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LIFTING MONOGENIC CUBIC FIELDS

TO MONOGENIC SEXTIC FIELDS

Melisa J. Lavallee, Blair K. Spearman and Kenneth S. Williams

Abstract

Let e A f�1;þ1g. Let a; b A Z be such that x6 þ ax4 þ bx2 þ e is irreducible in

Z½x�. The cubic field C ¼ QðaÞ, where a3 þ aa2 þ baþ e ¼ 0, is said to lift to the sextic

field K ¼ QðyÞ, where y6 þ ay4 þ by2 þ e ¼ 0. The field K is called the lift of C. If

f1; a; a2g is an integral basis for C (so that C is monogenic), we investigate conditions

on a and b so that f1; y; y2; y3; y4; y5g is an integral basis for the lift K of C (so that K

is monogenic). As the sextic field K contains a cubic subfield (namely C), there are

eight possibilities for the Galois group of K . For five of these Galois groups, we show

that infinitely many monogenic sextic fields can be obtained in this way, and for the

remaining three Galois groups, we show that only finitely many monogenic fields can

arise in this way, when e A f�1;þ1g.

1. Introduction

Suppose that a cubic field C is defined by a cubic polynomial gðxÞ ¼
x3 þ ax2 þ bxG 1 with a; b A Z. Let a be a root of gðxÞ and suppose that
f1; a; a2g is an integral basis for C (so that C is monogenic). Let f ðxÞ ¼
gðx2Þ ¼ x6 þ ax4 þ bx2 G 1 and suppose that f defines a sextic field K . Let y be
a root of f . We investigate conditions on a and b so that f1; y; y2; y3; y4; y5g is
an integral basis for K . There are eight possibilities for the Galois group of a
sextic field containing a cubic subfield [2, p. 325]; namely C6; S3; D6; A4; ðS4;þÞ;
ðS4;�Þ; A4 � C2 and S4 � C2. We show that for five of these Galois groups,
there are infinitely many monogenic sextic fields which can be obtained in this
way. For the remaining three Galois groups, we show that there are at most
finitely many such monogenic sextic fields. We prove the following theorem in
Section 3 after some lemmas are proved in Section 2.
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Theorem 1.1. For those d specified in column 1 of TABLE 1 define fdðxÞ
as in column 2. Let yd be a root of fdðxÞ. Let Kd ¼ QðydÞ. Then there are
infinitely many d such that

(i) ½Kd : Q� ¼ 6,
(ii) Galð fdÞ is as given in column 3 of TABLE 1,
(iii) Kd is monogenic with integral baisis f1; yd ; y2d ; y

3
d ; y

4
d ; y

5
dg.

Moreover the fields Kd are distinct.

Further, there exist only finitely many integers a and b such that
(iv) gðxÞ ¼ x3 þ ax2 þ bxG 1 defines a monogenic cubic field with integral

basis f1; a; a2g, where a A C is a root of gðxÞ,
(v) f ðxÞ ¼ gðx2Þ ¼ x6 þ ax4 þ bx2 G 1 defines a monogenic sextic field with

integral basis f1; y; y2; y3; y4; y5g, where y A C is a root of f ðxÞ,
and

(vi) Galð f Þ ¼ C6, S3 or ðS4;�Þ.

2. Four lemmas

In this section we prove four lemmas which will be used in the proof of
Theorem 1.1 in Section 3.

Lemma 2.1. Let gðxÞ ¼ x3 þ ax2 þ bxþ 1 A Z½x�. Let a be a root of gðxÞ.
Suppose that gðxÞ defines a monogenic cubic field C and that f1; a; a2g is a power
basis of C. Let f ðxÞ ¼ x6 þ ax4 þ bx2 þ 1 and suppose that y is a root of f ðxÞ.
Let K ¼ QðyÞ and suppose that ½K : Q� ¼ 6. Then K is monogenic with power

basis f1; y; y2; y3; y4; y5g if and only if

ða; bÞ2 ð0; 2Þ; ð1; 1Þ; ð2; 0Þ; ð2; 2Þ; ð3; 3Þ ðmod 4Þ:

Proof. We have

discðx3 þ ax2 þ bxþ 1Þ ¼ �27þ 18abþ a2b2 � 4a3 � 4b3

TABLE 1

d A Z fdðxÞ Galð fdÞ

4d 2 þ 2d þ 7 squarefree x6 þ ð2d þ 2Þx4 þ ð2d � 1Þx2 � 1 A4

4d 2 þ 2d þ 7 squarefree x6 � ð2d þ 2Þx4 þ ð2d � 1Þx2 þ 1 A4 � C2

d1 1 ðmod 2Þ, d > 3, 4d 3 � 27 squarefree x6 � dx2 � 1 ðS4;þÞ

d1 1 ðmod 2Þ, d > 3, 4d 3 � 27 squarefree x6 � dx2 þ 1 S4 � C2

d1 1 ðmod 2Þ, d > 3, 4d 3 � 27 squarefree x6 þ 2dx4 þ d 2x2 þ 1 D6
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and

discðx6 þ ax4 þ bx2 þ 1Þ ¼ �26ð�27þ 18abþ a2b2 � 4a3 � 4b3Þ2:
We denote the discriminant of an algebraic number field F by dðFÞ. As
QHCHK , ½K : Q� ¼ 6, ½C : Q� ¼ 3, we have ½K : C� ¼ 2 and

dðCÞ2 j dðKÞ
so that

dðKÞ ¼ �2 tð�27þ 18abþ a2b2 � 4a3 � 4b3Þ2

with t A f0; 2; 4; 6g. Thus K is monogenic with power basis f1; y; y2; y3; y4; y5g if
and only if t ¼ 6. Now t < 6 if and only if

l ¼ a0 þ a1yþ a2y
2 þ a3y

3 þ a4y
4 þ y5

2

is an algebraic integer for some integers ai A f0; 1g. We show that l is never an
algebraic integer in the following twenty-three cases

ða0; a1; a2; a3; a4Þ ¼ ð0; 0; 0; 0; 0Þ; ð0; 0; 0; 0; 1Þ; ð0; 0; 0; 1; 1Þ; ð0; 0; 1; 0; 0Þ; ð0; 0; 1; 0; 1Þ;
ð0; 0; 1; 1; 0Þ; ð0; 1; 0; 0; 1Þ; ð0; 1; 0; 1; 0Þ; ð0; 1; 0; 1; 1Þ; ð0; 1; 1; 0; 0Þ;
ð0; 1; 1; 1; 0Þ; ð0; 1; 1; 1; 1Þ; ð1; 0; 0; 0; 0Þ; ð1; 0; 0; 0; 1Þ; ð1; 0; 0; 1; 0Þ;
ð1; 0; 1; 0; 0Þ; ð1; 0; 1; 0; 1Þ; ð1; 0; 1; 1; 1Þ; ð1; 1; 0; 0; 0Þ; ð1; 1; 0; 1; 0Þ;
ð1; 1; 0; 1; 1Þ; ð1; 1; 1; 0; 1Þ; ð1; 1; 1; 1; 0Þ:

In the remaining nine cases TABLE 2 gives necessary and su‰cient conditions on
a and b for l to be an algebraic integer.

TABLE 2

ða0; a1; a2; a3; a4Þ conditions on ða; bÞ for l to be an algebraic integer

ð0; 0; 0; 1; 0Þ ða; bÞ1 ð3; 3Þ or ð7; 7Þ ðmod 8Þ

ð0; 0; 1; 1; 1Þ ða; bÞ1 ð3; 3Þ ðmod 4Þ

ð0; 1; 0; 0; 0Þ ða; bÞ1 ð1; 1Þ or ð3; 3Þ ðmod 4Þ

ð0; 1; 1; 0; 1Þ ða; bÞ1 ð2; 2Þ ðmod 4Þ or ða; bÞ1 ð3; 3Þ or ð7; 7Þ ðmod 8Þ

ð1; 0; 0; 1; 1Þ ða; bÞ1 ð3; 3Þ or ð7; 7Þ ðmod 8Þ

ð1; 0; 1; 1; 0Þ ða; bÞ1 ð2; 2Þ or ð3; 3Þ ðmod 4Þ

ð1; 1; 0; 0; 1Þ ða; bÞ1 ð1; 1Þ or ð3; 3Þ ðmod 4Þ

ð1; 1; 1; 0; 0Þ ða; bÞ1 ð3; 3Þ or ð7; 7Þ ðmod 8Þ

ð1; 1; 1; 1; 1Þ ða; bÞ1 ð0; 2Þ or ð2; 0Þ ðmod 4Þ
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To prove these assertions requires nothing more than modular arithmetic.
We just give the details for two of the cases. We first show that

m ¼ 1þ y3 þ y5

2

is not an algebraic integer. (This is the case ða0; a1; a2; a3; a4Þ ¼ ð1; 0; 0; 1; 0Þ.)
We begin by using MAPLE to determine the sextic polynomial x6 þ cx5 þ dx4 þ
ex3 þ fx2 þ gxþ h satisfied by m. We find that

f ¼ f1

16
;

where f1 is a polynomial in a and b with integral coe‰cients such that

f1 1 a2b3 þ a3bþ a2bþ ab3 þ abþ a2 þ aþ b5 þ b3 þ b2 þ b1 ab ðmod 2Þ:

If a1 b1 1 ðmod 2Þ then m is not an algebraic integer.
If a1 0 ðmod 2Þ and b1 1 ðmod 2Þ we set a ¼ 2k ðk A ZÞ and find that

d ¼ d1

4
;

where d1 is a polynomial in b and k with integral coe‰cients such that

d1 1 b1 1 ðmod 2Þ

so that m is not an algebraic integer. If a1 b1 0 ðmod 2Þ we set a ¼ 2k ðk A ZÞ
and b ¼ 2j ð j A ZÞ and find that

d ¼ d2

2
;

where d2 is a polynomial in j and k with integral coe‰cients such that

d2 1 1þ j ðmod 2Þ:

If j1 0 ðmod 2Þ then m is not an algebraic integer. If j1 1 ðmod 2Þ we set
j ¼ 2mþ 1 ðm A ZÞ and find that

f ¼ f2

8
;

where f2 is a polynomial in m and k with integral coe‰cients with

f2 1 k ðmod 2Þ:
If k1 1 ðmod 2Þ then m is not an algebraic integer. If k1 0 ðmod 2Þ we set
k ¼ 2n ðn A ZÞ and find that

h ¼ h1

64
;
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where h1 is a polynomial in m and n with integral coe‰cients and

h1 1 1 ðmod 2Þ
so that m is not an algebraic integer.

If a1 1 ðmod 2Þ and b1 0 ðmod 2Þ we set b ¼ 2l ðl A ZÞ and find that

d ¼ d3

4
;

where d3 is a polynomial in a and l with integral coe‰cients and

d3 1 a5 þ a3 þ a2 1 1 ðmod 2Þ
so that m is not an algebraic integer.

Finally we show that

m ¼ y2 þ y3 þ y4 þ y5

2

is an algebraic integer if and only if ða; bÞ1 ð3; 3Þ ðmod 4Þ. (This is the case
ða0; a1; a2; a3; a4Þ ¼ ð0; 0; 1; 1; 1Þ.) If ða; bÞ1 ð3; 3Þ ðmod 4Þ we set a ¼ 4nþ 3 and
b ¼ 4lþ 3, where n; l A Z. Then, by MAPLE, m satisfies the polynomial

x6 þ ð�16n2 � 20nþ 8lÞx5 þ ð360n2 þ 68l2 � 320ln3 � 656ln2

� 328lnþ 80l2n� 3lþ 3nþ 896n4 þ 992n3 þ 256n5Þx4

þ ð344n2 þ 144l2 þ 320ln3 � 544ln2 � 456ln� 224l2n� 256l2n3

� 768l2n2 þ 192l3n� 2lþ 2nþ 320n4 þ 256ln4 þ 720n3 þ 144l3Þx3

þ ð147n2 þ 101l2 þ 80ln3 þ 128ln2 � 244ln� 500l2nþ 64l2n3 þ 48l2n2

� 400l3nþ 32n4 þ 64l5 þ 240l4 � 64l3n2 � 64l4nþ 120n3 þ 256l3Þx2

þ ð26n2 þ 22l2 þ 16ln3 þ 24ln2 � 48ln� 80l2n� 16l2n2 � 16l3n

þ 16l4 þ 12n3 þ 44l3Þxþ 2l2 þ 2n2 � 4ln� l2n� ln2 þ l3 þ n3;

which belongs to Z½x�, so that m is an algebraic integer. Now we prove the
converse. Suppose that m is an algebraic integer. Let x6 þ cx5 þ dx4 þ ex3 þ
fx2 þ gxþ h be the polynomial (given by MAPLE) satisfied by m. Then

e ¼ e1

4
;

where e1 is a polynomial in a and b with integral coe‰cients such that

e1 1 a4bþ a3b2 þ a3bþ a2b2 þ ab3 þ a2bþ a3 þ a2 þ b2 þ 11 bþ 1 ðmod 2Þ:
As m is an algebraic integer we must have b1 1 ðmod 2Þ. We set b ¼ 2k þ 1
ðk A ZÞ. Then

g ¼ g1

16
;
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where g1 is a polynomial in a and k with integral coe‰cients such that

g1 1 a3 þ a2 þ aþ 11 aþ 1 ðmod 2Þ:

As m is an algebraic integer we deduce that a1 1 ðmod 2Þ. We set a ¼ 2mþ 1
ðm A ZÞ. Then

d ¼ d1

2
;

where d1 is a polynomial in k and m with integral coe‰cients such that

d1 1mþ k ðmod 2Þ:

As m is an algebraic integer we have k1m ðmod 2Þ. If k1m1 0 ðmod 2Þ we
set k ¼ 2j ð j A ZÞ and m ¼ 2i ði A ZÞ. Then

f ¼ f1

2
;

where f1 is a polynomial in i and j with integral coe‰cients such that

f1 1 1 ðmod 2Þ;

contradicting that m is an algebraic integer. Hence k1m1 1 ðmod 2Þ so that
a1 b1 3 ðmod 4Þ as asserted. r

Our second lemma can be proved in a similar manner.

Lemma 2.2. Let gðxÞ ¼ x3 þ ax2 þ bx� 1 A Z½x�. Let a be a root of gðxÞ.
Suppose that gðxÞ defines a monogenic cubic field C and that f1; a; a2g is a power
basis of C. Let f ðxÞ ¼ x6 þ ax4 þ bx2 � 1 and suppose that y is a root of f ðxÞ.
Let K ¼ QðyÞ and suppose that ½K : Q� ¼ 6. Then K is monogenic with power

basis f1; y; y2; y3; y4; y5g if and only if

ða; bÞ2 ð0; 0Þ; ð2; 1Þ; ð2; 2Þ; ð1; 3Þ; ð3; 1Þ; ð3; 2Þ ðmod 4Þ:

Proof. It can be shown that

l ¼ a0 þ a1yþ a2y
2 þ a3y

3 þ a4y
4 þ y5

2

is never an algebraic integer when

ða0; a1; a2; a3; a4Þ ¼ ð0; 0; 0; 0; 0Þ; ð0; 0; 0; 1; 0Þ; ð0; 0; 0; 1; 1Þ; ð0; 1; 0; 0; 1Þ;
ð0; 1; 0; 1; 0Þ; ð0; 1; 1; 0; 0Þ; ð0; 1; 1; 1; 1Þ; ð1; 0; 0; 1; 0Þ;
ð1; 0; 1; 0; 0Þ; ð1; 0; 1; 1; 1Þ; ð1; 1; 0; 1; 1Þ; ð1; 1; 1; 0; 1Þ;
ð1; 1; 1; 1; 0Þ:
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In the remaining cases TABLE 3 gives necessary and su‰cient conditions on a
and b for l to be an algebraic integer. r

Before proving the last two lemmas of this section we observe that 4x3 � 27
ðx A ZÞ is a square if and only if x ¼ 3. To see this we appeal to MAGMA [1],
which tells us that the elliptic curve y2 ¼ x3 � 432 has conductor 27, rank 0, and
ð12;G36Þ as its only integral points.

Lemma 2.3. For the values of d specified in column 1 of TABLE 4 define
fdðxÞ as in column 2. Then fdðxÞ is irreducible and the Galois group of fdðxÞ is
given in column 3.

Proof. The assertion of the first row of TABLE 4 is proved in [4]. We
now give the proofs of the assertions of the second, third, fourth and fifth rows.

TABLE 3

ða0; a1; a2; a3; a4Þ conditions on ða; bÞ for l to be an algebraic integer

ð0; 0; 0; 0; 1Þ ða; bÞ1 ð13; 3Þ ðmod 16Þ and a1�b ðmod 64Þ
ð0; 0; 1; 0; 0Þ ða; bÞ1 ð0; 0Þ ðmod 4Þ
ð0; 0; 1; 0; 1Þ ða; bÞ1 ð3; 2Þ ðmod 4Þ
ð0; 0; 1; 1; 0Þ ða; bÞ1 ð2; 1Þ ðmod 4Þ
ð0; 0; 1; 1; 1Þ ða; bÞ1 ð1; 3Þ ðmod 4Þ
ð0; 1; 0; 0; 0Þ ða; bÞ1 ð1; 3Þ; ð3; 1Þ ðmod 4Þ
ð0; 1; 0; 1; 1Þ ða; bÞ1 ð2; 1Þ ðmod 4Þ or ða; bÞ1 ð13; 3Þ ðmod 16Þ and a1�b ðmod 64Þ
ð0; 1; 1; 0; 1Þ ða; bÞ1 ð0; 0Þ ðmod 4Þ or ða; bÞ1 ð1; 7Þ; ð5; 3Þ ðmod 8Þ
ð0; 1; 1; 1; 0Þ ða; bÞ1 ð3; 2Þ ðmod 4Þ or ða; bÞ1 ð13; 3Þ ðmod 16Þ and a1�b ðmod 64Þ
ð1; 0; 0; 0; 0Þ ða; bÞ1 ð13; 3Þ ðmod 16Þ and a1�b ðmod 64Þ
ð1; 0; 0; 0; 1Þ ða; bÞ1 ð2; 1Þ ðmod 4Þ
ð1; 0; 0; 1; 1Þ ða; bÞ1 ð3; 2Þ ðmod 4Þ or ða; bÞ1 ð1; 7Þ; ð5; 3Þ ðmod 8Þ
ð1; 0; 1; 0; 1Þ ða; bÞ1 ð13; 3Þ ðmod 16Þ and a1�b ðmod 64Þ
ð1; 0; 1; 1; 0Þ ða; bÞ1 ð0; 0Þ; ð1; 3Þ ðmod 4Þ
ð1; 1; 0; 0; 0Þ ða; bÞ1 ð3; 2Þ ðmod 4Þ
ð1; 1; 0; 0; 1Þ ða; bÞ1 ð1; 3Þ; ð3; 1Þ ðmod 4Þ
ð1; 1; 0; 1; 0Þ ða; bÞ1 ð13; 3Þ ðmod 16Þ and a1�b ðmod 64Þ
ð1; 1; 1; 0; 0Þ ða; bÞ1 ð2; 1Þ ðmod 4Þ or ða; bÞ1 ð1; 7Þ; ð5; 3Þ ðmod 8Þ
ð1; 1; 1; 1; 1Þ ða; bÞ1 ð0; 0Þ; ð2; 2Þ ðmod 4Þ or ða; bÞ1 ð13; 3Þ ðmod 16Þ and a1�b ðmod 64Þ

TABLE 4

d fdðxÞ Galð fdÞ

d A Z x6 þ ð2d þ 2Þx4 þ ð2d � 1Þx2 � 1 A4

d A Z x6 � ð2d þ 2Þx4 þ ð2d � 1Þx2 þ 1 A4 � C2

d A Z, d1 1 ðmod 2Þ, d > 3 x6 � dx2 � 1 ðS4;þÞ
d A Z, d1 1 ðmod 2Þ, d > 3 x6 � dx2 þ 1 S4 � C2

d A Z, d0 0; 2; 3 x6 þ 2dx4 þ d 2x2 þ 1 D6
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We begin by proving the assertion of the second row of TABLE 4. Let

fdðxÞ ¼ x6 � ð2d þ 2Þx4 þ ð2d � 1Þx2 þ 1; d A Z;

yd be a root of fd ;

Kd ¼ QðydÞ;
Ld ¼ normal closure of Kd ;

gdðxÞ ¼ x3 � ð2d þ 2Þx2 þ ð2d � 1Þxþ 1:

First we prove that Kd contains a unique cyclic cubic subfield Cd . Clearly gdðxÞ
is irreducible by the rational root theorem. Hence Cd ¼ Qðy2dÞ is a cubic subfield

of Kd . It is cyclic since the discriminant of gd is equal to ð4d 2 þ 2d þ 7Þ2. Next
we show that fdðxÞ is irreducible over Q. If fdðxÞ were reducible over Q then
½Kd : Q� < 6. Since Kd has a subfield of degree 3 over Q we deduce that
½Kd : Q� ¼ 3. Therefore yd is a root of an irreducible cubic polynomial over Q,
say

hðxÞ ¼ x3 þ ax2 þ bxþ c; a; b; c A Z:

Clearly �yd is a root of �hð�xÞ and hðxÞ0�hð�xÞ. As yd , �yd are roots of
fdðxÞ we deduce that

fdðxÞ ¼ hðxÞð�hð�xÞÞ ¼ x6 þ ð�a2 þ 2bÞx4 þ ðb2 � 2acÞx2 � c2:

This is a contradiction since the constant term of fd is equal to 1. Next we show
that fd has four real roots and two complex (nonreal) roots. First we note that
since the square of each root of fd belongs to the real cubic subfield Cd , each root
of fd must be of the form r or ri, where r is a real number. We also note that
for each root of fd its negative is also a root of fd . Since the discriminant of
fdðxÞ is equal to

�26ð4d 2 þ 2d þ 7Þ4 < 0

fdðxÞ does have nonreal roots. If fd has four complex roots then its discrim-
inant would be positive. Hence fd has two or six complex roots. Therefore the
number of real roots is zero or four. If there were no real roots then the roots of
fd would be

Gr1i;Gr2i;Gr3i; r1; r2; r3 A R:

It would follow that fdðxÞ ¼ ðx2 þ r21Þðx2 þ r22Þðx2 þ r23Þ so that the coe‰cients of
the x4 and x2 terms would both be positive. However this is obviously not the
case. Therefore we may take the six roots of fd as

Gf1 ¼Gr1; Gf2 ¼Gr2; Gf3 ¼Gr3i;
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where r1, r2 and r3 are real numbers and f1 ¼ yd . Next we show that

½Ld : Q� ¼ 24:

We know that ½Kd : Q� ¼ 6. Suppose that f2 A Kd . Then

f2 ¼ aþ bf1; a; b A Cd :

Squaring both sides, and using f2
1 ; f

2
2 A Cd ; and closure in Cd ; we deduce that

2abf1 A Cd :

Since f1 generates an extension of degree 6, we have f1 B Cd so that either a ¼ 0
or b ¼ 0. Clearly b0 0 as f2 B Cd . Therefore a ¼ 0 so that

f2 ¼ bf1:

Squaring gives

f2
2 ¼ b2f2

1 :

Since the f2
i are primitive conjugate elements of a cyclic (normal) cubic field there

exists by Galois theory an isomorphism s of Cd which we write in cycle notation
as

ðf2
1 ; f

2
2 ; f

2
3Þ:

Applying this to our equation gives

f2
3 ¼ sðb2Þf2

2 :

However the right hand side is positive as it is the square of a real number and
the left hand side is negative as it is the square of a quadratic imaginary giving a
contradiction. Therefore

½Kdðf2Þ : Q� ¼ 12;

so that as f3 is complex we have f3 B Kdðf2Þ. Therefore

½Ld : Q� ¼ 24:

Finally we determine the Galois group of fd . Since

½Ld : Q� ¼ 24;

and the discriminant of fd is negative we see [2, p. 325] that the Galois group
is either ðS4;�Þ or A4 � C2. Now Ld contains a normal cubic subfield so that
Galð fdÞ contains a normal subgroup of index 3, that is a normal subgroup of
order 8. However S4 does not have a normal subgroup of order 8. As there
are 3 Sylow 2-subgroups of order 8 [3, p. 144], we deduce that Galð fdÞ is
A4 � C2.
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We now prove the assertion of the third row of TABLE 4. Let

fdðxÞ ¼ x6 � dx2 � 1; d A Z; d1 1 ðmod 2Þ; d > 3;

yd be a root of fd ; discð fdÞ ¼ 26ð4d 3 � 27Þ2;
Kd ¼ QðydÞ;
Ld ¼ normal closure of Kd ;

gdðxÞ ¼ x3 � dx� 1:

In a similar manner we can show that Kd contains a unique totally real non-
abelian cubic field and fdðxÞ is irreducible over Q.

Next we show that fd has two real roots and four nonreal roots. By Rolle’s
theorem fd has some nonreal roots. In fact as fd has a positive discriminant it
must have exactly four nonreal roots. Therefore we may take the six roots of fd
to be

Gf1 ¼Gr1; Gf2 ¼Gr2i; Gf3 ¼Gr3i; r1; r2; r3 A R;

where f1 ¼ yd .
Next we show that

½Ld : Q� ¼ 24

and determine the Galois group of fd . We know that ½Kd : Q� ¼ 6. Suppose
that f2 A Kd . This is impossible as f2 is nonreal and Kd is real. Therefore

½Kdðf2Þ : Q� ¼ 12:

If

½Ld : Q� ¼ 12

then, since the discriminant of fd is a square in Q, by [2, p. 325] the Galois
group would be A4 implying that Ld contains a normal cubic subfield. This is a
contradiction. Therefore

½Ld : Q� ¼ 24

and the discriminant is a square in Q so the Galois group must be ðS4;þÞ.
We now prove the assertion of the fourth row of TABLE 4. Let

fdðxÞ ¼ x6 � dx2 þ 1; d A Z; d1 1 ðmod 2Þ; d > 3;

yd be a root of fd ;

Kd ¼ QðydÞ;
Ld ¼ normal closure of Kd ;

gdðxÞ ¼ x3 � dxþ 1:
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In a similar manner we can show that Kd contains a unique totally real non-
abelian cubic field and fdðxÞ is irreducible over Q.

Next we show that fd has four real roots and two nonreal roots. Again
since the cubic subfield is totally real, the roots of fd must be real or pure
imaginary. Since the discriminant of fdðxÞ is equal to �26ð4d 3 � 27Þ2, which is
negative, fd does have some nonreal roots, in fact two or six. Thus the number
of real roots is zero or four. If there were no real roots then the roots of fd
would be

Gr1i;Gr2i;Gr3i; r1; r2; r3 A R:

It would then follow that fdðxÞ ¼ ðx2 þ r21Þðx2 þ r22Þðx2 þ r23Þ so that the signs of
the x4 and x2 terms would both be positive. This is obviously not the case.
Therefore we may take the six roots of fd to be

Gf1 ¼Gr1; Gf2 ¼Gr2; Gf3 ¼Gr3i; r1; r2; r3 A R;

where f1 ¼ yd .
Next we show that

½Ld : Q� ¼ 48

and determine the Galois group of fd . We know that ½Kd : Q� ¼ 6. Let Ed

denote the normal closure of Cd . The field Ed is an extension of Q of degree 6.
Suppose that f1 A Ed . Then the field Kd would be normal, which is impossible
as Ed is real (recall that d > 3) but f3 is nonreal. Therefore

½Edðf1Þ : Q� ¼ 12

as f2
1 A Cd HEd . If f2 A Edðf1Þ then

f2 ¼ aþ bf1; for a; b A Ed ða normal real sextic fieldÞ:
Squaring both sides, and using closure properties, we deduce that

2abf1 A Ed :

Since f1 B Ed we deduce that a ¼ 0 or b ¼ 0. But b ¼ 0 is impossible as f2 B Ed .
Therefore a ¼ 0 so

f2 ¼ bf1

so that

f2
2 ¼ b2f2

1 :

Since the f2
j are primitive conjugate elements of a cubic field there exists by

Galois theory an isomorphism s of Ed , which we write in cycle notation
as ðf2

1 ; f
2
2 ; f

2
3Þ. Applying this to our equation gives f2

3 ¼ sðb2Þf2
2 . However

the right hand side of this equation is positive and the left hand side is negative
giving a contradiction. Therefore

½Edðf1; f2Þ : Q� ¼ 24:
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Finally, as f3 is complex, we have f3 B Edðf1; f2Þ. Thus

½Ld : Q� ¼ 48:

Then, appealing to [4, p. 325], we deduce Galð fdÞ ¼ S4 � C2.
Finally we prove the assertion of the fifth row of TABLE 4. Let

fdðxÞ ¼ x6 þ 2dx4 þ d 2x2 þ 1; d A Z; d0 0; 2; 3;

yd be a root of fd ; discð fdÞ ¼ �26ð4d 3 � 27Þ2;
Kd ¼ QðydÞ;
Ld ¼ normal closure of Kd ;

gdðxÞ ¼ x3 þ 2dx2 þ d 2xþ 1:

In a similar manner we can show that Kd contains a unique totally real non-
abelian cubic field and fdðxÞ is irreducible over Q.

Next we note that over the field Kd we have the factorization

fdðxÞ ¼ ðx� ydÞðxþ ydÞðx2 � ydxþ y2d þ dÞðx2 þ ydxþ y2d þ dÞ:

At least one of the quadratics must be irreducible over Kd because the splitting

field of fdðxÞ contains at least two quadratic subfields, namely Qð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4d 3 � 27

p
Þ

and Qð
ffiffiffiffiffiffiffi
�1

p
Þ. These two fields are distinct since 4d 2 � 27 ¼ �z2 is impossible

modulo 4. Therefore ½Ld : Q�b 12. However both quadratics in the above

factorization have the same discriminant, namely, �3y2d � 4d. Thus when we
adjoin a root of one of them, we have constructed the entire splitting field. We
have proved ½Ld : Q� ¼ 12. Since the discriminant of fdðxÞ is not a square in Q,
by Cohen [4, p. 325] the Galois group of fd must be D6.

This completes the proof of Lemma 2.3. r

Lemma 2.4. There exist at most finitely many polynomials f ðxÞ ¼ x6 þ ax4 þ
bx2 G 1 irreducible over Q with Galð f Þ ¼ C6, S3 or ðS4;�Þ and such that a root of
f ðxÞ is a monogenic generator of a sextic field and a root of x3 þ ax2 þ bxG 1 is
a monogenic generator of a cubic field.

Proof. We just treat the case when the Galois group is C6. The remain-
ing cases can be treated similarly. By way of contradiction we suppose that
there are infinitely many such polynomials. According to [2, p. 325] the discrim-
inant of the polynomial f ðxÞ cannot be a square. As discðx6 þ ax4 þ bx2 � 1Þ ¼
26ð�27� 18abþ a2b2 þ 4a3 � 4b3Þ2 this forces us to choose the plus sign, so
f ðxÞ ¼ x6 þ ax4 þ bx2 þ 1. Moreover the discriminant of f ðxÞ is equal to �z2

for some integer z, so that i belongs to the splitting field of f ðxÞ. In this case
this splitting field is equal to the compositum of a cyclic cubic field defined by
gðxÞ ¼ x3 þ ax2 þ bxþ 1 and the quadratic field generated by i. The roots of
f ðxÞ are either of the formGr orGri, where r is a real number, because they are
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the square roots of elements in a cyclic cubic field. In fact they must all have the
formGri since each generates a sextic field (the same field) which contains i. So
f ðxÞ has six pure imaginary roots. Consider the monic sextic polynomial tðxÞ
whose roots are equal to i times the roots of f ðxÞ. We must have tðxÞ ¼
x6 � ax4 þ bx2 � 1. The roots of tðxÞ are real numbers so they cannot generate
the splitting field of f ðxÞ. On the other hand their squares generate a cyclic
cubic field. Therefore the roots of tðxÞ must generate the same cyclic cubic
field. Hence tðxÞ must factor over Z into two monic cubic polynomials, say

tðxÞ ¼ ðx3 þ ux2 þ vxþ 1Þðx3 � ux2 þ vx� 1Þ; u; v A Z;

taking advantage of the fact that if a is a root of tðxÞ then so is �a. Now if b is
a root of one of these cubics say cðxÞ ¼ x3 þ ux2 þ vxþ 1 then �b2 is a root of
x3 þ ax2 þ bxþ 1. By assumption the ring of integers of the cyclic cubic field is
Z½b2�. Of course Z½b2� ¼ Z½b� in this case. Consequently the discriminants of
the minimal polynomials of b and b2 are equal. For b the minimal polynomial
is cðxÞ and from this a MAPLE calculation shows that the discriminant of the
minimal polynomial of b2 is equal to discðcðxÞÞðuv� 1Þ2. We deduce from
discðcðxÞÞ ¼ discðcðxÞÞðuv� 1Þ2 that uv� 1 ¼G1 so that either u ¼ 0 or v ¼ 0
or ðu; vÞ ¼ ð�2;�1Þ; ð1; 2Þ; ð2; 1Þ or ð�1;�2Þ. The first two choices lead to

x3 þ ux2 þ 1 with discriminant �4u3 � 27 and to x3 þ vxþ 1 with discriminant
�4v3 � 27. These are only squares if u ¼ v ¼ �3, therefore cannot generate C3

fields. Only finitely many choices remain so the theorem is proved. r

3. Proof of Theorem 1.1

We first state a result of Llorente and Nart [5] giving the discriminant of
a cubic field. For a prime p and a nonzero integer m we denote by vpðmÞ the
largest integer k such that pk jm.

Lemma 3.1. Let f ðxÞ ¼ x3 � axþ b A Z½x� be irreducible over Z. Let
D :¼ 4a3 � 27b2ð0 0Þ. For a prime p set sp ¼ vpðDÞ and Dp ¼ D=psp . Suppose
further that f ðxÞ satisfies the simplifying assumption, that is, if p is a prime then
vpðaÞ < 2 or vpðbÞ < 3. Let y A C be a root of f ðxÞ and set K ¼ QðyÞ. Then

dðKÞ ¼ sgnðDÞ2a3b
Y
p>3

sp odd

p
Y
p>3

1avpðbÞavpðaÞ

p2;

where

a ¼

3; if s2 1 1 ðmod 2Þ;
2; if 1a v2ðbÞa v2ðaÞ; or

s2 1 0 ðmod 2Þ and D2 1 3 ðmod 4Þ;
0; otherwise;

8>>><
>>>:
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and

b ¼

5; if 1a v3ðbÞ < v3ðaÞ;
4; if v3ðaÞ ¼ v3ðbÞ ¼ 2; or

a1 3 ðmod 9Þ; b2 0 ðmod 3Þ and b2 2 4 ðmod 9Þ;
3; if v3ðaÞ ¼ v3ðbÞ ¼ 1; or

a1 0 ðmod 3Þ; b2 0 ðmod3Þ; a2 3 ðmod 9Þ and

b2 2 aþ 1 ðmod 9Þ; or

a1 3 ðmod 9Þ; b2 1 4 ðmod 9Þ and b2 2 aþ 1 ðmod 27Þ;
1; if 1 ¼ v3ðaÞ < v3ðbÞ; or

a1 0 ðmod 3Þ; a2 3 ðmod 9Þ and b2 1 aþ 1 ðmod 9Þ; or

a1 3 ðmod 9Þ; b2 1 aþ 1 ðmod 27Þ and s3 1 1 ðmod 2Þ;
0; if 3F a; or

a1 3 ðmod 9Þ; b2 1 aþ 1 ðmod 27Þ and s3 1 0 ðmod 2Þ:

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

Lemma 3.2. For the values of d specified in column 1 of TABLE 5 define
gdðxÞ as in column 2. Then gdðxÞ is irreducible and the discriminant of the cubic
field defined by gdðxÞ is given in column 3.

Proof. We give the proof of the assertion of the second row of TABLE 5.
Irreducibility is a consequence of the rational root theorem. For the field
discriminant, first we reduce the polynomial gdðxÞ using the transformation

x ! xþ 2d þ 2

3
;

followed by the scaling transformation

x ! x

3
:

TABLE 5

d A Z gdðxÞ field discriminant

4d 2 þ 2d þ 7 squarefree x3 þ ð2d þ 2Þx2 þ ð2d � 1Þx� 1 ð4d 2 þ 2d þ 7Þ2

4d 2 þ 2d þ 7 squarefree x3 � ð2d þ 2Þx2 þ ð2d � 1Þxþ 1 ð4d 2 þ 2d þ 7Þ2

d1 1 ðmod 2Þ, d > 3, 4d 3 � 27 squarefree x3 � dx� 1 4d 3 � 27

d1 1 ðmod 2Þ, d > 3, 4d 3 � 27 squarefree x3 � dxþ 1 4d 3 � 27

d1 1 ðmod 2Þ, d > 3, 4d 3 � 27 squarefree x3 þ 2dx2 þ d 2xþ 1 4d 3 � 27
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We obtain the polynomial

hdðxÞ ¼ x3 � 3ð4d 2 þ 2d þ 7Þx� ð4d þ 1Þð4d 2 þ 2d þ 7Þ;
with discriminant D given by

D ¼ 36ð4d 2 þ 2d þ 7Þ2:
Now we evaluate the field discriminant in the form

dðKÞ ¼ sgnðDÞ2a3b
Y
p>3

sp odd

p
Y
p>3

1avpðbÞavpðaÞ

p2:

Clearly 2FD so a ¼ 0. Next, since

4d 2 þ 2d þ 7 ¼ ð4d þ 1Þ2 þ 27

4

and 4d 2 þ 2d þ 7 is squarefree, we deduce that 3F 4d 2 þ 2d þ 7 so that
d1 0; 1 ðmod 3Þ. Referring to the table of values for b in Lemma 3.1 with

a ¼ 3ð4d 2 þ 2d þ 7Þ; b ¼ �ð4d þ 1Þð4d 2 þ 2d þ 7Þ;
we note that a1 3 ðmod 9Þ, b2 1 aþ 1 ðmod 9Þ for all d1 0; 1 ðmod 3Þ.
Finally s3 ¼ 6 so that s3 1 0 ðmod 2Þ. Therefore b ¼ 0. Hence

Y
p>3

1avpðbÞavpðaÞ

p2 ¼ ð4d 2 þ 2d þ 7Þ2

and the proof is complete. r

We are now ready to prove Theorem 1.1.

Proof. The case (A4): This part is done in [4].
The case ðA4 � C2Þ: By Nagel’s theorem [6] we can choose infinitely many

d A Z such that 4d 2 þ 2d þ 7 is squarefree. Set gdðxÞ ¼ x3 � ð2d þ 2Þx2 þ
ð2d � 1Þxþ 1. Let ad A C be a root of gdðxÞ. Set Cd ¼ QðadÞ. By the rational
root theorem gdðxÞ is irreducible over Q so Cd is a cubic field. As

discðgdðxÞÞ ¼ ð4d 2 þ 2d þ 7Þ2 ¼ dðCdÞ;
we deduce that f1; ad ; a2dg is a power basis for Cd . From TABLE 1 fdðxÞ ¼
x6 � ð2d þ 2Þx4 þ ð2d � 1Þx2 þ 1. Let yd be a root of fdðxÞ and set Kd ¼
QðydÞ. By Lemma 2.3 fdðxÞ is irreducible, ½Kd : Q� ¼ 6 and Galð fdÞ ¼ A4 � C2.
The cubic fields Cd have distinct discriminants. Thus they are distinct fields
and so the sextic fields Kd are also distinct. By Lemma 2.1 Kd is monogenic

with power basis f1; yd ; y2d ; y
3
d ; y

4
d ; y

5
d ; g.

The cases ððS4;þÞ;S4 � C2;D6Þ: These follow in a similar manner.
The last part of the theorem follows from Lemma 2.4. r
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