International Journal of Algebra, Vol. 2, 2008, no. 2, 79-89

The Simplest D_{4}-octics

Blair K. Spearman
Department of Mathematics and Statistics
University of British Columbia Okanagan
Kelowna, British Columbia, Canada V1V 1V7
blair.spearman@ubc.ca

Kenneth S. Williams

Centre for Research in Algebra and Number Theory School of Mathematics and Statistics, Carleton University

Ottawa, Ontario, Canada K1S 5B6
kwilliam@connect.carleton.ca

Abstract

We show that $\left\{x^{8}+\left(t^{2}+2\right) x^{4}+1 \mid t \in \mathbb{N}\right\}$ is the "simplest" infinite parametric family of octic polynomials having the dihedral group of order 8 as their Galois group. We also determine the discriminant of the octic field $\mathbb{Q}(\theta)$, where θ is a root of $x^{8}+\left(t^{2}+2\right) x^{4}+1$. Under the assumption that $t^{2}+4$ is squarefree we give an integral basis for $\mathbb{Q}(\theta)$.

Mathematics Subject Classification: 11R09, 11R21, 11R29, 11R32
Keywords: Galois group, dihedral group of order 8, octic polynomials, discriminant, integral basis

1 Introduction

Let D_{4} denote the dihedral group of order 8. G. W. Smith [5, p. 791] has given a parametric family of octic polynomials having D_{4} as their Galois group. This family comprises the irreducible polynomials of the form

$$
\begin{aligned}
& x^{8}-10\left(t^{2}-4\right) x^{6}+\left(33 t^{4}-208 t^{2}+472\right) x^{4} \\
& -40\left(t^{2}-4\right)\left(t^{4}-t^{2}+9\right) x^{2}+16\left(t^{4}+17 t^{2}-9\right)^{2}
\end{aligned}
$$

where $t \in \mathbb{Q}$. It is our purpose to present a simpler family of octic polynomials having D_{4} as Galois group. We show that if $x^{8}+a x^{4}+1$ is irreducible over
\mathbb{Q} for some rational a then its Galois group is D_{4} if and only if $a=t^{2}+2$ for some $t \in \mathbb{Q}$. Moreover, if $t \in \mathbb{N}$, we show that $x^{8}+\left(t^{2}+2\right) x^{4}+1$ is irreducible over \mathbb{Q} and thus $\left\{x^{8}+\left(t^{2}+2\right) x^{4}+1 \mid t \in \mathbb{N}\right\}$ is an infinite parametric family of D_{4}-octic polynomials. For $t \in N$ let $\theta \in \mathbb{C}$ be a root of $x^{8}+\left(t^{2}+2\right) x^{4}+1$ and set $K=\mathbb{Q}(\theta)$ so that $[K: \mathbb{Q}]=8$. We give an explicit formula for the discriminant $d(K)$ of K in Theorem 3.1. Further, when $t^{2}+4(t \in \mathbb{N})$ is squarefree, we give an explicit integral basis for K in Theorem 3.2. Finally we show in a simple manner that an irreducible polynomial $x^{8}+a(a \in \mathbb{Q})$ cannot have D_{4} as Galois group, thus justifying that the octic polynomials $x^{8}+\left(t^{2}+2\right) x^{4}+1$ are the simplest ones with Galois group D_{4}.

2 The family $x^{8}+\left(t^{2}+2\right) x^{4}+1$

In this section we determine those irreducible octic polynomials $x^{8}+a x^{4}+1$ ($a \in \mathbb{Q}$) having D_{4} as Galois group.

Theorem 2.1. Let $a \in \mathbb{Q}$ be such that $x^{8}+a x^{4}+1$ is irreducible over \mathbb{Q}. Then

$$
\operatorname{Gal}\left(x^{8}+a x^{4}+1\right) \simeq D_{4} \Longleftrightarrow a=t^{2}+2 \text { for some } t \in \mathbb{Q} .
$$

Proof. Throughout this proof we assume that $a \in \mathbb{Q}$ is such that $x^{8}+$ $a x^{4}+1$ is irreducible over \mathbb{Q}.

Suppose first that $a=t^{2}+2$ for some $t \in \mathbb{Q}$. If $t=0$ then $a=2$ so $x^{8}+a x^{4}+1=\left(x^{4}+1\right)^{2}$ is reducible, a contradiction. Hence $t \neq 0$. Let $\theta \in \mathbb{C}$ be a root of $x^{8}+\left(t^{2}+2\right) x^{4}+1=0$. Clearly $\theta \neq 0$. Then

$$
\begin{equation*}
\left(\frac{\theta^{4}+1}{t \theta^{2}}\right)^{2}=-1 \tag{2.1}
\end{equation*}
$$

so that $i \in \mathbb{Q}(\theta)$. The eight roots of $x^{8}+\left(t^{2}+2\right) x^{4}+1$ are

$$
\pm \theta, \pm i \theta, \pm \frac{1}{\theta}, \pm \frac{i}{\theta}
$$

Hence $\mathbb{Q}(\theta)$ is a normal extension of \mathbb{Q}. From (2.1) we obtain

$$
\frac{\theta^{4}+1}{t \theta^{2}}=\varepsilon i
$$

for some $\varepsilon \in\{-1,+1\}$. Replacing θ by $i \theta$, if necessary, we may suppose that $\varepsilon=1$. Then

$$
-2+t i=-2+\frac{\theta^{4}+1}{\theta^{2}}=\left(\theta-\frac{1}{\theta}\right)^{2}
$$

so that

$$
\sqrt{-2+t i} \in \mathbb{Q}(\theta)
$$

Next we prove that

$$
t^{2}+4 \notin \mathbb{Q}^{2}
$$

Suppose on the contrary that $t^{2}+4=u^{2}$ for some $u \in \mathbb{Q}$. Then there exists $v \in \mathbb{Q}^{*}$ such that

$$
t=\frac{v}{2}-\frac{2}{v}, u=\frac{v}{2}+\frac{2}{v} .
$$

Hence

$$
a=t^{2}+2=\frac{v^{2}}{4}+\frac{4}{v^{2}}
$$

and so

$$
x^{8}+a x^{4}+1=x^{8}+\left(\frac{v^{2}}{4}+\frac{4}{v^{2}}\right) x^{4}+1=\left(x^{4}+\frac{v^{2}}{4}\right)\left(x^{4}+\frac{4}{v^{2}}\right)
$$

contradicting that $x^{8}+a x^{4}+1$ is irreducible over \mathbb{Q}. As $(-2+t i)(-2-t i)=$ $t^{2}+4 \notin \mathbb{Q}^{2}$ we see that $(-2+t i) \neq(x+y i)^{2}$ for any $x, y \in \mathbb{Q}$. Thus $[\mathbb{Q}(\sqrt{-2+t i}): \mathbb{Q}(i)]=2$ and so $[\mathbb{Q}(\sqrt{-2+t i}): \mathbb{Q}]=4$. By $[3$, Theorem 3 , p. 135] the quartic field $\mathbb{Q}(\sqrt{-2+t i})$ is a dihedral extension of \mathbb{Q}. By Galois theory the normal closure of $\mathbb{Q}(\sqrt{-2+t i})$ is of degree 8 over \mathbb{Q}. However $\mathbb{Q}(\theta)$ is a normal extension of degree 8 over \mathbb{Q} containing $\mathbb{Q}(\sqrt{-2+t i})$. Thus $\mathbb{Q}(\theta)$ is the normal closure of $\mathbb{Q}(\sqrt{-2+t i})$ and thus is dihedral with Galois group D_{4}. Hence $\operatorname{Gal}\left(x^{8}+a x^{4}+1\right) \simeq D_{4}$.

Now suppose that $\operatorname{Gal}\left(x^{8}+a x^{4}+1\right) \simeq D_{4}$. Let $\theta \in \mathbb{C}$ be a root of $x^{8}+a x^{4}+1$. Then the eight roots of $x^{8}+a x^{4}+1$ are

$$
\pm \theta, \pm i \theta, \pm \frac{1}{\theta}, \pm \frac{i}{\theta}
$$

Thus the normal closure of $\mathbb{Q}(\theta)$ contains i. As $x^{8}+a x^{4}+1$ is irreducible over \mathbb{Q} so are $x^{2}+a x+1$ and $x^{4}+a x^{2}+1$. As $x^{2}+a x+1$ is irreducible over \mathbb{Q} we must have $a^{2}-4 \notin \mathbb{Q}$. Hence $\mathbb{Q}\left(\sqrt{a^{2}-4}\right)$ is a quadratic subfield of the splitting field L of $x^{4}+a x^{2}+1$. The discriminant of $x^{4}+a x^{2}+1$ is $2^{4}\left(a^{2}-4\right)^{2}$, which is a square in \mathbb{Q}. Thus $\operatorname{Gal}\left(x^{4}+a x^{2}+1\right)$ is either $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ or A_{4}. The latter cannot occur [3, Theorem 3, p. 135] so $\operatorname{Gal}\left(x^{4}+a x^{2}+1\right) \simeq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$. The four roots of $x^{4}+a x^{2}+1$ are

$$
\pm \frac{1}{2} \sqrt{-2 a \pm 2 \sqrt{a^{2}-4}}
$$

As

$$
2-a=\frac{1}{4}\left(\sqrt{-2 a+2 \sqrt{a^{2}-4}}+\varepsilon \sqrt{-2 a-2 \sqrt{a^{2}-4}}\right)^{2}
$$

for some $\varepsilon \in\{-1,+1\}$ then

$$
-2-a=\frac{1}{4}\left(\sqrt{-2 a+2 \sqrt{a^{2}-4}}-\varepsilon \sqrt{-2 a-2 \sqrt{a^{2}-4}}\right)^{2},
$$

so that

$$
\sqrt{2-a}, \sqrt{-2-a} \in L
$$

Since $(2-a)(-2-a)=a^{2}-4 \notin \mathbb{Q}^{2}$ at least one of $2-a$ and $-2-a \notin \mathbb{Q}^{2}$. If $2-a \notin \mathbb{Q}^{2}$ then $\mathbb{Q}(\sqrt{2-a})$ is a quadratic subfield of L. Suppose that $\mathbb{Q}\left(\sqrt{a^{2}-4}\right)=\mathbb{Q}(\sqrt{2-a})$. Then there exists $b \in \mathbb{Q}^{*}$ such that $a^{2}-4=$ $b^{2}(2-a)$. As $a^{2}-4 \notin \mathbb{Q}^{2}$ we have $a-2 \neq 0$ and so $a+2=-b^{2}$. Thus $a=-\left(b^{2}+2\right)$. Hence

$$
\begin{gathered}
x^{4}+a x^{2}+1=x^{4}-\left(b^{2}+2\right) x^{2}+1=x^{4}-2 x^{2}+1-b^{2} x^{2} \\
=\left(x^{2}-1\right)^{2}-b^{2} x^{2}=\left(x^{2}-b x-1\right)\left(x^{2}+b x-1\right),
\end{gathered}
$$

contradicting that $x^{4}+a x^{2}+1$ is irreducible over \mathbb{Q}. Thus $\mathbb{Q}\left(\sqrt{a^{2}-4}\right) \neq$ $\mathbb{Q}(\sqrt{2-a})$. Since $\left(a^{2}-4\right)(2-a)=(2-a)^{2}(-2-a)$ it is easy to check that $\mathbb{Q}(\sqrt{-2-a})$ is the third quadratic subfield of L. The argument is similar if $-2-a \notin \mathbb{Q}^{2}$. As $\operatorname{Gal}\left(x^{8}+a x^{4}+1\right) \simeq D_{4}$, the splitting field M of $x^{8}+$ $a x^{4}+1$ contains exactly three quadratic subfields. These must be $\mathbb{Q}\left(\sqrt{a^{2}-4}\right)$, $\mathbb{Q}(\sqrt{2-a})$ and $\mathbb{Q}(\sqrt{-2-a})$. However $\mathbb{Q}(\sqrt{-1}) \subseteq M$. Thus (i) $a^{2}-4=-b^{2}$ or (ii) $2-a=-b^{2}$ or (iii) $-2-a=-b^{2}$ for some $b \in \mathbb{Q}^{*}$. First we show that (i) cannot occur. If $a^{2}-4=-b^{2}$ then $a^{2}+b^{2}=4$ and so

$$
a=\frac{4 v}{v^{2}+1}, \quad b=\frac{2\left(v^{2}-1\right)}{v^{2}+1}
$$

for some $v \in \mathbb{Q}^{*}$. If $2\left(v^{2}+1\right) \in \mathbb{Q}^{2}$ then

$$
v=\frac{2 t^{2}-4 t+1}{2 t^{2}-1}
$$

for some $t \in \mathbb{Q}$. In this case

$$
x^{8}+a x^{4}+1=x^{8}+\frac{4 v}{v^{2}+1} x^{4}+1
$$

$$
\begin{aligned}
& =x^{8}+\frac{2\left(2 t^{2}-1\right)\left(2 t^{2}-4 t+1\right)}{\left(2 t^{2}-2 t+1\right)^{2}} x^{4}+1 \\
& =\left(x^{4}-\frac{(4 t-2)}{\left(2 t^{2}-2 t+1\right)} x^{2}+1\right)\left(x^{4}+\frac{(4 t-2)}{\left(2 t^{2}-2 t+1\right)^{2}} x^{2}+1\right)
\end{aligned}
$$

is reducible over \mathbb{Q}. Hence $2\left(v^{2}+1\right) \notin \mathbb{Q}^{2}$. In particular we have $v \neq \pm 1$. Let $\theta_{1}, \ldots, \theta_{8}$ be the eight complex roots of $f(x)=x^{8}+\frac{4 v}{v^{2}+1} x^{4}+1$. Set

$$
g(x):=\prod_{i, j=1}^{8}\left(x-\left(\theta_{i}+\theta_{j}\right)\right) \in \mathbb{Q}[x] .
$$

Using MAPLE we can calculate $g(x)$ by means of

$$
g(x)=\operatorname{Resultant}(f(x-X), f(X))
$$

One factor of $g(x)$ is found to be

$$
h(x):=x^{4}-4 x^{2}+\frac{2(v+1)^{2}}{v^{2}+1} .
$$

If $h(x)$ is reducible over \mathbb{Q} then

$$
h(x)=\left(x^{2}+a x+b\right)\left(x^{2}+c x+d\right)
$$

for some $a, b, c, d \in \mathbb{Q}$. Thus

$$
\begin{aligned}
a+c & =0 \\
a c+b+d & =-4 \\
a d+b c & =0 \\
b d & =\frac{2(v+1)^{2}}{v^{2}+1}
\end{aligned}
$$

Clearly $c=-a$ so that

$$
a(d-b)=0
$$

If $a=0$ then $c=0$ and

$$
b+d=-4, \quad b d=\frac{2(v+1)^{2}}{v^{2}+1}
$$

Thus

$$
(b-d)^{2}=(b+d)^{2}-4 b d=16-\frac{8(v+1)^{2}}{v^{2}+1}=\frac{8(v-1)^{2}}{v^{2}+1}
$$

so that $2\left(v^{2}+1\right) \in \mathbb{Q}^{2}$, a contradiction. Hence $a \neq 0$ so $b=d$. Thus

$$
b^{2}=\frac{2(v+1)^{2}}{v^{2}+1}
$$

so $2\left(v^{2}+1\right) \in \mathbb{Q}^{2}$, a contradiction. Thus $h(x)$ is irreducible over \mathbb{Q}. Let α be one of the four roots of $h(x)$. Set $E=\mathbb{Q}(\alpha)$. Then $[E: \mathbb{Q}]=4$. All four roots of $h(x)$ are

$$
\pm \alpha, \pm\left(\frac{\left(v^{2}+1\right)}{(v-1)} \alpha^{3}-\frac{\left(3 v^{2}-2 v+3\right)}{\left(v^{2}-1\right)} \alpha\right) .
$$

Thus E is a normal extension of \mathbb{Q}. The discriminant of $h(x)$ is

$$
\operatorname{disc}(h)=\frac{2^{11}(v-1)^{4}(v+1)^{2}}{\left(v^{2}+1\right)^{3}}
$$

As $2\left(v^{2}+1\right) \notin \mathbb{Q}^{2}$ we see that $\operatorname{disc}(h) \notin \mathbb{Q}^{2}$. Thus E is not a bicyclic extension of \mathbb{Q}. Hence E is a cyclic quartic extension of \mathbb{Q}. Such an extension cannot be a subfield of an octic field with Galois group $D_{4}\left[1\right.$, p. 291]. Thus $a^{2}-4 \neq-b^{2}$ showing that (i) does not occur. Suppose now that (ii) occurs. If $-2-a=-b^{2}$ then $a=b^{2}-2$ and we set

$$
h_{1}(x)=x^{4}+(b+2)^{2}
$$

and

$$
h_{2}(x)=x^{4}+(b-2)^{2} .
$$

We note that $b \neq \pm 2$ as $a \neq 2$. Let $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$ be the roots of h_{1} and $\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}$ the roots of h_{2}. Then the polynomial with roots $\left(\alpha_{1}-\beta_{1}\right),\left(\alpha_{1}-\right.$ $\left.\beta_{2}\right), \ldots,\left(\alpha_{4}-\beta_{4}\right)$ is found using MAPLE to be

$$
\left(x^{8}+\left(64-8 b^{2}\right) x^{4}+16 b^{4}\right)\left(x^{8}+\left(16 b^{2}-32\right) x^{4}+256\right) .
$$

As θ is a root of $x^{8}+\left(b^{2}-2\right) x^{4}+1,2 \theta$ is a root of $x^{8}+\left(16 b^{2}-32\right) x^{4}+256$, and so $2 \theta=\alpha_{i}-\beta_{j}$ for some $i, j \in\{1,2,3,4\}$. Thus $\theta=\frac{\alpha_{i}}{2}-\frac{\beta_{j}}{2}$ belongs to the compositum of the splitting fields of h_{1} and h_{2}. Hence

$$
\theta \in \mathbb{Q}(\sqrt{2(b+2)}, \sqrt{-2(b+2)}, \sqrt{2(b-2)}, \sqrt{-2(b-2)}) .
$$

Thus θ belongs to an abelian extension of \mathbb{Q}, contradicting that $\operatorname{Gal}(f)$ is D_{4}. Hence (ii) does not occur. This leaves only the possibility (iii) $2-a=-b^{2}$, that is $a=b^{2}+2$ as required.

This completes the proof of Theorem 2.1.

Next we show that $x^{8}+\left(t^{2}+2\right) x^{4}+1$ is irreducible over \mathbb{Q} for $t \in \mathbb{N}$.
Theorem 2.2. If $t \in \mathbb{N}$ then $x^{8}+\left(t^{2}+2\right) x^{4}+1$ is irreducible over \mathbb{Q}.
Proof. Let θ be a root of $x^{8}+\left(t^{2}+2\right) x^{4}+1$. As in the proof of Theorem 2.1 we can choose θ so that

$$
\sqrt{-2+t i} \in \mathbb{Q}(\theta)
$$

Suppose that

$$
-2+t i=(r+s i)^{2}
$$

for some $r, s \in \mathbb{Z}$. Then

$$
4+t^{2}=\left(r^{2}+s^{2}\right)^{2}
$$

However $4+t^{2} \in \mathbb{N}^{2}$ for $t \in \mathbb{N}$ only for $t=0$, a contradiction. Thus $-2+$ $t i \notin(\mathbb{Z}+\mathbb{Z} i)^{2}$ so $\mathbb{Q}(\sqrt{-2+t i})$ is a dihedral quartic field [3, Theorem 3, p. 135]. $\mathbb{Q}(\theta)$ is a normal extension of \mathbb{Q} so $\mathbb{Q}(\theta)$ contains the normal closure of $\mathbb{Q}(\sqrt{-2+t i})$. The field $\mathbb{Q}(\sqrt{-2+t i})$ is a dihedral quartic field so $\mathbb{Q}(\theta)$ is an octic field. Thus $x^{8}+\left(t^{2}+2\right) x^{4}+1$ is irreducible over \mathbb{Q}.

We observe that there are $t \in \mathbb{Q}^{+} \backslash \mathbb{N}$ for which $x^{8}+\left(t^{2}+2\right) x^{4}+1$ is reducible as well as $t \in \mathbb{Q}^{+} \backslash \mathbb{N}$ for which $x^{8}+\left(t^{2}+2\right) x^{4}+1$ is irreducible. For example for $t=3 / 2$ we have

$$
x^{8}+\left(\left(\frac{3}{2}\right)^{2}+2\right) x^{4}+1=x^{8}+\frac{17}{4} x^{4}+1=\left(x^{4}+\frac{1}{4}\right)\left(x^{4}+4\right)
$$

whereas for $t=8 / 3$ the octic polynomial

$$
x^{8}+\left(\left(\frac{8}{3}\right)^{2}+2\right) x^{4}+1=x^{8}+\frac{82}{9} x^{4}+1
$$

is irreducible over \mathbb{Q}.

3 The field $\mathbb{Q}(\theta), \theta^{8}+\left(t^{2}+2\right) \theta^{4}+1=0, t \in \mathbb{N}$

First we determine the discriminant of the octic field $\mathbb{Q}(\theta)$, where $\theta^{8}+\left(t^{2}+\right.$ 2) $\theta^{4}+1=0$ and $t \in \mathbb{N}$.

Theorem 3.1. Let $t \in \mathbb{N}$. Let s denote the squarefree part of the positive integer $t^{2}+4$. Let θ be a root of $x^{8}+\left(t^{2}+2\right) x^{4}+1$. Then

$$
d(\mathbb{Q}(\theta))=2^{\gamma} s^{4}
$$

where

$$
\gamma= \begin{cases}16, & \text { if } t \equiv 1(\bmod 2) \\ 18, & \text { if } t \equiv 2(\bmod 4) \\ 16, & \text { if } t \equiv 0(\bmod 4)\end{cases}
$$

Proof. $\mathbb{Q}(\theta)$ is the normal closure of the dihedral quartic field $\mathbb{Q}(\sqrt{-2+t i})$, we can apply Theorem 1 of [1]. In the notation of [1] we have

$$
a=-2, \quad b=t, \quad c \equiv-1(\bmod 4)
$$

so

$$
a \equiv 2(\bmod 4), \quad c \equiv 3(\bmod 4)
$$

Thus the only cases that arise are cases B_{1}, B_{7} and B_{8}, that is

$$
\begin{array}{ll}
B_{1}: & t \equiv 1(\bmod 2), \quad \theta=16, \quad 2 \nmid s \\
B_{7}: & t \equiv 2(\bmod 4), \quad \theta=18, \quad 2 \| s, \\
B_{8}: & t \equiv 0(\bmod 4), \quad \theta=12, \quad 2 \nmid s .
\end{array}
$$

Then, by Theorem 1 of [1], we obtain

$$
\gamma= \begin{cases}16, & \text { if } t \equiv 1(\bmod 2) \\ 18, & \text { if } t \equiv 2(\bmod 4) \\ 16, & \text { if } t \equiv 0(\bmod 4)\end{cases}
$$

This completes the proof of Theorem 3.1.
Next we determine an integral basis for the field $\mathbb{Q}(\theta)$, where $\theta^{8}+\left(t^{2}+\right.$ 2) $\theta^{4}+1=0$, under the assumption that $t^{2}+4$ is squarefree.

Theorem 3.2. Let $t \in \mathbb{N}$ be such that $t^{2}+4$ is squarefree. Then an integral basis for $\mathbb{Q}(\theta)$, where $\theta^{8}+\left(t^{2}+2\right) \theta^{4}+1=0$, is

$$
\left\{1, \theta, \theta^{2}, \theta^{3}, \frac{\theta^{4}+1}{t}, \frac{\theta\left(\theta^{4}+1\right)}{t}, \frac{\theta^{2}\left(\theta^{4}+1\right)}{t}, \frac{\theta^{3}\left(\theta^{4}+1\right)}{t}\right\} .
$$

Proof. By Theorem 3.1, as t is odd, we have

$$
d(\mathbb{Q}(\theta))=2^{16}\left(t^{2}+4\right)^{4}
$$

As

$$
\left(\frac{\theta^{4}+1}{t}\right)^{2}=-\theta^{2}
$$

we have

$$
\begin{equation*}
\frac{\theta^{4}+1}{t}= \pm i \theta \tag{3.1}
\end{equation*}
$$

so that $\frac{\theta^{4}+1}{t}$ is an integer of $\mathbb{Q}(\theta)$. Finally

$$
\begin{aligned}
d(1, \theta & \left., \theta^{2}, \theta^{3}, \frac{\theta^{4}+1}{t}, \frac{\theta\left(\theta^{4}+1\right)}{t}, \frac{\theta^{2}\left(\theta^{4}+1\right)}{t}, \frac{\theta^{3}\left(\theta^{4}+1\right)}{t}\right) \\
& =\frac{1}{t^{8}} d\left(1, \theta, \theta^{2}, \theta^{3}, \theta^{4}, \theta^{5}, \theta^{6}, \theta^{7}\right) \\
& =\frac{1}{t^{8}} 2^{16} t^{8}\left(t^{2}+4\right)^{4}=2^{16}\left(t^{2}+4\right)^{4}=d(\mathbb{Q}(\theta))
\end{aligned}
$$

so $\left\{1, \theta, \theta^{2}, \theta^{3}, \frac{\theta^{4}+1}{t}, \frac{\theta\left(\theta^{4}+1\right)}{t}, \frac{\theta^{2}\left(\theta^{4}+1\right)}{t}, \frac{\theta^{3}\left(\theta^{4}+1\right)}{t}\right\}$ is an integral basis.
By Nagel's theorem [4] there exist infinitely many $t \in \mathbb{N}$ such that $t^{2}+4$ is squarefree.

In view of (3.1)

$$
\left\{1, \theta, \theta^{2}, \theta^{3}, i, i \theta, i \theta^{2}, i \theta^{3}\right\}
$$

is also an integral basis for $\mathbb{Q}(\theta)$.
Taking $t=1$ in Theorem 3.2 we see that the octic field $\mathbb{Q}(\theta)$, where $\theta^{8}+$ $3 \theta^{4}+1=0$, has a power basis.

4 The polynomials $x^{8}+a, a \in \mathbb{Z}$

Finally we show that the polynomials $x^{8}+\left(t^{2}+2\right) x^{4}+1$ are the simplest ones that give rise to octic fields with Galois group D_{4} by giving a simple direct proof that the binomials $x^{8}+a(a \in \mathbb{Z})$ do not have Galois group D_{4}. We note that Jacobson and Vélez [2] treat the problem of determining the Galois group of the more general polynomial $x^{2^{e}}+a$.

Theorem 4.1. Let $a \in \mathbb{Z}$ be such that the polynomial $x^{8}+a$ is irreducible over \mathbb{Q}. Then

$$
\operatorname{Gal}\left(x^{8}+a\right) \nsucceq D_{4} .
$$

Proof. Suppose $a \in \mathbb{Z}$ is such that $x^{8}+a$ is irreducible over \mathbb{Q} and $\operatorname{Gal}\left(x^{8}+a\right) \simeq$ D_{4}. Let θ be a root of $x^{8}+a$ so that $\theta^{8}+a=0$ and $\mathbb{Q}(\theta)$ is a normal octic extension of \mathbb{Q}. Now $\operatorname{disc}\left(x^{8}+a\right)=2^{24} a^{7}$ and by $[1$, Theorem $] d(\mathbb{Q}(\theta)) \in \mathbb{Z}^{2}$. Thus $a \in \mathbb{Z}^{2}$, say $a=b^{2}$ for $b \in \mathbb{N}$. Thus $x^{8}+a=x^{8}+b^{2}$. As the eighth roots of unity belong to $\mathbb{Q}(\theta)$ we have

$$
\mathbb{Q}(\theta) \supset \mathbb{Q}(\sqrt{2}, \sqrt{-1})
$$

As $\theta^{8}+b^{2}=0$ we have

$$
b= \pm\left(\frac{\theta^{2}(1+i)^{2}}{\sqrt{2}}\right)^{2}
$$

so that

$$
\mathbb{Q}(\sqrt{b}) \subset \mathbb{Q}(\theta), \quad \mathbb{Q}(\sqrt{-b}) \subset \mathbb{Q}(\theta)
$$

If $[\mathbb{Q}(\sqrt{2}, \sqrt{-1}, \sqrt{b}): \mathbb{Q}]=8$ then $\mathbb{Q}(\theta)=\mathbb{Q}(\sqrt{2}, \sqrt{-1}, \sqrt{b})$ and so

$$
\operatorname{Gal}(\mathbb{Q}(\theta))=\operatorname{Gal}(\mathbb{Q}(\sqrt{2}, \sqrt{-1}, \sqrt{b})) \simeq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}
$$

a contradiction. Thus $\sqrt{b} \in \mathbb{Q}(\sqrt{2}, \sqrt{-1})$ so that $b, 2 b,-b$ or $-2 b \in \mathbb{Q}^{2}$. If $\pm 2 b \in \mathbb{Q}^{2}$ then $b= \pm 2 c^{2}(c \in \mathbb{Q})$ and

$$
x^{8}+a=x^{8}+b^{2}=x^{8}+4 c^{4}=\left(x^{4}-2 c x^{2}+2 c^{2}\right)\left(x^{4}+2 c x^{2}+2 c^{2}\right),
$$

contradicting that $x^{8}+a$ is irreducible over \mathbb{Q}. If $\pm b \in \mathbb{Q}^{2}$ then $b= \pm c^{2}(c \in \mathbb{Q})$ so $x^{8}+a=x^{8}+c^{4}$. Then the polynomial with roots $\theta_{i}+\theta_{j}(i, j \in\{1,2, \ldots, 8\})$ is by MAPLE
$x^{8}\left(x^{8}+256 c^{4}\right)\left(x^{8}+16 c^{4}\right)^{2}\left(x^{4}+4 c x^{2}+2 c^{4}\right)^{2}\left(x^{4}-4 c x^{2}+2 c^{2}\right)^{2}\left(x^{8}+12 c^{2} x^{4}+4 c^{4}\right)^{2}$.
The factor $x^{4}-4 c x^{2}+2 c^{2}$ of this polynomial has roots

$$
\pm \sqrt{2 c \pm c \sqrt{2}}
$$

The field $\mathbb{Q}(\sqrt{2 c+c \sqrt{2}})$ is a cyclic quartic field, which cannot occur as a subfield of $\mathbb{Q}(\theta)$. This completes the proof.

Acknowledgements

Both authors were supported by research grants from the Natural Sciences and Engineering Research Council of Canada.

References

[1] J. G. Huard, B. K. Spearman and K. S. Williams, Discriminant of the normal closure of a dihedral quartic field, Arch. Math. 67 (1996), 290-295.
[2] E. T. Jacobson and W. Y. Vélez, The Galois group of a radical extension of the rationals, Manuscripta Math. 67 (1990), 271-284.
[3] L.-K. Kappe and B. Warren, An elementary test for the Galois group of a quartic polynomial, Amer. Math. Monthly 96 (1989), 133-137.
[4] T. Nagel, Zur Arithmetik der Polynome, Abh. Math. Sem. Hamburg 1 (1922), 179-194.
[5] G. W. Smith, Some polynomials over $\mathbb{Q}(t)$ and their Galois groups, Math. Comp. 69 (1999), 775-796.

Received: August 27, 2007

