A Normal Relative Integral Basis for the Normal Closure of a Pure Cubic Field

over $\mathbb{Q}(\sqrt{-3})$

Blair K. Spearman
Department of Mathematics and Statistics
University of British Columbia Okanagan
Kelowna, BC, Canada V1V 1V7
blair.spearman@ubc.ca

Kenneth S. Williams

School of Mathematics and Statistics
Carleton University, Ottawa, ON, Canada K1S 5B6
kwilliam@connect.carleton.ca

Abstract

An explicit normal relative integral basis is given for the normal closure of a pure cubic field over $\mathbb{Q}(\sqrt{-3})$. This basis is shown to be unique up to permutation and units.

1 Introduction

In [1] Carter proved that $k=\mathbb{Q}(\sqrt{-3})$ is a Hilbert-Speiser field of type C_{3}. This means that if E is a tamely ramified normal extension of k with $\operatorname{Gal}(E / k) \cong C_{3}$ then E has a normal relative integral basis over k.

Let K be a pure cubic field. Let $L=K(\sqrt{-3})$ so that L is the normal closure of K. By Carter's theorem we know that if L / k is tamely ramified then L / k possesses a normal relative integral basis (NRIB). We prove that in this case the converse holds, that is, if L / k possesses a NRIB then L / k is tamely ramified. When L / k is tamely ramified we use the relative integral basis (RIB) given in [2] to give explicitly a NRIB for L / k. Further we show that this NRIB is unique up to permutation and units of k. We prove

Theorem 1.1. Let K be a pure cubic field so that $K=\mathbb{Q}\left(\sqrt[3]{a b^{2}}\right)$ for some coprime squarefree integers a and b. Let L be the normal closure of K. Let
$k=\mathbb{Q}(\sqrt{-3})$.
(i) The extension L / k is tamely ramified if and only if

$$
\begin{equation*}
3 \nmid a, \quad 3 \nmid b, \quad 9 \mid a^{2}-b^{2} . \tag{1.1}
\end{equation*}
$$

(ii) A NRIB exists for L / k if and only if (1.1) holds.
(iii) If (1.1) holds then

$$
\begin{aligned}
& \left\{\frac{1}{3}\left(1+\left(\frac{-3}{a}\right)\left(a b^{2}\right)^{1 / 3}+\left(\frac{-3}{b}\right)\left(a^{2} b\right)^{1 / 3}\right)\right. \\
& \frac{1}{3}\left(1+\left(\frac{-3}{a}\right) \omega\left(a b^{2}\right)^{1 / 3}+\left(\frac{-3}{b}\right) \omega^{2}\left(a^{2} b\right)^{1 / 3}\right) \\
& \left.\quad \frac{1}{3}\left(1+\left(\frac{-3}{a}\right) \omega^{2}\left(a b^{2}\right)^{1 / 3}+\left(\frac{-3}{b}\right) \omega\left(a^{2} b\right)^{1 / 3}\right)\right\}
\end{aligned}
$$

is a NRIB for L / k, where $\omega=\frac{1}{2}(-1+\sqrt{-3})$, and for $m \in \mathbb{Z}$ the Legendre-Jacobi-Kronecker symbol $\left(\frac{-3}{m}\right)$ is given by

$$
\left(\frac{-3}{m}\right)= \begin{cases}+1, & \text { if } m \equiv 1(\bmod 3) \\ -1, & \text { if } m \equiv 2(\bmod 3) \\ 0, & \text { if } m \equiv 0(\bmod 3)\end{cases}
$$

(iv) The NRIB given in (iii) is unique up to permutation and units.

2 Proof of Theorem 1.1

We begin with a simple lemma.
Lemma 2.1. Let $Q \subseteq E \subseteq F$ be a tower of fields with F / E normal. Suppose that $\left\{\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right\}$ is a normal relative integral basis for F / E. Then $\theta_{1}+\theta_{2}+$ $\cdots+\theta_{n}$ is a unit in O_{E}, the ring of integers of E.

Proof. Let $t=\theta_{1}+\theta_{2}+\cdots+\theta_{n}\left(\in O_{F}\right)$. As $\theta_{1}, \theta_{2}, \ldots, \theta_{n}$ are conjugates over E, we have $t \in O_{E}$. Then

$$
1=\frac{1}{t} \theta_{1}+\frac{1}{t} \theta_{2}+\cdots+\frac{1}{t} \theta_{n}
$$

But $\left\{\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right\}$ is a relative integral basis for F / E so $\frac{1}{t} \in O_{E}$. Hence t is a unit of O_{E}.

We are now ready to prove Theorem 1.1.
Proof of Theorem 1.1. (i) By [2, eq. (2.6), p. 1624] we have

$$
d(L / k)= \begin{cases}a^{2} b^{2}, & \text { if } 3 \nmid a, 3 \nmid b, 9 \mid a^{2}-b^{2}, \\ 9 a^{2} b^{2}, & \text { otherwise. }\end{cases}
$$

If $3 \nmid a, 3 \nmid b, 9 \mid a^{2}-b^{2}, \sqrt{-3}$ is not ramified in L / k so that L / k is a tamely ramified extension. Otherwise, as $\sqrt{-3}=P^{3}$ for some prime ideal $P, L / k$ is wildly ramified.
(ii), (iii) We begin with the case $3 \mid a, 3 \nmid b$. In this case the integers of L are of the form [2, Table 3.1(i), p. 1624]

$$
\begin{equation*}
\alpha+\beta\left(a b^{2}\right)^{1 / 3}+\gamma \frac{\left(a^{2} b\right)^{1 / 3}}{\sqrt{-3}} \tag{2.1}
\end{equation*}
$$

where $\alpha, \beta, \gamma \in O_{k}$. Suppose that $\left\{\theta_{1}, \theta_{2}, \theta_{3}\right\}$ is a NRIB for L / k. Then we see from (2.1) that

$$
\theta_{1}+\theta_{2}+\theta_{3}=3 \alpha .
$$

By Lemma 2.1, 3α is a unit of O_{k}. This is impossible. Hence L / k does not possess a NRIB.

The cases $3 \nmid a, 3 \mid b$ and $3 \nmid a, 3 \nmid b, 9 \nmid a^{2}-b^{2}$ follow in exactly the same way using [2, Table 3.1(ii)(iii), p. 1624]. Again L / k does not possess a NRIB in both cases. In the remaining case $3 \nmid a, 3 \nmid b, 9 \mid a^{2}-b^{2}$, we claim that $\left\{r_{1}, r_{2}, r_{3}\right\}$ is a NRIB for L / k, where

$$
\begin{aligned}
& r_{1}=\frac{1}{3}\left(1+\left(\frac{-3}{a}\right)\left(a b^{2}\right)^{1 / 3}+\left(\frac{-3}{b}\right)\left(a^{2} b\right)^{1 / 3}\right), \\
& r_{2}=\frac{1}{3}\left(1+\left(\frac{-3}{a}\right) \omega\left(a b^{2}\right)^{1 / 3}+\left(\frac{-3}{b}\right) \omega^{2}\left(a^{2} b\right)^{1 / 3}\right), \\
& r_{3}=\frac{1}{3}\left(1+\left(\frac{-3}{a}\right) \omega^{2}\left(a b^{2}\right)^{1 / 3}+\left(\frac{-3}{b}\right) \omega\left(a^{2} b\right)^{1 / 3}\right) .
\end{aligned}
$$

It is clear from [2, Table 3.1, p. 1624] that each $r_{i}(i \in\{1,2,3\})$ is an integer of L. Further a simple calculation shows that

$$
(\operatorname{det} R)^{2}=a^{2} b^{2}=d(L / k),
$$

by [2, eq. (2.6), p. 1624], where

$$
R=\left(\begin{array}{lll}
r_{1} & r_{2} & r_{3} \\
r_{2} & r_{3} & r_{1} \\
r_{3} & r_{1} & r_{2}
\end{array}\right)
$$

Hence $\left\{r_{1}, r_{2}, r_{3}\right\}$ is a NRIB for L / k.
(iv) Suppose that $\left\{s_{1}, s_{2}, s_{3}\right\}$ is another NRIB for L / k, where $3 \nmid a, 3 \nmid b$, $9 \mid a^{2}-b^{2}$. Then there exist $A, B, C \in O_{k}$ such that

$$
\begin{aligned}
& s_{1}=A r_{1}+B r_{2}+C r_{3}, \\
& s_{2}=C r_{1}+A r_{2}+B r_{3}, \\
& s_{3}=B r_{1}+C r_{2}+A r_{3} .
\end{aligned}
$$

Let

$$
S=\left(\begin{array}{lll}
s_{1} & s_{2} & s_{3} \\
s_{2} & s_{3} & s_{1} \\
s_{3} & s_{1} & s_{2}
\end{array}\right)
$$

Then

$$
(\operatorname{det} S)^{2}=(A+B+C)^{2}\left(A^{2}+B^{2}+C^{2}-A B-B C-C A\right)^{2}(\operatorname{det} R)^{2} .
$$

Hence $(A+B+C)^{2}\left(A^{2}+B^{2}+C^{2}-A B-B C-C A\right)^{2}$ is a unit of O_{k}. As $A+B+C \in O_{k}$ and $A^{2}+B^{2}+C^{2}-A B-B C-C A \in O_{k}$, each of $A+B+C$ and $A^{2}+B^{2}+C^{2}-A B-B C-C A$ is a unit of O_{k}. But the units of O_{k} are $\left\{ \pm 1, \pm \omega, \pm \omega^{2}\right\}$ so that there exist $m, n \in \mathbb{Z}$ such that

$$
\begin{equation*}
A+B+C= \pm \omega^{m} \tag{2.2}
\end{equation*}
$$

and

$$
A^{2}+B^{2}+C^{2}-A B-B C-C A= \pm \omega^{n}
$$

Then

$$
(A+B+C)^{2}-3(A B+B C+C A)= \pm \omega^{n}
$$

so that

$$
A B+B C+C A=\frac{1}{3}\left(\omega^{2 m} \mp \omega^{n}\right) .
$$

As $A B+B C+C A \in O_{k}$ we must have

$$
\frac{1}{3} \omega^{2 m} \mp \frac{1}{3} \omega^{n} \in O_{k} .
$$

But $\{1, \omega\}$ is an integral basis for k so $2 m \equiv n(\bmod 3)$ and the minus sign holds. Hence

$$
\begin{equation*}
A B+B C+C A=0 \tag{2.3}
\end{equation*}
$$

Then

$$
A B+(A+B)\left(\pm \omega^{m}-(A+B)\right)=0
$$

so

$$
\begin{equation*}
A^{2}+\left(B \mp \omega^{m}\right) A+B\left(B \mp \omega^{m}\right)=0 . \tag{2.4}
\end{equation*}
$$

Hence the quadratic polynomial $x^{2}+\left(B \mp \omega^{m}\right) x+B\left(B \mp \omega^{m}\right) \in O_{k}[x]$ has a root A in O_{k}. Thus its discriminant must be a square in O_{k}, that is

$$
\left(B \mp \omega^{m}\right)^{2}-4 B\left(B \mp \omega^{m}\right)=H^{2}
$$

for some $H \in O_{k}$, that is

$$
\left(3 B \mp \omega^{m}+\sqrt{-3} H\right)\left(3 B \mp \omega^{m}-\sqrt{-3} H\right)=4 \omega^{2 m} .
$$

As O_{k} is a unique factorization domain and 2 is a prime in O_{k}, we have

$$
\begin{aligned}
& \left(3 B \mp \omega^{m}+\sqrt{-3} H\right)= \pm 2 \omega^{f}, \\
& \left(3 B \mp \omega^{m}-\sqrt{-3} H\right)= \pm 2 \omega^{2 m-f},
\end{aligned}
$$

for some $f \in \mathbb{Z}$. Then

$$
3 B \mp \omega^{m}= \pm\left(\omega^{f}+\omega^{2 m-f}\right)
$$

so

$$
3 B= \pm \omega^{f}\left(1+\omega^{2 m-2 f} \pm \omega^{m-f}\right)
$$

As $1 \pm \omega^{r}+\omega^{2 r} \equiv 0(\bmod 3)$ in O_{k} if and only if the plus sign holds, we see that the plus sign holds in $1+\omega^{2 m-2 f} \pm \omega^{m-f}$. Thus

$$
3 B= \pm 3 \omega^{f} \text { or } 0
$$

that is B is a unit of O_{k} or 0 . From (2.4) and then (2.3) and (2.2), we deduce that exactly one of A, B, C is a unit and the others are 0 . This proves that s_{1}, s_{2}, s_{3} is a unit multiple of a permutation of r_{1}, r_{2}, r_{3}.

3 Acknowledgement

The research of both authors was supported by grants from the Natural Sciences and Engineering Research Council of Canada.

References

[1] J. E. Carter, "Normal integral bases in quadratic and cyclic cubic extensions of quadratic fields," Archiv der Mathematik, vol. 81, pp. 266-271, 2003.
[2] B. K. Spearman and K. S. Williams, "A relative integral basis over $\mathbb{Q}(\sqrt{-3})$ for the normal closure of a pure cubic field," International Journal of Mathematics and Mathematical Sciences, vol. 2003, pp. 1623-1626, 2003.

Received: April 10, 2008

