Arithmetic Progressions and Binary Quadratic Forms

Ayşe Alaca, Şaban Alaca, and Kenneth S. Williams

Let $\mathbb{N}=\{1,2,3, \ldots\}, \mathbb{N}_{0}=\{0,1,2,3, \ldots\}$, and $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$. For $k \in \mathbb{N}$ and $l \in \mathbb{N}$

$$
k \mathbb{N}_{0}+l=\{l, k+l, 2 k+l, \ldots\}
$$

is a (nonconstant) arithmetic progression of positive integers. We consider a general binary quadratic form $a x^{2}+b x y+c y^{2}(a, b, c \in \mathbb{Z})$ and ask the question "Can the form $a x^{2}+b x y+c y^{2}$ represent every integer in the arithmetic progression $k \mathbb{N}_{0}+l$ for any natural numbers k and l ?' In a sampling of books containing a discussion of binary quadratic forms [2]-[9], we did not find this question treated. In answering our question we shall see that the discriminant $d=b^{2}-4 a c \in \mathbb{Z}$ of the form $a x^{2}+b x y+$ $c y^{2}$ plays a key role. We prove:

Theorem. A binary quadratic form $a x^{2}+b x y+c y^{2}(a, b, c \in \mathbb{Z})$ can represent all the integers in some arithmetic progression $k \mathbb{N}_{0}+l(k, l \in \mathbb{N})$ if and only if its discriminant is a nonzero perfect square.

Before beginning the proof we note that if $r(\neq 0) \in \mathbb{Z}$ and $s \in \mathbb{Z}$ then $k \mathbb{N}_{0}+l \subset$ $r \mathbb{Z}+s$ with $k=|r| \in \mathbb{N}$ and l any positive integer in $r \mathbb{Z}+s$.

Proof. Clearly the zero form ($a=b=c=0$) has discriminant equal to 0 and it only represents 0 . Thus we need only consider nonzero forms.

We begin by observing that if A is a fixed nonzero integer then the sel of values of $A x^{2}(x \in \mathbb{N})$ cannot contain an infinite arithmetic progression of integers as it contains unbounded gaps of integers. Since a nonzero binary quadratic form $a x^{2}+b x y+c y^{2}$ ($a, b, c \in \mathbb{Z}$) of discriminant equal to 0 is of the form $A(B x+C y)^{2}$ for some integers $A(\neq 0), B$, and C with $\operatorname{gcd}(B, C)=1$, it cannot represent all the integers in $k \mathbb{N}_{0}+l$ for any $k, l \in \mathbb{N}$.

If the form $a x^{2}+b x y+c y^{2}(a, b, c \in \mathbb{Z})$ has a discriminant which is a nonzero perfect square and $a \neq 0$ then

$$
a\left(a x^{2}+b x y+c y^{2}\right)=(a x+g y)(a x+h y)
$$

for some integers g and h with $g \neq h$ and at least one of g and h nonzero, say $g \neq 0$. Set $m=\operatorname{gcd}(a, g) \in \mathbb{N}$. Let $x_{0}, y_{0} \in \mathbb{Z}$ be such that $a x_{0}+g y_{0}=a m$. Choose $x=$ $x_{0}+g t / m$ and $y=y_{0}-a t / m$, where $t \in \mathbb{Z}$, so that $x, y \in \mathbb{Z}$ and $a x+g y=a m$. Then $a x^{2}+b x y+c y^{2}=m(a x+h y)=a(g-h) t+m\left(a x_{0}+h y_{0}\right)$ takes on all the values in the arithmetic progression $r \mathbb{Z}+s$, where $r=a(g-h) \in \mathbb{Z} \backslash\{0\}$ and $s=$ $m\left(a x_{0}+h y_{0}\right) \in \mathbb{Z}$. Thus, by the remark preceding the proof, $a x^{2}+b x y+c y^{2}$ takes on all the values in the arithmetic progression $k \mathbb{N}_{0}+l$, where $k=|r| \in \mathbb{N}$ and l is any positive integer in $r \mathbb{Z}+s$.

If the form $a x^{2}+b x y+c y^{2}(a, b, c \in \mathbb{Z})$ has a discriminant which is a nonzero perfect square and $a=0$ then $b \neq 0$ and we see that $a x^{2}+b x y+c y^{2}=y(b x+c y)$ represents every integer in the arithmetic progression $b \mathbb{Z}+c$ by taking $y=1$. Thus, by the remark preceding the proof, $a x^{2}+b x y+c y^{2}$ takes on all the values in the arithmetic progression $k \mathbb{N}_{0}+l$, where $k=|b| \in \mathbb{N}$ and l is any positive integer in $b \mathbb{Z}+c$.

Finally we show that a binary quadratic form $a x^{2}+b x y+c y^{2}(a, b, c \in \mathbb{Z})$ having a discriminant which is not a perfect square cannot represent all the integers in $k \mathbb{N}_{0}+l$ for any $k, l \in \mathbb{N}$. Suppose on the contrary that the binary quadratic form $a x^{2}+b x y+c y^{2}(a, b, c \in \mathbb{Z})$ of nonsquare discriminant $d=b^{2}-4 a c$ represents all the integers in $k \mathbb{N}_{0}+l$ for some $k, l \in \mathbb{N}$. Let $\left(\frac{d}{*}\right)$ denote the Kronecker symbol for discriminant $d[1, \mathrm{p} .290]$. It is a well-known result that as d is not a perfect square there exists an integer m such that $\left(\frac{d}{m}\right)=-1$; see for example [1, p. 292]. As $\operatorname{gcd}(|d|, m)=1$, by Dirichlet's theorem on primes in arithmetic progression [1, p. 23] there exist infinitely many primes congruent to $m(\bmod |d|)$. We can therefore choose a prime $p>\max (4|a|, m, k, l)$ such that $p \equiv m(\bmod |d|)$. Next we recall that if $m_{1}, m_{2} \in \mathbb{N}$ and $m_{1} \equiv m_{2}(\bmod |d|)$ then $\left(\frac{d}{m_{1}}\right)=\left(\frac{d}{m_{2}}\right)$; see for example [1, p. 291]. Hence

$$
\left(\frac{d}{p}\right)=\left(\frac{d}{m}\right)=-1
$$

As p is a prime and $p>k$, we have $p \nmid k$, so there are integers t and u such that

$$
k t=1+u p^{2}, \quad 1 \leq t<p^{2}, \quad 0 \leq u<k
$$

Set $n=t\left(p^{2}+p-l\right) \in \mathbb{N}$. A short calculation shows that

$$
k n+l=p\left(1+(1-l u) p+u p^{2}+u p^{3}\right)
$$

so that $p \mid k n+l$ and $p^{2} \nmid k n+l$. By assumption there exist integers x and y such that $k n+l=a x^{2}+b x y+c y^{2}$. Hence

$$
(2 a x+b y)^{2}=4 a(k n+l)+d y^{2} \equiv d y^{2}(\bmod p)
$$

Suppose $p \nmid y$. Then there exists an integer z such that $y z \equiv 1(\bmod p)$ and

$$
((2 a x+b y) z)^{2} \equiv d y^{2} z^{2} \equiv d(\bmod p)
$$

so that $\left(\frac{d}{p}\right)=0$ or 1 , contradicting $\left(\frac{d}{f}\right)=-1$. Hence $p \mid y$. Thus $p \mid 2 a x+b y$ and so $p^{2} \mid 4 a(k n+l)$. But $p>4|a|$ so $p \nmid 4 a$. Thus $p^{2} \mid k n+l$. This is the required contradiction.

The proof is now complete.

We leave the reader with a problem: If $a x^{2}+b x y+c y^{2}(a, b, c \in \mathbb{Z})$ has a discriminant which is a nonzero perfect square, classify all the arithmetic progressions $k \mathbb{N}_{0}+l(k, l \in \mathbb{N})$ which it represents.

REFERENCES

1. R. Ayoub, An Intoduction to the Analytic Theory of Numbers, American Mathematical Society, Providence, RI, 1963.
2. D. A. Buell, Binary Quadratic Fonns, Springer-Verlag, New York, 1989.
3. H. Cohn, Advanced Number Theory, Dover, New York, 1980.
4. L. E. Dickson, Modern Elementary Theory of Numbers, University of Chicago Press, 1939.
5. L. E. Dickson, Introduction to the Theory of Numbers, Dover, New York, 1957.
6. L.-K. Hua, Introduction to Number Theory, Springer-Verlag, Berlin, 1982.
7. W. Narkiewicz, Classical Problemss in Number Theory, Polish Scientific I'ublishers, Warsaw, 1986.
8. I. Niven, H. S. Zuckerman, and H. L. Montgomery, An Introduction to the Theory of Numbers, 5th ed., John Wiley, New York, 1991.
9. J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill. 1939.

Centre for Research in Algebra and Number Theory, School of Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada KIS 5B6
aalaca@math.carleton.ca,
salaca@math.carleton.ca,
williams@math.carleton.co

