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Arithmetic Progressions and
Binary Quadratic Forms

Ayse Alaca, Saban Alaca, and Kenneth S. Williams

LetN={1,2,3,...},Ny=1{0,1,2,3,...},andZ=1{... ,~-2,—-1,0,1,2,...}. For
keNand/ e N

kN +I={k+1,2k+1,...}

is a (nonconstant) arithmetic progression of positive integers. We consider a general
binary quadratic form ax? + bxy + cy* (a, b, ¢ € Z) and ask the question “Can the
form ax® + bxy + cy” represent every integer in the arithmetic progression kNy + [
for any patural numbers k and [?” In a sampling of books containing a discussion of
binary guadratic forms [2]-[9], we did not find this question reated. In answering our
question we shall see that the discriminant = b*> — 4ac € Z of the form ax* 4 bxy +
cy? plays a key role. We prove:

Theorem. A binary quadratic form ax®* + bxy + cy* (a, b, ¢ € Z) can represent all
the integers in some arithmelic progression kNg +{ (k,1 € N} if and only if i1s dis-
criminant is a nonzero perfect square.

Before beginning the proof we note that if 7(£ 0) € Zand s € Z then kNg + 1 C
rZ + s with k = |r| € N and [ any positive integer in rZ + s.

Proof. Clearly the zero form (a = b = ¢ = () has discriminant equal to 0 and it only
represents 0. Thus we need only consider nonzero forms.

We begin by observing that if A is a fixed nonzero integer then the set ol values of
Ax? (x € N) cannot contain an infinite arithmetic progression of integers as it contains
unbounded gaps of integers. Since a nonzero binary quadratic form ax® + bxy + cy?
(a, b, ¢ € Z) of discriminant equal to 0 is of the form A(Bx + Cy)? for some integers
A(# (), B, and C with ged(B, C) = 1, it cannot represent all the integers in kNg + /
forany £,/ € N.

If the form ax? + bxy + ¢y® (ua, b, ¢ € Z) has a discriminant which is a nonzero
perfect square and a # 0O then

alax* + bxy + cyv?) = (ax + gyMax + hy)

252 © THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 115



for some integers g and & with g # h and at least one of g and A nonzero, say g # O.
Set m = ged(a, g) € N. Let xy, vo € Z be such that axg + gyo = am. Choose x =
Xo+gt/mand y =y, —at/m, where t € Z, so that x,y € Z and ax + gy = am.
Then ax” + bxy + cy? = m{ax + hy) = a(g — h)t + m{axo + hyo) takes on all the
values in the arithmetic progression rZ + s, where r = a(g — h) € Z\{0} and s =
m(axy + hyo) € Z. Thus, by the remark preceding the proof, ax* + bxy + c¢y* takes
on all the values in the arithmetic progression kNy + /, where k = |r| € N and / is any
positive integer in rZ + s.

If the form ax® + bxy + cy2 (a, b, c € Z) has a discriminant which is a nonzero
perfect square and @ = O then b # 0 and we see that ax? + bxy + ¢y? = y(bx + c¢y)
represents every integer in the arithmetic progression bZ + ¢ by taking y = 1. Thus,
by the remark preceding the proof, ax? + bxy + cy? takes on all the values in the
arithmetic progression kN + I, where k = || € N and / is any positive integer in
bZ + c.

Finally we show that a binary quadratic form ax* + bxy + cy* (a, b, ¢ € Z) hav-
ing a discriminant which is not a perfect square cannot represent all the integers in
kNy + 1 for any k,! € N. Suppose on the contrary that the binary quadratic form
ax® + bxy + cv* (a, b, ¢ € Z) of nonsquare discriminant d = b°> — 4ac represents
all the integers in kNy +/ for some k,{ € N. Let (£) denote the Kronecker symbol
for discriminant 4 (1, p. 290]. It is a well-known result that as 4 is not a perfect
square there exists an integer m such that (£) = —1; see for example [1, p. 292].
As ged(|d|, m) = 1, by Dirichlet’s theorem on primes in arithmetic progression |1,
p. 23] there exist infinitely many primes congruent t0 m (mod |d}). We can therefore
choose a prime p >max(4|a|, m, k, 1) such that p = m (mod |d|). Next we recall that

ifm,;, m» € Nand m; = m, (mod |d|) then (%) = (—"—); see for example [1, p. 291].
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As pis aprime and p > k, we have p 1 k, so there are integers ¢ and u such that

Hence

kl=]+up2, ]§I<p2, O<u<k.
Setn =1(p> 4+ p — 1) € N. A short calculation shows that
kn+1=p(l+ (1 —~lu)p+up® +up’)

sothat p | kn +1and p? { kn + [. By assumption there exist integers x and y such that
kn +1 = ax>+ bxy + cy*. Hence

(2ax + by)’ = da(kn + 1) + dy* = dy* (mod p).
Suppose p { y. Then there exists an integer z such that yz = | (mod p) and
((Qax + by)z)2 = dyzz:2 = d (mod p)

so that (FI) = 0 or 1, contradicting (%) = —1. Hence p | y. Thus p | 2ax + by and

so p? | datkn +1). But p > 4|a| so p{f4a. Thus p? | kn 4 [. This is the required
contradiction.
The proof is now complete. |
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We leave the reader with a problem: If ax? + bxy 4 ¢y? (a, b, ¢ € Z) has a dis-

criminant which is a nonzero perfect square, classify all the arithmetic progressions
kNgy + 1 (k, ! € N) which it represents.
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