International Mathematical Forum, 3, 2008, no. 32, 1595 - 1606

Indices of Integers in Cyclic Cubic Fields

Blair K. Spearman

Department of Mathematics and Statistics University of British Columbia Okanagan Kelowna, British Columbia, Canada V1V 1V7 blair.spearman@ubc.ca

Kenneth S. Williams

Centre for Research in Algebra and Number Theory School of Mathematics and Statistics Carleton University Ottawa, Ontario, Canada K1S 5B6 kwilliam@connect.carleton.ca

Abstract

The field index i(K) of a cyclic cubic field K is 1 or 2. For $i \in \{1, 2\}$ we determine explicitly the set

 $L_i := \{n \in \mathbb{N} \mid n = \operatorname{ind}(\theta), \text{ where } \theta \text{ is an algebraic integer such }$

that $\mathbb{Q}(\theta)$ is a cyclic cubic field with field index i}.

Moreover for each $\ell \in L_i$ we show that there exist infinitely many cyclic cubic fields K with field index i such that O_K possesses an element of index ℓ .

Mathematics Subject Classification: 11R16, 11S05

Keywords: cyclic cubic field, index, field index, discriminant

1 Introduction

Let $I \in \mathbb{N}$. Huard [1, Theorem B, p. 189] has proved that there exist infinitely many cyclic cubic fields that contain an integer of index I. It is known that the field index of a cyclic cubic field is 1 or 2 [3, p. 585]. For $i \in \{1, 2\}$ we set

(1.1) $C_i := \{K \mid K \text{ is a cyclic cubic field with field index } i(K) = i\}.$

In this paper we investigate the indices of integers in C_i . To do this we define for $i \in \{1, 2\}$

(1.2)
$$L_i := \{n \in \mathbb{N} \mid n = \operatorname{ind}(\theta), \text{ where } \theta \text{ is an algebraic integer such }$$

that $\mathbb{Q}(\theta)$ is a cyclic cubic field with field index i.

We determine the set L_i explicitly and show that each element of L_i occurs as an index for infinitely many K in C_i . We prove the following theorem in Section 3 after some preliminary results are proved in Section 2.

Theorem 1.1.

- (i) $L_1 = \{8^a n \mid a \in \mathbb{N} \cup \{0\}, n \in 2\mathbb{N} 1\}.$
- (ii) $L_2 = \{2n \mid n \in \mathbb{N}\}.$
- (iii) For each $i \in \{1, 2\}$ and each $\ell \in L_i$ there exist infinitely many cyclic cubic fields K in C_i such that O_K possesses an element of index ℓ .

Although every positive integer is an index of some cyclic cubic field, Theorem 1.1 shows that the density of indices is 4/7 = 0.56... in the field index one case and 1/2 = 0.5 in the field index two case.

2 Preliminary Results

If K is a cubic field, the cubic trinomial $x^3 + Ax + B$ $(A, B \in \mathbb{Z})$ is said to be a defining polynomial for K if $x^3 + Ax + B$ possesses a root $\theta \in \mathbb{C}$ such that $K = \mathbb{Q}(\theta)$.

A cubic trinomial $x^3 + Ax + B$ $(A, B \in \mathbb{Z})$ is said to satisfy the simplifying assumption if

(2.1)
$$R^2 \mid A, \quad R^3 \mid B \quad (R \in \mathbb{N}) \Longrightarrow R = 1.$$

Lemma 2.1. Let K be a cyclic cubic field. Let $x^3 + Ax + B$ be a defining polynomial for K satisfying (2.1). Then

$$i(K) = \begin{cases} 1, & \text{if } B \text{ is odd,} \\ 2, & \text{if } B \text{ is even.} \end{cases}$$

Proof. If B is odd then the discriminant $-4A^3 - 27B^2$ of $x^3 + Ax + B$ is also odd and thus i(K) = 1.

If B is even we suppose that i(K) = 1 and obtain a contradiction so that i(K) = 2. Let $\theta \in \mathbb{C}$ be a root of $x^3 + Ax + B$. As $x^3 + Ax + B$ is a defining polynomial for K and K is a normal extension of \mathbb{Q} we have $K = \mathbb{Q}(\theta)$. Let $\langle \theta \rangle = P_1 P_2 \cdots P_r$ be the prime ideal factorization of the principal ideal $\langle \theta \rangle$ in O_K . As $\theta^3 + A\theta + B = 0$ we have $N(\theta) = -B$ so that

$$N(P_1)N(P_2)\cdots N(P_r) = N(\langle\theta\rangle) = |N(\theta)| = |B| \equiv 0 \pmod{2}.$$

Hence $2 \mid N(P_j)$ for some $j \in \{1, 2, ..., r\}$. Thus $N(P_j) = 2^t$ for some $t \in \mathbb{N}$. Since 2 does not divide the discriminant of any cyclic cubic field [2, Theorem, p. 4], 2 does not ramify in K. Thus, as K/\mathbb{Q} is a normal extension of degree 3, either $\langle 2 \rangle$ is a prime ideal of O_K or $\langle 2 \rangle = \wp_1 \wp_2 \wp_3$ for distinct prime ideals \wp_1, \wp_2, \wp_3 of O_K . If $\langle 2 \rangle = \wp_1 \wp_2 \wp_3$ then by [5, Corollary, p. 180] we have i(K) = 2, contradicting i(K) = 1. Thus $\langle 2 \rangle$ is a prime ideal of O_K as $(\theta/2)^3 + (A/4)(\theta/2) + (B/8) = 0$ and A/4, $B/8 \in \mathbb{Q}$, the monic irreducible cubic polynomial in $\mathbb{Z}[x]$ satisfied by $\theta/2$ is $x^3 + (A/4)x + (B/8)$. Thus $A/4 \in \mathbb{Z}$ and $B/8 \in \mathbb{Z}$. This contradicts (2.1).

Lemma 2.2. Let $K \in C_1$. If $\theta \in O_K$ has even index then $(\theta + k)/2 \in O_K$ for some $k \in \mathbb{Z}$.

Proof. Suppose that $\theta \in O_K$ has even index. As $\theta \in O_K$ there exist $a, b, c \in \mathbb{Z}$ such that θ is a root of $g(x) = x^3 + ax^2 + bx + c$. Then $3\theta + a \in O_K$ is a root of $h(x) = x^3 + Ax + B$, where $A = -3a^2 + 9b \in \mathbb{Z}$ and $B = 2a^3 - 9ab + 27c \in \mathbb{Z}$. We note that $\operatorname{disc}(h(x)) = 3^6 \operatorname{disc}(g(x))$. As $\operatorname{ind}(\theta) \equiv 0 \pmod{2}$, we have $\operatorname{disc}(g) \equiv 0 \pmod{2}$ and so $-4A^3 - 27B^2 = \operatorname{disc}(h) \equiv 0 \pmod{2}$. Thus $B \equiv 0 \pmod{2}$. If either $2^2 \nmid A$ or $2^3 \nmid B$ then by Lemma 2.1, we have i(K) = 2, contradicting $K \in C_1$. Thus $2^2 \mid A$ and $2^3 \mid B$ so $(3\theta + a)/2 \in O_K$. Hence $(\theta + a)/2 = (3\theta + a)/2 - \theta \in O_K$ as required.

Lemma 2.3. Let $K \in C_1$. Let $\theta \in O_K$ be such that $K = \mathbb{Q}(\theta)$. Then

 $\operatorname{ind}(\theta) = 8^a n$

for some $a \in \mathbb{N} \cup \{0\}$ and $n \in 2\mathbb{N} - 1$.

Proof. Suppose that there exists $\theta \in O_K$ and $K = \mathbb{Q}(\theta)$ with $2^t \parallel \operatorname{ind}(\theta)$ for some $t \in \mathbb{N} \cup \{0\}$ with $t \not\equiv 0 \pmod{3}$. Let $\theta^* \in O_K$ have the least

such value of t, say t^* . Then, by Lemma 2.2, there exists $k \in \mathbb{Z}$ such that $(\theta^* + k)/2 \in O_K$ and $K = \mathbb{Q}((\theta^* + k)/2)$. Hence $2^{t^*-3} \parallel \operatorname{ind}((\theta^* + k)/2)$ so $t^* - 3 \ge 0$. As $t^* - 3 \not\equiv 0 \pmod{3}$ this contradicts the minimality of t^* . Hence, for every $\theta \in O_K$ with $K = \mathbb{Q}(\theta)$ we have $2^t \parallel \operatorname{ind}(\theta)$ with $t \equiv 0 \pmod{3}$. Thus $\operatorname{ind}(\theta) = 2^{3a}n$ for some $a \in \mathbb{N} \cup \{0\}$ and $n \in 2\mathbb{N} - 1$.

We next state a theorem of Nagel [6] in the case of a quadratic polynomial.

Proposition 2.1. Let $f(x) \in \mathbb{Z}[x]$ be a quadratic polynomial which is primitive and has a nonzero discriminant. Then there exist infinitely many $x \in \mathbb{N}$ such that f(x) is squarefree.

In [7] the following extension of Proposition 2.1 was proved.

Proposition 2.2. Let $d \neq 0$, $e, f \in \mathbb{Z}$ be such that gcd(d, e, f) = 1 and $e^2 - 4df \neq 0$. Let m be a positive squarefree integer. Let r be an integer such that $dr^2 + er + f \neq 0$ and for every prime p satisfying $p \mid m, p^2 \mid dr^2 + er + f$ we have $p \nmid 2dr + e$. Then there exist infinitely many positive integers $x \equiv r \pmod{m}$ such that $dx^2 + ex + f$ is squarefree.

We need the following special cases of Proposition 2.2.

Lemma 2.4. (a) Let $d, e, f \in \mathbb{N}$ be such that gcd(d, e, f) = 1, $e^2 - 4df \neq 0$ and $3 \parallel e^2 - 4df$. Then for any $r \in \mathbb{Z}$ there exist infinitely many positive integers $v \equiv r \pmod{3}$ such that $dv^2 + ev + f$ is squarefree.

(b) Let $e, f \in \mathbb{N}$ be such that $e^2 - 4f \neq 0$, $e \equiv 0 \pmod{3}$ and $f \not\equiv 2 \pmod{3}$. Then there exist infinitely many positive integers $v \not\equiv 0 \pmod{3}$ such that $v^2 + ev + f$ is squarefree.

(c) Let $d, f \in \mathbb{N}$ be such that gcd(d, f) = 1. Then there exist infinitely many positive integers $v \not\equiv 0 \pmod{3}$ such that $dv^2 + f$ is squarefree.

3 Proof of Theorem 1.1.

We first examine L_1 . By Lemma 2.3 the only possible integers in L_1 are those of the form $8^a n$, where $a \in \mathbb{N} \cup \{0\}$ and $n \in 2\mathbb{N} - 1$. We show that all such integers are in L_1 and occur as indices of infinitely many cyclic cubic fields of index 1. It is enough to do this for the odd positive integers since $\operatorname{ind}(2^{a}\theta) = 8^{a}\operatorname{ind}(\theta)$ for $\mathbb{Q}(\theta) \in C_{1}$. As $\operatorname{ind}(3^{b}\theta) = 3^{3b}\operatorname{ind}(\theta)$ for $\mathbb{Q}(\theta) \in C_{1}$ we can further restrict n to satisfy $3^{3} \nmid n$.

Let $I \in 2\mathbb{N} - 1$ be such that $3^3 \nmid I$. We show that $I \in L_1$ and that there exist infinitely many cyclic cubic fields K such that O_K possesses an element of index I. Define $F(x) \in \mathbb{Z}[x]$ by

(3.1)
$$F(x) = \begin{cases} x^2 + Ix + I^2, & \text{if } 3 \notin I, \\ 3x^2 + Ix + (I^2/9), & \text{if } 3 \parallel I, \\ x^2 + 9Ix + 27I^2, & \text{if } 3^2 \parallel I. \end{cases}$$

If $3 \nmid I$ by Lemma 2.4(a) there exist infinitely many positive integers $v \equiv I + 1 \pmod{3}$ such that F(v) is squarefree. If $3 \parallel I$ again by Lemma 2.4(a) there exist infinitely many positive integers $v \equiv (I/3) + 1 \pmod{3}$ such that F(v) is squarefree. If $3^2 \parallel I$ by Lemma 2.4(b) there exist infinitely many positive integers $v \not\equiv 0 \pmod{3}$ such that F(v) is squarefree. We denote the set of such v by V in each of the three cases $3 \nmid I$, $3 \parallel I$ and $3^2 \parallel I$.

We show that $2 \nmid F(v)$ for $v \in V$. Suppose $2 \mid F(v)$. Then by (3.1) we have $2 \mid v$ and $2 \mid I$, contradicting that $2 \nmid I$.

Next we note that it is easy to check using (3.1) and the congruences modulo 3 satisfied by $v \in V$ that $F(v) \equiv 1 \pmod{3}$ for $v \in V$.

For $v \in V$ we have

(3.2)
$$F(v) = \begin{cases} \frac{1}{4} ((2v+I)^2 + 3I^2), & \text{if } 3 \nmid I, \\ \frac{1}{12} ((6v+I)^2 + 3(I/3)^2), & \text{if } 3 \parallel I, \\ \frac{1}{4} ((2v+9I)^2 + 27I^2), & \text{if } 3^2 \parallel I. \end{cases}$$

As $2 \nmid F(v)$, $3 \nmid F(v)$ and F(v) is squarefree, we see that the only primes p dividing F(v) satisfy $p \equiv 1 \pmod{3}$.

We now show that for $v \in V$

(3.3)
$$\begin{cases} \gcd(F(v), 2v+I) = 1, & \text{if } 3 \nmid I, \\ \gcd(F(v), 6v+I) = 1, & \text{if } 3 \parallel I, \\ \gcd(F(v), 2v+9I) = 1, & \text{if } 3^2 \parallel I. \end{cases}$$

Let p be a prime divisor of

$$\begin{array}{ll} \gcd(F(v), 2v + I), & \text{if } 3 \nmid I, \\ \gcd(F(v), 6v + I), & \text{if } 3 \parallel I, \\ \gcd(F(v), 2v + 9I), & \text{if } 3^2 \parallel I. \end{array}$$

As $p \mid F(v)$ and $F(v) \equiv 1 \pmod{3}$ we see that $p \neq 3$. From the identities

$$\begin{cases} 4F(v) - (2v+I)^2 = 3I^2, & F(v) - (2v+I)^2 + 3v(2v+I) = 3v^2, & \text{if } 3 \nmid I, \\ 12F(v) - (6v+I)^2 = \frac{1}{3}I^2, & 9F(v) - (6v+I)^2 + 3v(6v+I) = 9v^2, & \text{if } 3 \parallel I, \\ 4F(v) - (2v+9I)^2 = 27I^2, & 3F(v) - (2v+9I)^2 + v(2v+9I) = v^2, & \text{if } 3^2 \parallel I, \end{cases}$$

we deduce that $p \mid \text{gcd}(I, v)$. Then, by (3.1), $p^2 \mid F(v)$, contradicting that F(v) is squarefree. This completes the proof of (3.3).

From the congruences (mod 3) satisfied by $v \in V$ we have

(3.4)
$$\begin{cases} 2v + I \equiv 2 \pmod{3}, & \text{if } 3 \nmid I, \\ 6v + I \equiv 3I + 6 \equiv 6 \pmod{9}, & \text{if } 3 \parallel I, \\ 2v + 9I \not\equiv 0 \pmod{3}, & \text{if } 3^2 \parallel I. \end{cases}$$

To summarize we have shown that for each $v \in V$ we have $F(v) \in \mathbb{N}$, $F(v) > 1, 2 \nmid F(v), 3 \nmid F(v), F(v)$ is squarefree, and that (3.3) and (3.4) hold.

For $v \in V$ we define a cubic polynomial $p(x) \in \mathbb{Z}[x]$ by

$$\int x^3 - 3F(v)x + (2v+I)F(v), \quad \text{if } 3 \nmid I,$$

$$p(x) = \begin{cases} x^3 - 9F(v)x + 3(6v + I)F(v), & \text{if } 3 \parallel I, \end{cases}$$

$$\left(x^{3} + vx^{2} + \left(\frac{v^{2} - F(v)}{3}\right)x + \left(\frac{v^{3} - F(v)v + 9IF(v)}{27}\right), \quad \text{if } 3^{2} \parallel I. \right)$$

We have

(3.6)
$$\operatorname{disc}(p(x)) = \begin{cases} 3^4 I^2 F(v)^2, & \text{if } 3 \nmid I, \\ 3^4 I^2 F(v)^2, & \text{if } 3 \parallel I, \\ I^2 F(v)^2, & \text{if } 3^2 \parallel I. \end{cases}$$

We observe that

(3.7)
$$q(x) = 3^3 p\left(\frac{x-v}{3}\right) = x^3 - 3F(v)x + (2v+9I)F(v), \text{ if } 3^2 \parallel I.$$

We set

$$A = \begin{cases} -3F(v), & \text{if } 3 \nmid I, \\ -9F(v), & \text{if } 3 \parallel I, \\ -3F(v), & \text{if } 3^2 \parallel I, \end{cases}$$

and

$$B = \begin{cases} (2v+I)F(v), & \text{if } 3 \nmid I, \\ 3(6v+I)F(v), & \text{if } 3 \parallel I, \\ (2v+9I)F(v), & \text{if } 3^2 \parallel I, \end{cases}$$

so that

$$x^{3} + Ax + B = \begin{cases} p(x), & \text{if } 3 \nmid I \text{ or } 3 \parallel I, \\ q(x), & \text{if } 3^{2} \parallel I, \end{cases}$$

and

$$-4A^3 - 27B^2 = C^2,$$

where

$$C = \begin{cases} 3^2 I F(v), & \text{if } 3 \nmid I \text{ or } 3 \parallel I, \\ 3^3 I F(v), & \text{if } 3^2 \parallel I. \end{cases}$$

We show that $x^3 + Ax + B$ satisfies (2.1). Suppose $R \in \mathbb{N}$ is such that $R^2 \mid A$ and $R^3 \mid B$. If $3 \nmid I$ or $3^2 \parallel I$ then A is squarefree so R = 1. If $3 \parallel I$ then the only square dividing A is 3^2 so $R \mid 3$. Moreover, as $F(v) \equiv 1 \pmod{3}$ and $v \equiv I/3 + 1 \pmod{3}$ in this case we have

$$B = 3(6v + I)F(v) \equiv 3(6v + I) \equiv 3(3I + 6) \equiv 18 \pmod{27},$$

so that $R \neq 3$. Thus R = 1.

We show next that p(x) is irreducible over \mathbb{Q} for $v \in V$. In the case $3^2 \parallel I$ it suffices to prove that q(x) is irreducible in view of (3.7). We can choose a prime $p \neq 2, 3$ with $p \parallel F(v)$. Clearly $p \parallel A$ and $p \mid B$. From (3.3) we deduce that $p \parallel B$. Hence $x^3 + Ax + B$ is p-Eisenstein and so irreducible over \mathbb{Q} .

Next we show that

$$\operatorname{Gal}(p(x)) \simeq \mathbb{Z}/3\mathbb{Z}, \quad v \in V.$$

This is clear as p(x) is irreducible over \mathbb{Q} and $\operatorname{disc}(p(x)) \in \mathbb{Z}^2$ by (3.6).

Our next goal is to show that if $v \in V$ and $K = \mathbb{Q}(\theta)$, where θ is a root of p(x), then

$$d(K) = \begin{cases} 3^4 F(v)^2, & \text{if } 3 \nmid I \text{ or } 3 \parallel I, \\ F(v)^2, & \text{if } 3^2 \parallel I. \end{cases}$$

To do this we appeal to the following result, see [4, p. 831] and [2, Theorem, p. 4].

Proposition 3.1. If K is a cyclic cubic field given by $K = \mathbb{Q}(\phi)$, where $\phi^3 + A\phi + B = 0$ and A and B are integers satisfying (2.1), then the discriminant of K is given by

$$d(K) = f(K)^2,$$

where

$$f(K) = 3^{\alpha} \prod_{\substack{p \equiv 1 \pmod{3} \\ p \mid A, p \mid B}} p$$

where p runs through primes and

$$\alpha = \begin{cases} 0, & \text{if } 3 \nmid A \text{ or } 3 \parallel A, 3 \nmid B, 3^3 \mid C, \\ 2, & \text{if } 3^2 \parallel A, 3^2 \parallel B \text{ or } 3 \parallel A, 3 \nmid B, 3^2 \parallel C, \end{cases}$$

where $C \in \mathbb{N}$ is given by $C^2 = -4A^3 - 27B^2$.

We have

$$\left\{\begin{array}{ll} 3 \parallel A, \ 3 \nmid B, \ 3^2 \parallel C, & \text{if } 3 \nmid I, \\ 3^2 \parallel A, \ 3^2 \parallel B, & \text{if } 3 \parallel I, \\ 3 \parallel A, \ 3 \nmid B, \ 3^3 \mid C, & \text{if } 3^2 \parallel I, \end{array}\right.$$

so that

$$\alpha = \begin{cases} 0, & \text{if } 3^2 \parallel I, \\ 2, & \text{if } 3 \nmid I \text{ or } 3 \parallel I. \end{cases}$$

In all three cases $(3 \nmid I, 3 \parallel I \text{ and } 3^2 \parallel I)$ we have

$$\prod_{\substack{p \equiv 1 \pmod{3} \\ p \mid A, p \mid B}} p = F(v).$$

Hence

$$d(K) = \begin{cases} 3^4 F(v)^2, & \text{if } 3 \nmid I \text{ or } 3 \parallel I, \\ F(v)^2 & \text{if } 3^2 \parallel I. \end{cases}$$

Finally in all three cases we have

$$\operatorname{ind}(\theta) = \sqrt{\frac{\operatorname{disc}(p(x))}{d(K)}} = I.$$

As F(v) = F(v') has at most two solutions for v', we can find an infinite subset of V for which the values of F(v) are distinct thus ensuring that the corresponding field discriminants are distinct. This gives an infinite set of cyclic cubic fields K possessing an integer of index I. As B is odd, by Lemma 2.1 each $K \in C_1$.

We now turn to the determination of L_2 . If $K \in C_2$ the index of any $\theta \in O_K$ such that $K = \mathbb{Q}(\theta)$ is even. Thus we may suppose that I is even. As $\operatorname{ind}(3^b\theta) = 3^{3b}\operatorname{ind}(\theta)$ for $\mathbb{Q}(\theta) \in C_2$ we can further restrict I to satisfy $3^3 \nmid I$. Define $F(x) \in \mathbb{Z}[x]$ by

(3.8)
$$F(x) = \begin{cases} x^2 + (3I^2/4), & \text{if } 3 \nmid I, \\ 3x^2 + (I/6)^2, & \text{if } 3 \parallel I, \\ x^2 + 27(I/2)^2, & \text{if } 3^2 \parallel I. \end{cases}$$

By Lemma 2.4(c) there exist infinitely many positive integers $v \neq 0 \pmod{3}$ such that F(v) is squarefree. We denote the set of such v by V. Moreover $F(v) \equiv 1 \pmod{3}$ for $v \in V$. We show next that gcd(v, F(v)) = 1. Suppose there exists a prime p with $p \mid v$ and $p \mid F(v)$. As $3 \nmid v$ we have $p \neq 3$. Suppose p = 2. As F(v) is squarefree we have $2 \parallel F(v)$. By (3.8) $F(v) = a^2 + 3b^2$ for some integers a and b. Hence $2 \parallel a^2 + 3b^2$, contradicting $a^2 + 3b^2 \equiv 0, 1$ or $3 \pmod{4}$. Hence $p \neq 2$. Then, from (3.8), we see that as $p \mid F(v)$ and $p \mid v$ we have $p \mid I$ so $p^2 \mid F(v)$, a contradiction.

As $2 \nmid F(v)$, $3 \nmid F(v)$ and F(v) is squarefree, we see that the only primes p dividing F(v) satisfy $p \equiv 1 \pmod{3}$.

For $v \in V$ we define a cubic polynomial $p(x) \in \mathbb{Z}[x]$ by

(3.9)
$$p(x) = \begin{cases} x^3 - 3F(v)x + 2vF(v), & \text{if } 3 \nmid I, \\ x^3 - 9F(v)x + 18vF(v), & \text{if } 3 \parallel I, \\ x^3 + vx^2 - 9(I/2)^2x - v(I/2)^2, & \text{if } 3^2 \parallel I. \end{cases}$$

Let θ be a root of p(x) and set $K = \mathbb{Q}(\theta)$. We have

(3.10)
$$\operatorname{disc}(p(x)) = \begin{cases} 3^4 I^2 F(v)^2, & \text{if } 3 \nmid I \text{ or } 3 \parallel I, \\ I^2 F(v)^2, & \text{if } 3 \parallel I. \end{cases}$$

We observe that

$$q(x) = 3^{3}p\left(\frac{x-v}{3}\right) = x^{3} - 3F(v)x + 2vF(v), \text{ if } 3^{2} \parallel I.$$

We set

$$A = \begin{cases} -3F(v), & \text{if } 3 \nmid I, \\ -9F(v), & \text{if } 3 \parallel I, \\ -3F(v), & \text{if } 3^2 \parallel I, \end{cases}$$

and

$$B = \begin{cases} 2vF(v), & \text{if } 3 \nmid I, \\ 18F(v), & \text{if } 3 \parallel I, \\ 2vF(v), & \text{if } 3^2 \parallel I, \end{cases}$$

so that

$$x^{3} + Ax + B = \begin{cases} p(x), & \text{if } 3 \nmid I \text{ or } 3 \parallel I, \\ q(x), & \text{if } 3^{2} \parallel I, \end{cases}$$

and

$$-4A^3 - 27B^2 = C^2,$$

where

$$C = \begin{cases} 3^2 IF(v), & \text{if } 3 \nmid I \text{ or } 3 \parallel I, \\ 3^3 IF(v), & \text{if } 3^2 \parallel I. \end{cases}$$

Clearly, as $3 \nmid v$, $3 \nmid F(v)$ and F(v) is squarefree, the polynomial $x^3 + Ax + B$ satisfies the simplifying assumption (2.1). We show next that the polynomial

 $x^3 + Ax + B$ is irreducible over \mathbb{Q} . For $v \in V$ we have F(v) > 1. Let p be a prime divisor of F(v). As $2 \nmid F(v)$ and $3 \nmid F(v)$ we have $p \neq 2, 3$. As gcd(v, F(v)) = 1 we see that $p \parallel A$ and $p \parallel B$. Hence $x^3 + Ax + B$ is p-Eisenstein and so is irreducible over \mathbb{Q} . Thus p(x) is irreducible over \mathbb{Q} .

As p(x) is irreducible over \mathbb{Q} and $\operatorname{disc}(p(x)) \in \mathbb{Z}^2$, we have

$$\operatorname{Gal}(K) \simeq \mathbb{Z}/3\mathbb{Z}, \quad v \in V.$$

We have

$$\left\{ \begin{array}{ll} 3 \parallel A, \ 3 \nmid B, \ 3^2 \parallel C, & \text{if } 3 \nmid I, \\ 3^2 \parallel A, \ 3^2 \parallel B, \ 3^3 \parallel C, & \text{if } 3 \parallel I, \\ 3 \parallel A, \ 3 \nmid B, \ 3^5 \mid C, & \text{if } 3^2 \parallel I, \end{array} \right.$$

so that

$$\alpha = \begin{cases} 0, & \text{if } 3^2 \parallel I, \\ 2, & \text{if } 3 \nmid I \text{ or } 3 \parallel I. \end{cases}$$

In all three cases $(3 \nmid I, 3 \parallel I \text{ and } 3^2 \parallel I)$ we have

$$\prod_{\substack{p \equiv 1 \pmod{3} \\ p \mid A, p \mid B}} p = F(v).$$

Hence

$$d(K) = \begin{cases} 3^4 F(v)^2, & \text{if } 3 \nmid I \text{ or } 3 \parallel I, \\ F(v)^2, & \text{if } 3^2 \parallel I. \end{cases}$$

Finally, in all three cases $(3 \nmid I, 3 \parallel I \text{ and } 3^2 \parallel I)$, we have

$$\operatorname{ind}(\theta) = \sqrt{\frac{\operatorname{disc}(p(x))}{d(K)}} = I.$$

As before there exists an infinite set of cyclic cubic fields K possessing an integer of index I. As B is even, by Lemma 2.1 each of these $K \in C_2$.

References

 J. G. Huard, Cyclic cubic fields that contain an integer of given index, in Number Theory, Carbondale, 1979, 195-199, Lecture Notes in Mathematics, Springer, 1979.

- [2] J. G. Huard, B. K. Spearman and K. S. Williams, A short proof of the formula for the conductor of an abelian cubic field, Norske Vid. Selsk. 2 (1994), 3-8.
- [3] P. Llorente and E. Nart, Effective determination of the decomposition of the rational primes in a cubic field, Proc. Amer. Math. Soc. 87 (1983), 579-585.
- [4] D. C. Mayer, Multiplicities of dihedral discriminants, Math. Comp. 58 (1992), 831-847.
- [5] W. Narkiewicz, *Elementary and Analytic Theory of Algebraic Numbers*, Springer-Verlag Berlin (1990).
- [6] T. Nagel, Zur Arithmetik der Polynome, Abh. Math. Sem. Hamburg 1 (1922), 179-194.
- [7] A. Silvester, B. K. Spearman and K. S. Williams, *The index of a dihedral quartic field*, J. Algebra Number Theory Appl. 3 (2003), 121-144.

Received: January 9, 2008