International Journal of Algebra, Vol. 2, 2008, no. 2, 79 - 89

The Simplest D_4 -octics

Blair K. Spearman

Department of Mathematics and Statistics University of British Columbia Okanagan Kelowna, British Columbia, Canada V1V 1V7 blair.spearman@ubc.ca

Kenneth S. Williams

Centre for Research in Algebra and Number Theory School of Mathematics and Statistics, Carleton University Ottawa, Ontario, Canada K1S 5B6 kwilliam@connect.carleton.ca

Abstract

We show that $\{x^8 + (t^2 + 2)x^4 + 1 \mid t \in \mathbb{N}\}\$ is the "simplest" infinite parametric family of octic polynomials having the dihedral group of order 8 as their Galois group. We also determine the discriminant of the octic field $\mathbb{Q}(\theta)$, where θ is a root of $x^8 + (t^2 + 2)x^4 + 1$. Under the assumption that $t^2 + 4$ is squarefree we give an integral basis for $\mathbb{Q}(\theta)$.

Mathematics Subject Classification: 11R09, 11R21, 11R29, 11R32

Keywords: Galois group, dihedral group of order 8, octic polynomials, discriminant, integral basis

1 Introduction

Let D_4 denote the dihedral group of order 8. G. W. Smith [5, p. 791] has given a parametric family of octic polynomials having D_4 as their Galois group. This family comprises the irreducible polynomials of the form

$$x^{8} - 10(t^{2} - 4)x^{6} + (33t^{4} - 208t^{2} + 472)x^{4}$$
$$-40(t^{2} - 4)(t^{4} - t^{2} + 9)x^{2} + 16(t^{4} + 17t^{2} - 9)^{2}$$

where $t \in \mathbb{Q}$. It is our purpose to present a simpler family of octic polynomials having D_4 as Galois group. We show that if $x^8 + ax^4 + 1$ is irreducible over \mathbb{Q} for some rational a then its Galois group is D_4 if and only if $a = t^2 + 2$ for some $t \in \mathbb{Q}$. Moreover, if $t \in \mathbb{N}$, we show that $x^8 + (t^2 + 2)x^4 + 1$ is irreducible over \mathbb{Q} and thus $\{x^8 + (t^2 + 2)x^4 + 1 \mid t \in \mathbb{N}\}$ is an infinite parametric family of D_4 -octic polynomials. For $t \in N$ let $\theta \in \mathbb{C}$ be a root of $x^8 + (t^2 + 2)x^4 + 1$ and set $K = \mathbb{Q}(\theta)$ so that $[K : \mathbb{Q}] = 8$. We give an explicit formula for the discriminant d(K) of K in Theorem 3.1. Further, when $t^2 + 4$ ($t \in \mathbb{N}$) is squarefree, we give an explicit integral basis for K in Theorem 3.2. Finally we show in a simple manner that an irreducible polynomial $x^8 + a$ ($a \in \mathbb{Q}$) cannot have D_4 as Galois group, thus justifying that the octic polynomials $x^8 + (t^2 + 2)x^4 + 1$ are the simplest ones with Galois group D_4 .

2 The family $x^8 + (t^2 + 2)x^4 + 1$

In this section we determine those irreducible octic polynomials $x^8 + ax^4 + 1$ $(a \in \mathbb{Q})$ having D_4 as Galois group.

Theorem 2.1. Let $a \in \mathbb{Q}$ be such that $x^8 + ax^4 + 1$ is irreducible over \mathbb{Q} . Then

$$\operatorname{Gal}(x^8 + ax^4 + 1) \simeq D_4 \iff a = t^2 + 2 \text{ for some } t \in \mathbb{Q}.$$

Proof. Throughout this proof we assume that $a \in \mathbb{Q}$ is such that $x^8 + ax^4 + 1$ is irreducible over \mathbb{Q} .

Suppose first that $a = t^2 + 2$ for some $t \in \mathbb{Q}$. If t = 0 then a = 2 so $x^8 + ax^4 + 1 = (x^4 + 1)^2$ is reducible, a contradiction. Hence $t \neq 0$. Let $\theta \in \mathbb{C}$ be a root of $x^8 + (t^2 + 2)x^4 + 1 = 0$. Clearly $\theta \neq 0$. Then

(2.1)
$$\left(\frac{\theta^4 + 1}{t\theta^2}\right)^2 = -1$$

so that $i \in \mathbb{Q}(\theta)$. The eight roots of $x^8 + (t^2 + 2)x^4 + 1$ are

$$\pm \theta, \pm i\theta, \pm \frac{1}{\theta}, \pm \frac{i}{\theta}.$$

Hence $\mathbb{Q}(\theta)$ is a normal extension of \mathbb{Q} . From (2.1) we obtain

$$\frac{\theta^4 + 1}{t\theta^2} = \varepsilon i$$

for some $\varepsilon \in \{-1, +1\}$. Replacing θ by $i\theta$, if necessary, we may suppose that $\varepsilon = 1$. Then

$$-2 + ti = -2 + \frac{\theta^4 + 1}{\theta^2} = \left(\theta - \frac{1}{\theta}\right)^2$$

so that

$$\sqrt{-2+ti} \in \mathbb{Q}(\theta).$$

Next we prove that

 $t^2 + 4 \notin \mathbb{Q}^2.$

Suppose on the contrary that $t^2 + 4 = u^2$ for some $u \in \mathbb{Q}$. Then there exists $v \in \mathbb{Q}^*$ such that

$$t = \frac{v}{2} - \frac{2}{v}, \ u = \frac{v}{2} + \frac{2}{v}.$$

Hence

$$a = t^2 + 2 = \frac{v^2}{4} + \frac{4}{v^2},$$

and so

$$x^{8} + ax^{4} + 1 = x^{8} + \left(\frac{v^{2}}{4} + \frac{4}{v^{2}}\right)x^{4} + 1 = \left(x^{4} + \frac{v^{2}}{4}\right)\left(x^{4} + \frac{4}{v^{2}}\right),$$

contradicting that $x^8 + ax^4 + 1$ is irreducible over \mathbb{Q} . As $(-2+ti)(-2-ti) = t^2 + 4 \notin \mathbb{Q}^2$ we see that $(-2+ti) \neq (x+yi)^2$ for any $x, y \in \mathbb{Q}$. Thus $[\mathbb{Q}(\sqrt{-2+ti}):\mathbb{Q}(i)] = 2$ and so $[\mathbb{Q}(\sqrt{-2+ti}):\mathbb{Q}] = 4$. By [3, Theorem 3, p. 135] the quartic field $\mathbb{Q}(\sqrt{-2+ti})$ is a dihedral extension of \mathbb{Q} . By Galois theory the normal closure of $\mathbb{Q}(\sqrt{-2+ti})$ is of degree 8 over \mathbb{Q} . However $\mathbb{Q}(\theta)$ is a normal extension of degree 8 over \mathbb{Q} containing $\mathbb{Q}(\sqrt{-2+ti})$. Thus $\mathbb{Q}(\theta)$ is the normal closure of $\mathbb{Q}(\sqrt{-2+ti})$ and thus is dihedral with Galois group D_4 . Hence $\operatorname{Gal}(x^8 + ax^4 + 1) \simeq D_4$.

Now suppose that $\operatorname{Gal}(x^8 + ax^4 + 1) \simeq D_4$. Let $\theta \in \mathbb{C}$ be a root of $x^8 + ax^4 + 1$. Then the eight roots of $x^8 + ax^4 + 1$ are

$$\pm \theta, \ \pm i\theta, \ \pm \frac{1}{\theta}, \ \pm \frac{i}{\theta}.$$

Thus the normal closure of $\mathbb{Q}(\theta)$ contains *i*. As $x^8 + ax^4 + 1$ is irreducible over \mathbb{Q} so are $x^2 + ax + 1$ and $x^4 + ax^2 + 1$. As $x^2 + ax + 1$ is irreducible over \mathbb{Q} we must have $a^2 - 4 \notin \mathbb{Q}$. Hence $\mathbb{Q}(\sqrt{a^2 - 4})$ is a quadratic subfield of the splitting field *L* of $x^4 + ax^2 + 1$. The discriminant of $x^4 + ax^2 + 1$ is $2^4(a^2 - 4)^2$, which is a square in \mathbb{Q} . Thus $\operatorname{Gal}(x^4 + ax^2 + 1)$ is either $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ or A_4 . The latter cannot occur [3, Theorem 3, p. 135] so $\operatorname{Gal}(x^4 + ax^2 + 1) \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. The four roots of $x^4 + ax^2 + 1$ are

$$\pm \frac{1}{2}\sqrt{-2a \pm 2\sqrt{a^2 - 4}}.$$

 \mathbf{As}

$$2 - a = \frac{1}{4} \left(\sqrt{-2a + 2\sqrt{a^2 - 4}} + \varepsilon \sqrt{-2a - 2\sqrt{a^2 - 4}} \right)^2$$

for some $\varepsilon \in \{-1, +1\}$ then

$$-2 - a = \frac{1}{4} \left(\sqrt{-2a + 2\sqrt{a^2 - 4}} - \varepsilon \sqrt{-2a - 2\sqrt{a^2 - 4}} \right)^2,$$

so that

$$\sqrt{2-a}, \ \sqrt{-2-a} \in L.$$

Since $(2-a)(-2-a) = a^2 - 4 \notin \mathbb{Q}^2$ at least one of 2-a and $-2-a \notin \mathbb{Q}^2$. If $2-a \notin \mathbb{Q}^2$ then $\mathbb{Q}(\sqrt{2-a})$ is a quadratic subfield of L. Suppose that $\mathbb{Q}(\sqrt{a^2-4}) = \mathbb{Q}(\sqrt{2-a})$. Then there exists $b \in \mathbb{Q}^*$ such that $a^2 - 4 = b^2(2-a)$. As $a^2 - 4 \notin \mathbb{Q}^2$ we have $a - 2 \neq 0$ and so $a + 2 = -b^2$. Thus $a = -(b^2+2)$. Hence

$$x^{4} + ax^{2} + 1 = x^{4} - (b^{2} + 2)x^{2} + 1 = x^{4} - 2x^{2} + 1 - b^{2}x^{2}$$

$$= (x^{2} - 1)^{2} - b^{2}x^{2} = (x^{2} - bx - 1)(x^{2} + bx - 1),$$

contradicting that $x^4 + ax^2 + 1$ is irreducible over \mathbb{Q} . Thus $\mathbb{Q}(\sqrt{a^2 - 4}) \neq \mathbb{Q}(\sqrt{2-a})$. Since $(a^2 - 4)(2 - a) = (2 - a)^2(-2 - a)$ it is easy to check that $\mathbb{Q}(\sqrt{-2-a})$ is the third quadratic subfield of L. The argument is similar if $-2 - a \notin \mathbb{Q}^2$. As $\operatorname{Gal}(x^8 + ax^4 + 1) \simeq D_4$, the splitting field M of $x^8 + ax^4 + 1$ contains exactly three quadratic subfields. These must be $\mathbb{Q}(\sqrt{a^2 - 4})$, $\mathbb{Q}(\sqrt{2-a})$ and $\mathbb{Q}(\sqrt{-2-a})$. However $\mathbb{Q}(\sqrt{-1}) \subseteq M$. Thus (i) $a^2 - 4 = -b^2$ or (ii) $2 - a = -b^2$ or (iii) $-2 - a = -b^2$ for some $b \in \mathbb{Q}^*$. First we show that (i) cannot occur. If $a^2 - 4 = -b^2$ then $a^2 + b^2 = 4$ and so

$$a = \frac{4v}{v^2 + 1}, \quad b = \frac{2(v^2 - 1)}{v^2 + 1}$$

for some $v \in \mathbb{Q}^*$. If $2(v^2 + 1) \in \mathbb{Q}^2$ then

$$v = \frac{2t^2 - 4t + 1}{2t^2 - 1}$$

for some $t \in \mathbb{Q}$. In this case

$$x^{8} + ax^{4} + 1 = x^{8} + \frac{4v}{v^{2} + 1}x^{4} + 1$$

$$= x^{8} + \frac{2(2t^{2} - 1)(2t^{2} - 4t + 1)}{(2t^{2} - 2t + 1)^{2}}x^{4} + 1$$

= $\left(x^{4} - \frac{(4t - 2)}{(2t^{2} - 2t + 1)}x^{2} + 1\right)\left(x^{4} + \frac{(4t - 2)}{(2t^{2} - 2t + 1)^{2}}x^{2} + 1\right)$

is reducible over \mathbb{Q} . Hence $2(v^2 + 1) \notin \mathbb{Q}^2$. In particular we have $v \neq \pm 1$. Let $\theta_1, \ldots, \theta_8$ be the eight complex roots of $f(x) = x^8 + \frac{4v}{v^2+1}x^4 + 1$. Set

$$g(x) := \prod_{i,j=1}^{8} \left(x - (\theta_i + \theta_j) \right) \in \mathbb{Q}[x].$$

Using MAPLE we can calculate g(x) by means of

$$g(x) = \text{Resultant} (f(x - X), f(X)).$$

One factor of g(x) is found to be

$$h(x) := x^4 - 4x^2 + \frac{2(v+1)^2}{v^2 + 1}.$$

If h(x) is reducible over \mathbb{Q} then

$$h(x) = (x^{2} + ax + b)(x^{2} + cx + d)$$

for some $a, b, c, d \in \mathbb{Q}$. Thus

$$a + c = 0,$$

$$ac + b + d = -4,$$

$$ad + bc = 0,$$

$$bd = \frac{2(v+1)^2}{v^2 + 1}.$$

Clearly c = -a so that

$$a(d-b) = 0.$$

If a = 0 then c = 0 and

$$b + d = -4$$
, $bd = \frac{2(v+1)^2}{v^2 + 1}$.

Thus

$$(b-d)^2 = (b+d)^2 - 4bd = 16 - \frac{8(v+1)^2}{v^2+1} = \frac{8(v-1)^2}{v^2+1},$$

so that $2(v^2+1) \in \mathbb{Q}^2$, a contradiction. Hence $a \neq 0$ so b = d. Thus

$$b^2 = \frac{2(v+1)^2}{v^2 + 1}$$

so $2(v^2 + 1) \in \mathbb{Q}^2$, a contradiction. Thus h(x) is irreducible over \mathbb{Q} . Let α be one of the four roots of h(x). Set $E = \mathbb{Q}(\alpha)$. Then $[E : \mathbb{Q}] = 4$. All four roots of h(x) are

$$\pm \alpha, \ \pm \left(\frac{(v^2+1)}{(v-1)}\alpha^3 - \frac{(3v^2-2v+3)}{(v^2-1)}\alpha\right).$$

Thus E is a normal extension of \mathbb{Q} . The discriminant of h(x) is

$$\operatorname{disc}(h) = \frac{2^{11}(v-1)^4(v+1)^2}{(v^2+1)^3}$$

As $2(v^2+1) \notin \mathbb{Q}^2$ we see that $\operatorname{disc}(h) \notin \mathbb{Q}^2$. Thus E is not a bicyclic extension of \mathbb{Q} . Hence E is a cyclic quartic extension of \mathbb{Q} . Such an extension cannot be a subfield of an octic field with Galois group D_4 [1, p. 291]. Thus $a^2 - 4 \neq -b^2$ showing that (i) does not occur. Suppose now that (ii) occurs. If $-2 - a = -b^2$ then $a = b^2 - 2$ and we set

$$h_1(x) = x^4 + (b+2)^2$$

and

$$h_2(x) = x^4 + (b-2)^2.$$

We note that $b \neq \pm 2$ as $a \neq 2$. Let $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ be the roots of h_1 and $\beta_1, \beta_2, \beta_3, \beta_4$ the roots of h_2 . Then the polynomial with roots $(\alpha_1 - \beta_1), (\alpha_1 - \beta_2), \ldots, (\alpha_4 - \beta_4)$ is found using MAPLE to be

$$\left(x^8 + (64 - 8b^2)x^4 + 16b^4\right)\left(x^8 + (16b^2 - 32)x^4 + 256\right)$$

As θ is a root of $x^8 + (b^2 - 2)x^4 + 1$, 2θ is a root of $x^8 + (16b^2 - 32)x^4 + 256$, and so $2\theta = \alpha_i - \beta_j$ for some $i, j \in \{1, 2, 3, 4\}$. Thus $\theta = \frac{\alpha_i}{2} - \frac{\beta_j}{2}$ belongs to the compositum of the splitting fields of h_1 and h_2 . Hence

$$\theta \in \mathbb{Q}\left(\sqrt{2(b+2)}, \sqrt{-2(b+2)}, \sqrt{2(b-2)}, \sqrt{-2(b-2)}\right)$$

Thus θ belongs to an abelian extension of \mathbb{Q} , contradicting that $\operatorname{Gal}(f)$ is D_4 . Hence (ii) does not occur. This leaves only the possibility (iii) $2 - a = -b^2$, that is $a = b^2 + 2$ as required.

This completes the proof of Theorem 2.1.

Next we show that $x^8 + (t^2 + 2)x^4 + 1$ is irreducible over \mathbb{Q} for $t \in \mathbb{N}$.

Theorem 2.2. If $t \in \mathbb{N}$ then $x^8 + (t^2 + 2)x^4 + 1$ is irreducible over \mathbb{Q} .

Proof. Let θ be a root of $x^8 + (t^2 + 2)x^4 + 1$. As in the proof of Theorem 2.1 we can choose θ so that

$$\sqrt{-2+ti} \in \mathbb{Q}(\theta).$$

Suppose that

$$-2 + ti = (r + si)^2$$

for some $r, s \in \mathbb{Z}$. Then

$$4 + t^2 = (r^2 + s^2)^2.$$

However $4 + t^2 \in \mathbb{N}^2$ for $t \in \mathbb{N}$ only for t = 0, a contradiction. Thus $-2 + ti \notin (\mathbb{Z} + \mathbb{Z}i)^2$ so $\mathbb{Q}(\sqrt{-2 + ti})$ is a dihedral quartic field [3, Theorem 3, p. 135]. $\mathbb{Q}(\theta)$ is a normal extension of \mathbb{Q} so $\mathbb{Q}(\theta)$ contains the normal closure of $\mathbb{Q}(\sqrt{-2 + ti})$. The field $\mathbb{Q}(\sqrt{-2 + ti})$ is a dihedral quartic field so $\mathbb{Q}(\theta)$ is an octic field. Thus $x^8 + (t^2 + 2)x^4 + 1$ is irreducible over \mathbb{Q} .

We observe that there are $t \in \mathbb{Q}^+ \setminus \mathbb{N}$ for which $x^8 + (t^2 + 2)x^4 + 1$ is reducible as well as $t \in \mathbb{Q}^+ \setminus \mathbb{N}$ for which $x^8 + (t^2 + 2)x^4 + 1$ is irreducible. For example for t = 3/2 we have

$$x^{8} + \left(\left(\frac{3}{2}\right)^{2} + 2\right)x^{4} + 1 = x^{8} + \frac{17}{4}x^{4} + 1 = \left(x^{4} + \frac{1}{4}\right)\left(x^{4} + 4\right),$$

whereas for t = 8/3 the octic polynomial

$$x^{8} + \left(\left(\frac{8}{3}\right)^{2} + 2\right)x^{4} + 1 = x^{8} + \frac{82}{9}x^{4} + 1$$

is irreducible over \mathbb{Q} .

3 The field $\mathbb{Q}(\theta)$, $\theta^8 + (t^2 + 2)\theta^4 + 1 = 0$, $t \in \mathbb{N}$

First we determine the discriminant of the octic field $\mathbb{Q}(\theta)$, where $\theta^8 + (t^2 + 2)\theta^4 + 1 = 0$ and $t \in \mathbb{N}$.

Theorem 3.1. Let $t \in \mathbb{N}$. Let s denote the squarefree part of the positive integer $t^2 + 4$. Let θ be a root of $x^8 + (t^2 + 2)x^4 + 1$. Then

$$d(\mathbb{Q}(\theta)) = 2^{\gamma} s^4,$$

where

$$\gamma = \begin{cases} 16, & if \ t \equiv 1 \pmod{2}, \\ 18, & if \ t \equiv 2 \pmod{4}, \\ 16, & if \ t \equiv 0 \pmod{4}. \end{cases}$$

Proof. $\mathbb{Q}(\theta)$ is the normal closure of the dihedral quartic field $\mathbb{Q}(\sqrt{-2+ti})$, we can apply Theorem 1 of [1]. In the notation of [1] we have

$$a = -2, b = t, c \equiv -1 \pmod{4}$$

 \mathbf{SO}

$$a \equiv 2 \pmod{4}, \quad c \equiv 3 \pmod{4}.$$

Thus the only cases that arise are cases B_1 , B_7 and B_8 , that is

$$B_{1}: \quad t \equiv 1 \pmod{2}, \ \theta = 16, \ 2 \nmid s, \\ B_{7}: \quad t \equiv 2 \pmod{4}, \ \theta = 18, \ 2 \parallel s, \\ B_{8}: \quad t \equiv 0 \pmod{4}, \ \theta = 12, \ 2 \nmid s.$$

Then, by Theorem 1 of [1], we obtain

$$\gamma = \begin{cases} 16, & \text{if } t \equiv 1 \pmod{2}, \\ 18, & \text{if } t \equiv 2 \pmod{4}, \\ 16, & \text{if } t \equiv 0 \pmod{4}. \end{cases}$$

This completes the proof of Theorem 3.1.

Next we determine an integral basis for the field $\mathbb{Q}(\theta)$, where $\theta^8 + (t^2 + 2)\theta^4 + 1 = 0$, under the assumption that $t^2 + 4$ is squarefree.

Theorem 3.2. Let $t \in \mathbb{N}$ be such that $t^2 + 4$ is squarefree. Then an integral basis for $\mathbb{Q}(\theta)$, where $\theta^8 + (t^2 + 2)\theta^4 + 1 = 0$, is

$$\left\{1, \theta, \theta^2, \theta^3, \frac{\theta^4+1}{t}, \frac{\theta(\theta^4+1)}{t}, \frac{\theta^2(\theta^4+1)}{t}, \frac{\theta^3(\theta^4+1)}{t}\right\}.$$

Proof. By Theorem 3.1, as t is odd, we have

$$d(\mathbb{Q}(\theta)) = 2^{16}(t^2 + 4)^4.$$

 As

$$\left(\frac{\theta^4 + 1}{t}\right)^2 = -\theta^2$$

we have

(3.1)
$$\frac{\theta^4 + 1}{t} = \pm i\theta$$

so that $\frac{\theta^4+1}{t}$ is an integer of $\mathbb{Q}(\theta)$. Finally

$$d\left(1,\theta,\theta^{2},\theta^{3},\frac{\theta^{4}+1}{t},\frac{\theta(\theta^{4}+1)}{t},\frac{\theta^{2}(\theta^{4}+1)}{t},\frac{\theta^{3}(\theta^{4}+1)}{t}\right)$$
$$=\frac{1}{t^{8}}d(1,\theta,\theta^{2},\theta^{3},\theta^{4},\theta^{5},\theta^{6},\theta^{7})$$
$$=\frac{1}{t^{8}}2^{16}t^{8}(t^{2}+4)^{4}=2^{16}(t^{2}+4)^{4}=d(\mathbb{Q}(\theta))$$

so
$$\left\{1, \theta, \theta^2, \theta^3, \frac{\theta^4+1}{t}, \frac{\theta(\theta^4+1)}{t}, \frac{\theta^2(\theta^4+1)}{t}, \frac{\theta^3(\theta^4+1)}{t}\right\}$$
 is an integral basis.

By Nagel's theorem [4] there exist infinitely many $t\in\mathbb{N}$ such that t^2+4 is squarefree.

In view of (3.1)

$$\left\{1,\theta,\theta^2,\theta^3,i,i\theta,i\theta^2,i\theta^3\right\}$$

is also an integral basis for $\mathbb{Q}(\theta)$.

Taking t = 1 in Theorem 3.2 we see that the octic field $\mathbb{Q}(\theta)$, where $\theta^8 + 3\theta^4 + 1 = 0$, has a power basis.

4 The polynomials $x^8 + a, a \in \mathbb{Z}$

Finally we show that the polynomials $x^8 + (t^2 + 2)x^4 + 1$ are the simplest ones that give rise to octic fields with Galois group D_4 by giving a simple direct proof that the binomials $x^8 + a$ ($a \in \mathbb{Z}$) do not have Galois group D_4 . We note that Jacobson and Vélez [2] treat the problem of determining the Galois group of the more general polynomial $x^{2^e} + a$.

Theorem 4.1. Let $a \in \mathbb{Z}$ be such that the polynomial $x^8 + a$ is irreducible over \mathbb{Q} . Then

$$\operatorname{Gal}(x^8 + a) \not\simeq D_4.$$

Proof. Suppose $a \in \mathbb{Z}$ is such that $x^8 + a$ is irreducible over \mathbb{Q} and $\operatorname{Gal}(x^8 + a) \simeq D_4$. Let θ be a root of $x^8 + a$ so that $\theta^8 + a = 0$ and $\mathbb{Q}(\theta)$ is a normal octic extension of \mathbb{Q} . Now disc $(x^8 + a) = 2^{24}a^7$ and by [1, Theorem] $d(\mathbb{Q}(\theta)) \in \mathbb{Z}^2$. Thus $a \in \mathbb{Z}^2$, say $a = b^2$ for $b \in \mathbb{N}$. Thus $x^8 + a = x^8 + b^2$. As the eighth roots of unity belong to $\mathbb{Q}(\theta)$ we have

$$\mathbb{Q}(\theta) \supset \mathbb{Q}(\sqrt{2}, \sqrt{-1}).$$

As $\theta^8 + b^2 = 0$ we have

$$b = \pm \left(\frac{\theta^2 (1+i)^2}{\sqrt{2}}\right)^2$$

so that

$$\mathbb{Q}(\sqrt{b}) \subset \mathbb{Q}(\theta), \quad \mathbb{Q}(\sqrt{-b}) \subset \mathbb{Q}(\theta).$$

If $[\mathbb{Q}(\sqrt{2},\sqrt{-1},\sqrt{b}):\mathbb{Q}] = 8$ then $\mathbb{Q}(\theta) = \mathbb{Q}(\sqrt{2},\sqrt{-1},\sqrt{b})$ and so

$$\operatorname{Gal}(\mathbb{Q}(\theta)) = \operatorname{Gal}\left(\mathbb{Q}(\sqrt{2}, \sqrt{-1}, \sqrt{b})\right) \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z},$$

a contradiction. Thus $\sqrt{b} \in \mathbb{Q}(\sqrt{2}, \sqrt{-1})$ so that b, 2b, -b or $-2b \in \mathbb{Q}^2$. If $\pm 2b \in \mathbb{Q}^2$ then $b = \pm 2c^2$ $(c \in \mathbb{Q})$ and

$$x^{8} + a = x^{8} + b^{2} = x^{8} + 4c^{4} = (x^{4} - 2cx^{2} + 2c^{2})(x^{4} + 2cx^{2} + 2c^{2}),$$

contradicting that $x^8 + a$ is irreducible over \mathbb{Q} . If $\pm b \in \mathbb{Q}^2$ then $b = \pm c^2$ ($c \in \mathbb{Q}$) so $x^8 + a = x^8 + c^4$. Then the polynomial with roots $\theta_i + \theta_j$ ($i, j \in \{1, 2, \ldots, 8\}$) is by MAPLE

$$x^{8} \left(x^{8} + 256c^{4}\right) \left(x^{8} + 16c^{4}\right)^{2} \left(x^{4} + 4cx^{2} + 2c^{4}\right)^{2} \left(x^{4} - 4cx^{2} + 2c^{2}\right)^{2} \left(x^{8} + 12c^{2}x^{4} + 4c^{4}\right)^{2}.$$

The factor $x^4 - 4cx^2 + 2c^2$ of this polynomial has roots

$$\pm \sqrt{2c \pm c\sqrt{2}}.$$

The field $\mathbb{Q}\left(\sqrt{2c+c\sqrt{2}}\right)$ is a cyclic quartic field, which cannot occur as a subfield of $\mathbb{Q}(\theta)$. This completes the proof.

Acknowledgements

Both authors were supported by research grants from the Natural Sciences and Engineering Research Council of Canada.

References

- J. G. Huard, B. K. Spearman and K. S. Williams, Discriminant of the normal closure of a dihedral quartic field, Arch. Math. 67 (1996), 290-295.
- [2] E. T. Jacobson and W. Y. Vélez, The Galois group of a radical extension of the rationals, Manuscripta Math. 67 (1990), 271-284.
- [3] L.-K. Kappe and B. Warren, An elementary test for the Galois group of a quartic polynomial, Amer. Math. Monthly **96** (1989), 133-137.
- [4] T. Nagel, Zur Arithmetik der Polynome, Abh. Math. Sem. Hamburg 1 (1922), 179-194.
- [5] G. W. Smith, Some polynomials over $\mathbb{Q}(t)$ and their Galois groups, Math. Comp. **69** (1999), 775-796.

Received: August 27, 2007