International Mathematical Forum, 3, 2008, no. 32, 1595-1606

# Indices of Integers in Cyclic Cubic Fields 

Blair K. Spearman<br>Department of Mathematics and Statistics<br>University of British Columbia Okanagan<br>Kelowna, British Columbia, Canada V1V 1V7<br>blair.spearman@ubc.ca<br>Kenneth S. Williams<br>Centre for Research in Algebra and Number Theory<br>School of Mathematics and Statistics<br>Carleton University<br>Ottawa, Ontario, Canada K1S 5B6<br>kwilliam@connect.carleton.ca


#### Abstract

The field index $i(K)$ of a cyclic cubic field $K$ is 1 or 2 . For $i \in\{1,2\}$ we determine explicitly the set $L_{i}:=\{n \in \mathbb{N} \mid n=\operatorname{ind}(\theta)$, where $\theta$ is an algebraic integer such that $\mathbb{Q}(\theta)$ is a cyclic cubic field with field index $i\}$. Moreover for each $\ell \in L_{i}$ we show that there exist infinitely many cyclic cubic fields $K$ with field index $i$ such that $O_{K}$ possesses an element of index $\ell$.


Mathematics Subject Classification: 11R16, 11S05

Keywords: cyclic cubic field, index, field index, discriminant

## 1 Introduction

Let $I \in \mathbb{N}$. Huard [1, Theorem B, p. 189] has proved that there exist infinitely many cyclic cubic fields that contain an integer of index $I$. It is known that
the field index of a cyclic cubic field is 1 or 2 [3, p. 585]. For $i \in\{1,2\}$ we set

$$
\begin{equation*}
C_{i}:=\{K \mid K \text { is a cyclic cubic field with field index } i(K)=i\} . \tag{1.1}
\end{equation*}
$$

In this paper we investigate the indices of integers in $C_{i}$. To do this we define for $i \in\{1,2\}$

$$
\begin{equation*}
L_{i}:=\{n \in \mathbb{N} \mid n=\operatorname{ind}(\theta), \text { where } \theta \text { is an algebraic integer such } \tag{1.2}
\end{equation*}
$$ that $\mathbb{Q}(\theta)$ is a cyclic cubic field with field index $i\}$.

We determine the set $L_{i}$ explicitly and show that each element of $L_{i}$ occurs as an index for infinitely many $K$ in $C_{i}$. We prove the following theorem in Section 3 after some preliminary results are proved in Section 2.

## Theorem 1.1.

(i) $\quad L_{1}=\left\{8^{a} n \mid a \in \mathbb{N} \cup\{0\}, n \in 2 \mathbb{N}-1\right\}$.
(ii) $L_{2}=\{2 n \mid n \in \mathbb{N}\}$.
(iii) For each $i \in\{1,2\}$ and each $\ell \in L_{i}$ there exist infinitely many cyclic cubic fields $K$ in $C_{i}$ such that $O_{K}$ possesses an element of index $\ell$.

Although every positive integer is an index of some cyclic cubic field, Theorem 1.1 shows that the density of indices is $4 / 7=0.56 \ldots$ in the field index one case and $1 / 2=0.5$ in the field index two case.

## 2 Preliminary Results

If $K$ is a cubic field, the cubic trinomial $x^{3}+A x+B(A, B \in \mathbb{Z})$ is said to be a defining polynomial for $K$ if $x^{3}+A x+B$ possesses a root $\theta \in \mathbb{C}$ such that $K=\mathbb{Q}(\theta)$.

A cubic trinomial $x^{3}+A x+B(A, B \in \mathbb{Z})$ is said to satisfy the simplifying assumption if

$$
\begin{equation*}
R^{2}\left|A, \quad R^{3}\right| B \quad(R \in \mathbb{N}) \Longrightarrow R=1 \tag{2.1}
\end{equation*}
$$

Lemma 2.1. Let $K$ be a cyclic cubic field. Let $x^{3}+A x+B$ be a defining polynomial for $K$ satisfying (2.1). Then

$$
i(K)= \begin{cases}1, & \text { if } B \text { is odd, } \\ 2, & \text { if } B \text { is even } .\end{cases}
$$

Proof. If $B$ is odd then the discriminant $-4 A^{3}-27 B^{2}$ of $x^{3}+A x+B$ is also odd and thus $i(K)=1$.

If $B$ is even we suppose that $i(K)=1$ and obtain a contradiction so that $i(K)=2$. Let $\theta \in \mathbb{C}$ be a root of $x^{3}+A x+B$. As $x^{3}+A x+B$ is a defining polynomial for $K$ and $K$ is a normal extension of $\mathbb{Q}$ we have $K=\mathbb{Q}(\theta)$. Let $\langle\theta\rangle=P_{1} P_{2} \cdots P_{r}$ be the prime ideal factorization of the principal ideal $\langle\theta\rangle$ in $O_{K}$. As $\theta^{3}+A \theta+B=0$ we have $N(\theta)=-B$ so that

$$
N\left(P_{1}\right) N\left(P_{2}\right) \cdots N\left(P_{r}\right)=N(\langle\theta\rangle)=|N(\theta)|=|B| \equiv 0(\bmod 2) .
$$

Hence $2 \mid N\left(P_{j}\right)$ for some $j \in\{1,2, \ldots, r\}$. Thus $N\left(P_{j}\right)=2^{t}$ for some $t \in \mathbb{N}$. Since 2 does not divide the discriminant of any cyclic cubic field [2, Theorem, p. 4], 2 does not ramify in $K$. Thus, as $K / \mathbb{Q}$ is a normal extension of degree 3, either $\langle 2\rangle$ is a prime ideal of $O_{K}$ or $\langle 2\rangle=\wp_{1} \wp_{2} \wp_{3}$ for distinct prime ideals $\wp_{1}, \wp_{2}, \wp_{3}$ of $O_{K}$. If $\langle 2\rangle=\wp_{1} \wp_{2} \wp_{3}$ then by [5, Corollary, p. 180] we have $i(K)=2$, contradicting $i(K)=1$. Thus $\langle 2\rangle$ is a prime ideal of $O_{K}$ so $\langle 2\rangle=P_{j}$. Hence $\langle 2\rangle \mid\langle\theta\rangle$ and so $2 \mid \theta$ in $O_{K}$. Thus $\theta / 2 \in O_{K}$. As $(\theta / 2)^{3}+(A / 4)(\theta / 2)+(B / 8)=0$ and $A / 4, B / 8 \in \mathbb{Q}$, the monic irreducible cubic polynomial in $\mathbb{Z}[x]$ satisfied by $\theta / 2$ is $x^{3}+(A / 4) x+(B / 8)$. Thus $A / 4 \in \mathbb{Z}$ and $B / 8 \in \mathbb{Z}$. This contradicts (2.1).

Lemma 2.2. Let $K \in C_{1}$. If $\theta \in O_{K}$ has even index then $(\theta+k) / 2 \in O_{K}$ for some $k \in \mathbb{Z}$.

Proof. Suppose that $\theta \in O_{K}$ has even index. As $\theta \in O_{K}$ there exist $a, b, c \in \mathbb{Z}$ such that $\theta$ is a root of $g(x)=x^{3}+a x^{2}+b x+c$. Then $3 \theta+a \in O_{K}$ is a root of $h(x)=x^{3}+A x+B$, where $A=-3 a^{2}+9 b \in \mathbb{Z}$ and $B=2 a^{3}-9 a b+27 c \in \mathbb{Z}$. We note that $\operatorname{disc}(h(x))=3^{6} \operatorname{disc}(g(x))$. As $\operatorname{ind}(\theta) \equiv 0(\bmod 2)$, we have $\operatorname{disc}(g) \equiv 0(\bmod 2)$ and so $-4 A^{3}-27 B^{2}=\operatorname{disc}(h) \equiv 0(\bmod 2)$. Thus $B \equiv 0(\bmod 2)$. If either $2^{2} \nmid A$ or $2^{3} \nmid B$ then by Lemma 2.1, we have $i(K)=2$, contradicting $K \in C_{1}$. Thus $2^{2} \mid A$ and $2^{3} \mid B$ so $(3 \theta+a) / 2 \in O_{K}$. Hence $(\theta+a) / 2=(3 \theta+a) / 2-\theta \in O_{K}$ as required.

Lemma 2.3. Let $K \in C_{1}$. Let $\theta \in O_{K}$ be such that $K=\mathbb{Q}(\theta)$. Then

$$
\operatorname{ind}(\theta)=8^{a} n
$$

for some $a \in \mathbb{N} \cup\{0\}$ and $n \in 2 \mathbb{N}-1$.

Proof. Suppose that there exists $\theta \in O_{K}$ and $K=\mathbb{Q}(\theta)$ with $2^{t} \| \operatorname{ind}(\theta)$ for some $t \in \mathbb{N} \cup\{0\}$ with $t \not \equiv 0(\bmod 3)$. Let $\theta^{*} \in O_{K}$ have the least
such value of $t$, say $t^{*}$. Then, by Lemma 2.2 , there exists $k \in \mathbb{Z}$ such that $\left(\theta^{*}+k\right) / 2 \in O_{K}$ and $K=\mathbb{Q}\left(\left(\theta^{*}+k\right) / 2\right)$. Hence $2^{t^{*}-3} \| \operatorname{ind}\left(\left(\theta^{*}+k\right) / 2\right)$ so $t^{*}-3 \geq 0$. As $t^{*}-3 \not \equiv 0(\bmod 3)$ this contradicts the minimality of $t^{*}$. Hence, for every $\theta \in O_{K}$ with $K=\mathbb{Q}(\theta)$ we have $2^{t} \| \operatorname{ind}(\theta)$ with $t \equiv 0(\bmod 3)$. Thus ind $(\theta)=2^{3 a} n$ for some $a \in \mathbb{N} \cup\{0\}$ and $n \in 2 \mathbb{N}-1$.

We next state a theorem of Nagel [6] in the case of a quadratic polynomial.

Proposition 2.1. Let $f(x) \in \mathbb{Z}[x]$ be a quadratic polynomial which is primitive and has a nonzero discriminant. Then there exist infinitely many $x \in \mathbb{N}$ such that $f(x)$ is squarefree.

In [7] the following extension of Proposition 2.1 was proved.
Proposition 2.2. Let $d \neq 0, e, f \in \mathbb{Z}$ be such that $\operatorname{gcd}(d, e, f)=1$ and $e^{2}-4 d f \neq 0$. Let $m$ be a positive squarefree integer. Let $r$ be an integer such that $d r^{2}+e r+f \neq 0$ and for every prime $p$ satisfying $p\left|m, p^{2}\right| d r^{2}+e r+f$ we have $p \nmid 2 d r+e$. Then there exist infinitely many positive integers $x \equiv$ $r(\bmod m)$ such that $d x^{2}+e x+f$ is squarefree.

We need the following special cases of Proposition 2.2.

Lemma 2.4. (a) Let $d, e, f \in \mathbb{N}$ be such that $\operatorname{gcd}(d, e, f)=1, e^{2}-4 d f \neq 0$ and $3 \| e^{2}-4 d f$. Then for any $r \in \mathbb{Z}$ there exist infinitely many positive integers $v \equiv r(\bmod 3)$ such that $d v^{2}+e v+f$ is squarefree.
(b) Let $e, f \in \mathbb{N}$ be such that $e^{2}-4 f \neq 0, e \equiv 0(\bmod 3)$ and $f \not \equiv 2(\bmod 3)$. Then there exist infinitely many positive integers $v \not \equiv 0(\bmod 3)$ such that $v^{2}+e v+f$ is squarefree.
(c) Let $d, f \in \mathbb{N}$ be such that $\operatorname{gcd}(d, f)=1$. Then there exist infinitely many positive integers $v \not \equiv 0(\bmod 3)$ such that $d v^{2}+f$ is squarefree.

## 3 Proof of Theorem 1.1.

We first examine $L_{1}$. By Lemma 2.3 the only possible integers in $L_{1}$ are those of the form $8^{a} n$, where $a \in \mathbb{N} \cup\{0\}$ and $n \in 2 \mathbb{N}-1$. We show that all such integers are in $L_{1}$ and occur as indices of infinitely many cyclic cubic
fields of index 1. It is enough to do this for the odd positive integers since $\operatorname{ind}\left(2^{a} \theta\right)=8^{a} \operatorname{ind}(\theta)$ for $\mathbb{Q}(\theta) \in C_{1}$. As ind $\left(3^{b} \theta\right)=3^{3 b}$ ind $(\theta)$ for $\mathbb{Q}(\theta) \in C_{1}$ we can further restrict $n$ to satisfy $3^{3} \nmid n$.

Let $I \in 2 \mathbb{N}-1$ be such that $3^{3} \nmid I$. We show that $I \in L_{1}$ and that there exist infinitely many cyclic cubic fields $K$ such that $O_{K}$ possesses an element of index $I$. Define $F(x) \in \mathbb{Z}[x]$ by

$$
F(x)= \begin{cases}x^{2}+I x+I^{2}, & \text { if } 3 \nmid I,  \tag{3.1}\\ 3 x^{2}+I x+\left(I^{2} / 9\right), & \text { if } 3 \| I \\ x^{2}+9 I x+27 I^{2}, & \text { if } 3^{2} \| I\end{cases}
$$

If $3 \nmid I$ by Lemma 2.4(a) there exist infinitely many positive integers $v \equiv$ $I+1(\bmod 3)$ such that $F(v)$ is squarefree. If $3 \| I$ again by Lemma 2.4(a) there exist infinitely many positive integers $v \equiv(I / 3)+1(\bmod 3)$ such that $F(v)$ is squarefree. If $3^{2} \| I$ by Lemma $2.4(\mathrm{~b})$ there exist infinitely many positive integers $v \not \equiv 0(\bmod 3)$ such that $F(v)$ is squarefree. We denote the set of such $v$ by $V$ in each of the three cases $3 \nmid I, 3 \| I$ and $3^{2} \| I$.

We show that $2 \nmid F(v)$ for $v \in V$. Suppose $2 \mid F(v)$. Then by (3.1) we have $2 \mid v$ and $2 \mid I$, contradicting that $2 \nmid I$.

Next we note that it is easy to check using (3.1) and the congruences modulo 3 satisfied by $v \in V$ that $F(v) \equiv 1(\bmod 3)$ for $v \in V$.

For $v \in V$ we have

$$
F(v)= \begin{cases}\frac{1}{4}\left((2 v+I)^{2}+3 I^{2}\right), & \text { if } 3 \nmid I,  \tag{3.2}\\ \frac{1}{12}\left((6 v+I)^{2}+3(I / 3)^{2}\right), & \text { if } 3 \| I, \\ \frac{1}{4}\left((2 v+9 I)^{2}+27 I^{2}\right), & \text { if } 3^{2} \| I\end{cases}
$$

As $2 \nmid F(v), 3 \nmid F(v)$ and $F(v)$ is squarefree, we see that the only primes $p$ dividing $F(v)$ satisfy $p \equiv 1(\bmod 3)$.

We now show that for $v \in V$

$$
\begin{cases}\operatorname{gcd}(F(v), 2 v+I)=1, & \text { if } 3 \nmid I  \tag{3.3}\\ \operatorname{gcd}(F(v), 6 v+I)=1, & \text { if } 3 \| I \\ \operatorname{gcd}(F(v), 2 v+9 I)=1, & \text { if } 3^{2} \| I\end{cases}
$$

Let $p$ be a prime divisor of

$$
\begin{cases}\operatorname{gcd}(F(v), 2 v+I), & \text { if } 3 \nmid I \\ \operatorname{gcd}(F(v), 6 v+I), & \text { if } 3 \| I \\ \operatorname{gcd}(F(v), 2 v+9 I), & \text { if } 3^{2} \| I\end{cases}
$$

As $p \mid F(v)$ and $F(v) \equiv 1(\bmod 3)$ we see that $p \neq 3$. From the identities

$$
\left\{\begin{array}{lll}
4 F(v)-(2 v+I)^{2}=3 I^{2}, & F(v)-(2 v+I)^{2}+3 v(2 v+I)=3 v^{2}, & \text { if } 3 \nmid I \\
12 F(v)-(6 v+I)^{2}=\frac{1}{3} I^{2}, & 9 F(v)-(6 v+I)^{2}+3 v(6 v+I)=9 v^{2}, & \text { if } 3 \| I \\
4 F(v)-(2 v+9 I)^{2}=27 I^{2}, & 3 F(v)-(2 v+9 I)^{2}+v(2 v+9 I)=v^{2}, & \text { if } 3^{2} \| I
\end{array}\right.
$$

we deduce that $p \mid \operatorname{gcd}(I, v)$. Then, by (3.1), $p^{2} \mid F(v)$, contradicting that $F(v)$ is squarefree. This completes the proof of (3.3).

From the congruences $(\bmod 3)$ satisfied by $v \in V$ we have

$$
\begin{cases}2 v+I \equiv 2(\bmod 3), & \text { if } 3 \nmid I  \tag{3.4}\\ 6 v+I \equiv 3 I+6 \equiv 6(\bmod 9), & \text { if } 3 \| I \\ 2 v+9 I \not \equiv 0(\bmod 3), & \text { if } 3^{2} \| I\end{cases}
$$

To summarize we have shown that for each $v \in V$ we have $F(v) \in \mathbb{N}$, $F(v)>1,2 \nmid F(v), 3 \nmid F(v), F(v)$ is squarefree, and that (3.3) and (3.4) hold.

For $v \in V$ we define a cubic polynomial $p(x) \in \mathbb{Z}[x]$ by
$p(x)= \begin{cases}x^{3}-3 F(v) x+(2 v+I) F(v), & \text { if } 3 \nmid I, \\ x^{3}-9 F(v) x+3(6 v+I) F(v), & \text { if } 3 \| I, \\ x^{3}+v x^{2}+\left(\frac{v^{2}-F(v)}{3}\right) x+\left(\frac{v^{3}-F(v) v+9 I F(v)}{27}\right), & \text { if } 3^{2} \| I .\end{cases}$
We have

$$
\operatorname{disc}(p(x))= \begin{cases}3^{4} I^{2} F(v)^{2}, & \text { if } 3 \nmid I  \tag{3.6}\\ 3^{4} I^{2} F(v)^{2}, & \text { if } 3 \| I \\ I^{2} F(v)^{2}, & \text { if } 3^{2} \| I\end{cases}
$$

We observe that

$$
\begin{equation*}
q(x)=3^{3} p\left(\frac{x-v}{3}\right)=x^{3}-3 F(v) x+(2 v+9 I) F(v), \text { if } 3^{2} \| I \tag{3.7}
\end{equation*}
$$

We set

$$
A= \begin{cases}-3 F(v), & \text { if } 3 \nmid I \\ -9 F(v), & \text { if } 3 \| I \\ -3 F(v), & \text { if } 3^{2} \| I\end{cases}
$$

and

$$
B= \begin{cases}(2 v+I) F(v), & \text { if } 3 \nmid I, \\ 3(6 v+I) F(v), & \text { if } 3 \| I \\ (2 v+9 I) F(v), & \text { if } 3^{2} \| I\end{cases}
$$

so that

$$
x^{3}+A x+B= \begin{cases}p(x), & \text { if } 3 \nmid I \text { or } 3 \| I, \\ q(x), & \text { if } 3^{2} \| I\end{cases}
$$

and

$$
-4 A^{3}-27 B^{2}=C^{2}
$$

where

$$
C= \begin{cases}3^{2} I F(v), & \text { if } 3 \nmid I \text { or } 3 \| I \\ 3^{3} I F(v), & \text { if } 3^{2} \| I\end{cases}
$$

We show that $x^{3}+A x+B$ satisfies (2.1). Suppose $R \in \mathbb{N}$ is such that $R^{2} \mid A$ and $R^{3} \mid B$. If $3 \nmid I$ or $3^{2} \| I$ then $A$ is squarefree so $R=1$. If $3 \| I$ then the only square dividing $A$ is $3^{2}$ so $R \mid 3$. Moreover, as $F(v) \equiv 1(\bmod 3)$ and $v \equiv I / 3+1(\bmod 3)$ in this case we have

$$
B=3(6 v+I) F(v) \equiv 3(6 v+I) \equiv 3(3 I+6) \equiv 18(\bmod 27),
$$

so that $R \neq 3$. Thus $R=1$.
We show next that $p(x)$ is irreducible over $\mathbb{Q}$ for $v \in V$. In the case $3^{2} \| I$ it suffices to prove that $q(x)$ is irreducible in view of (3.7). We can choose a prime $p \neq 2,3$ with $p \| F(v)$. Clearly $p \| A$ and $p \mid B$. From (3.3) we deduce that $p \| B$. Hence $x^{3}+A x+B$ is $p$-Eisenstein and so irreducible over $\mathbb{Q}$.

Next we show that

$$
\operatorname{Gal}(p(x)) \simeq \mathbb{Z} / 3 \mathbb{Z}, \quad v \in V
$$

This is clear as $p(x)$ is irreducible over $\mathbb{Q}$ and $\operatorname{disc}(p(x)) \in \mathbb{Z}^{2}$ by (3.6).
Our next goal is to show that if $v \in V$ and $K=\mathbb{Q}(\theta)$, where $\theta$ is a root of $p(x)$, then

$$
d(K)= \begin{cases}3^{4} F(v)^{2}, & \text { if } 3 \nmid I \text { or } 3 \| I \\ F(v)^{2}, & \text { if } 3^{2} \| I .\end{cases}
$$

To do this we appeal to the following result, see [4, p. 831] and [2, Theorem, p. 4].

Proposition 3.1. If $K$ is a cyclic cubic field given by $K=\mathbb{Q}(\phi)$, where $\phi^{3}+$ $A \phi+B=0$ and $A$ and $B$ are integers satisfying (2.1), then the discriminant of $K$ is given by

$$
d(K)=f(K)^{2}
$$

where

$$
f(K)=3^{\alpha} \prod_{\substack{p \equiv 1(\bmod 3) \\ p|A, p| B}} p
$$

where $p$ runs through primes and

$$
\alpha= \begin{cases}0, & \text { if } 3 \nmid A \text { or } 3 \| A, 3 \nmid B, 3^{3} \mid C, \\ 2, & \text { if } 3^{2}\left\|A, 3^{2}\right\| B \text { or } 3\left\|A, 3 \nmid B, 3^{2}\right\| C,\end{cases}
$$

where $C \in \mathbb{N}$ is given by $C^{2}=-4 A^{3}-27 B^{2}$.

We have

$$
\begin{cases}3\left\|A, 3 \nmid B, 3^{2}\right\| C, & \text { if } 3 \nmid I, \\ 3^{2}\left\|A, 3^{2}\right\| B, & \text { if } 3 \| I, \\ 3 \| A, 3 \nmid B, 3^{3} \mid C, & \text { if } 3^{2} \| I\end{cases}
$$

so that

$$
\alpha= \begin{cases}0, & \text { if } 3^{2} \| I \\ 2, & \text { if } 3 \nmid I \text { or } 3 \| I\end{cases}
$$

In all three cases $\left(3 \nmid I, 3 \| I\right.$ and $\left.3^{2} \| I\right)$ we have

$$
\prod_{\substack{p \equiv 1(\bmod 3) \\ p|A, p| B}} p=F(v) .
$$

Hence

$$
d(K)= \begin{cases}3^{4} F(v)^{2}, & \text { if } 3 \nmid I \text { or } 3 \| I, \\ F(v)^{2} & \text { if } 3^{2} \| I .\end{cases}
$$

Finally in all three cases we have

$$
\operatorname{ind}(\theta)=\sqrt{\frac{\operatorname{disc}(p(x))}{d(K)}}=I
$$

As $F(v)=F\left(v^{\prime}\right)$ has at most two solutions for $v^{\prime}$, we can find an infinite subset of $V$ for which the values of $F(v)$ are distinct thus ensuring that the corresponding field discriminants are distinct. This gives an infinite set of cyclic cubic fields $K$ posssessing an integer of index $I$. As $B$ is odd, by Lemma 2.1 each $K \in C_{1}$.

We now turn to the determination of $L_{2}$. If $K \in C_{2}$ the index of any $\theta \in O_{K}$ such that $K=\mathbb{Q}(\theta)$ is even. Thus we may suppose that $I$ is even. As $\operatorname{ind}\left(3^{b} \theta\right)=3^{3 b} \operatorname{ind}(\theta)$ for $\mathbb{Q}(\theta) \in C_{2}$ we can further restrict $I$ to satisfy $3^{3} \nmid I$. Define $F(x) \in \mathbb{Z}[x]$ by

$$
F(x)= \begin{cases}x^{2}+\left(3 I^{2} / 4\right), & \text { if } 3 \nmid I,  \tag{3.8}\\ 3 x^{2}+(I / 6)^{2}, & \text { if } 3 \| I, \\ x^{2}+27(I / 2)^{2}, & \text { if } 3^{2} \| I\end{cases}
$$

By Lemma 2.4(c) there exist infinitely many positive integers $v \not \equiv 0(\bmod 3)$ such that $F(v)$ is squarefree. We denote the set of such $v$ by $V$. Moreover $F(v) \equiv 1(\bmod 3)$ for $v \in V$. We show next that $\operatorname{gcd}(v, F(v))=1$. Suppose there exists a prime $p$ with $p \mid v$ and $p \mid F(v)$. As $3 \nmid v$ we have $p \neq 3$. Suppose $p=2$. As $F(v)$ is squarefree we have $2 \| F(v)$. By (3.8) $F(v)=a^{2}+3 b^{2}$ for some integers $a$ and $b$. Hence $2 \| a^{2}+3 b^{2}$, contradicting $a^{2}+3 b^{2} \equiv 0,1$ or 3 $(\bmod 4)$. Hence $p \neq 2$. Then, from (3.8), we see that as $p \mid F(v)$ and $p \mid v$ we have $p \mid I$ so $p^{2} \mid F(v)$, a contradiction.

As $2 \nmid F(v), 3 \nmid F(v)$ and $F(v)$ is squarefree, we see that the only primes $p$ dividing $F(v)$ satisfy $p \equiv 1(\bmod 3)$.

For $v \in V$ we define a cubic polynomial $p(x) \in \mathbb{Z}[x]$ by

$$
p(x)= \begin{cases}x^{3}-3 F(v) x+2 v F(v), & \text { if } 3 \nmid I  \tag{3.9}\\ x^{3}-9 F(v) x+18 v F(v), & \text { if } 3 \| I \\ x^{3}+v x^{2}-9(I / 2)^{2} x-v(I / 2)^{2}, & \text { if } 3^{2} \| I\end{cases}
$$

Let $\theta$ be a root of $p(x)$ and set $K=\mathbb{Q}(\theta)$. We have

$$
\operatorname{disc}(p(x))= \begin{cases}3^{4} I^{2} F(v)^{2}, & \text { if } 3 \nmid I \text { or } 3 \| I,  \tag{3.10}\\ I^{2} F(v)^{2}, & \text { if } 3 \| I\end{cases}
$$

We observe that

$$
q(x)=3^{3} p\left(\frac{x-v}{3}\right)=x^{3}-3 F(v) x+2 v F(v), \text { if } 3^{2} \| I
$$

We set

$$
A= \begin{cases}-3 F(v), & \text { if } 3 \nmid I, \\ -9 F(v), & \text { if } 3 \| I \\ -3 F(v), & \text { if } 3^{2} \| I\end{cases}
$$

and

$$
B= \begin{cases}2 v F(v), & \text { if } 3 \nmid I, \\ 18 F(v), & \text { if } 3 \| I \\ 2 v F(v), & \text { if } 3^{2} \| I\end{cases}
$$

so that

$$
x^{3}+A x+B= \begin{cases}p(x), & \text { if } 3 \nmid I \text { or } 3 \| I, \\ q(x), & \text { if } 3^{2} \| I,\end{cases}
$$

and

$$
-4 A^{3}-27 B^{2}=C^{2}
$$

where

$$
C= \begin{cases}3^{2} I F(v), & \text { if } 3 \nmid I \text { or } 3 \| I \\ 3^{3} I F(v), & \text { if } 3^{2} \| I\end{cases}
$$

Clearly, as $3 \nmid v, 3 \nmid F(v)$ and $F(v)$ is squarefree, the polynomial $x^{3}+A x+B$ satisfies the simplifying assumption (2.1). We show next that the polynomial
$x^{3}+A x+B$ is irreducible over $\mathbb{Q}$. For $v \in V$ we have $F(v)>1$. Let $p$ be a prime divisor of $F(v)$. As $2 \nmid F(v)$ and $3 \nmid F(v)$ we have $p \neq 2,3$. As $\operatorname{gcd}(v, F(v))=1$ we see that $p \| A$ and $p \| B$. Hence $x^{3}+A x+B$ is $p$-Eisenstein and so is irreducible over $\mathbb{Q}$. Thus $p(x)$ is irreducible over $\mathbb{Q}$.

As $p(x)$ is irreducible over $\mathbb{Q}$ and $\operatorname{disc}(p(x)) \in \mathbb{Z}^{2}$, we have

$$
\operatorname{Gal}(K) \simeq \mathbb{Z} / 3 \mathbb{Z}, \quad v \in V
$$

We have

$$
\begin{cases}3\left\|A, 3 \nmid B, 3^{2}\right\| C, & \text { if } 3 \nmid I, \\ 3^{2}\left\|A, 3^{2}\right\| B, 3^{3} \| C, & \text { if } 3 \| I \\ 3 \| A, 3 \nmid B, 3^{5} \mid C, & \text { if } 3^{2} \| I\end{cases}
$$

so that

$$
\alpha= \begin{cases}0, & \text { if } 3^{2} \| I \\ 2, & \text { if } 3 \nmid I \text { or } 3 \| I .\end{cases}
$$

In all three cases $\left(3 \nmid I, 3 \| I\right.$ and $\left.3^{2} \| I\right)$ we have

$$
\prod_{\substack{\equiv 1(\bmod 3) \\ o|A, p| B}} p=F(v)
$$

Hence

$$
d(K)= \begin{cases}3^{4} F(v)^{2}, & \text { if } 3 \nmid I \text { or } 3 \| I, \\ F(v)^{2}, & \text { if } 3^{2} \| I .\end{cases}
$$

Finally, in all three cases $\left(3 \nmid I, 3 \| I\right.$ and $\left.3^{2} \| I\right)$, we have

$$
\operatorname{ind}(\theta)=\sqrt{\frac{\operatorname{disc}(p(x)}{d(K)}}=I
$$

As before there exists an infinite set of cyclic cubic fields $K$ possessing an integer of index $I$. As $B$ is even, by Lemma 2.1 each of these $K \in C_{2}$.

## References

[1] J. G. Huard, Cyclic cubic fields that contain an integer of given index, in Number Theory, Carbondale, 1979, 195-199, Lecture Notes in Mathematics, Springer, 1979.
[2] J. G. Huard, B. K. Spearman and K. S. Williams, A short proof of the formula for the conductor of an abelian cubic field, Norske Vid. Selsk. 2 (1994), 3-8.
[3] P. Llorente and E. Nart, Effective determination of the decomposition of the rational primes in a cubic field, Proc. Amer. Math. Soc. 87 (1983), 579-585.
[4] D. C. Mayer, Multiplicities of dihedral discriminants, Math. Comp. 58 (1992), 831-847.
[5] W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, Springer-Verlag Berlin (1990).
[6] T. Nagel, Zur Arithmetik der Polynome, Abh. Math. Sem. Hamburg 1 (1922), 179-194.
[7] A. Silvester, B. K. Spearman and K. S. Williams, The index of a dihedral quartic field, J. Algebra Number Theory Appl. 3 (2003), 121-144.

Received: January 9, 2008

