form fa is supported on one residue class a

(mod 12), which is coprime to 12. We can easily observe that Tpfa is supported on
the residue class pa (mod 12) and that

T5




f1

f5

f7

f11


 =




0 963027 0 0

1 0 0 0

0 0 0 46080

0 0 209 0







f1

f5

f7

f11


.

Thus, we find that

f1 + ω196
√

1045f5 and f7 + ω1
96
209

√
1045f11

are eigenforms with eigenvalue 962 · 1045 under the action of T5. By a similar
calculation, we observe that

f1 + ω2216
√

7315f7 and f5 + ω2
216
209

√
7315f11
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are eigenforms under the action of T7, and

f1 + ω3103680
√

7f11 and f5 + ω3
103680
46080

√
7f7

are eigenforms under the action of T11, where ω2
3 = −1. Therefore,

f1 + ω196
√

1045f5 + ω2216
√

7 · 1045
(

f7 + ω1
96
209

√
1045f11

)

= f1 + ω2216
√

7315f7 + ω196
√

1045
(

f5 + ω2
216
209

√
7 · 1045f11

)

= f1 + ω3193680
√

7f11 + ω196
√

1045
(

f5 + ω3
103680
46080

√
7f7

)

= f1 + ω196
√

1045f5 + ω2216
√

7 · 1045 + ω1ω2103680
√

7f11

is the Hecke eigenform as desired. For Ω7, we can use exactly the same argument,
so we omit it. We remark that Rangachari [25] pointed out that the coefficient in
the definition of Ω7(n) should be 4717440 instead of 471744, as was written by
Ramanujan.

We further remark that an approach of Chan, Cooper and Toh [4] can be used
to derive representations for certain coefficients that Ramanujan did not provide.
For example, Theorem 7.1 in [4] implies that

∞∑
n=1

Ω′
2(n)qn/12 = η2(z)Q(q) =

1
4

∑
α≡1 (mod6)
β≡1 (mod 6)

(−1)(α+β+4)/6(α + iβ)4q(α2+β2)/24,

where Ω′
2(n) is defined in List IV, and Theorem 7.4 in [4] implies that

∞∑
n=1

Ω2(n)qn/4 = η6(z)Q(q) = − 1
8i

∑
α≡1 (mod4)
β≡1 (mod4)

(α + iβ)6q(α2+β2)/12,

which gives another explicit formula for Ω2(n) in List III.
The results in [4, Sec. 7] can also be used to establish some of the formulas in

Lists I–III that we derived by employing Hecke Grössencharacters.
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