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Abstract

We show that
{
x8 + (t2 + 2)x4 + 1 | t ∈ N

}
is the “simplest” infinite

parametric family of octic polynomials having the dihedral group of
order 8 as their Galois group. We also determine the discriminant of
the octic field Q(θ), where θ is a root of x8 + (t2 + 2)x4 + 1. Under the
assumption that t2 + 4 is squarefree we give an integral basis for Q(θ).
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1 Introduction

Let D4 denote the dihedral group of order 8. G. W. Smith [5, p. 791] has given
a parametric family of octic polynomials having D4 as their Galois group. This
family comprises the irreducible polynomials of the form

x8 − 10(t2 − 4)x6 + (33t4 − 208t2 + 472)x4

−40(t2 − 4)(t4 − t2 + 9)x2 + 16(t4 + 17t2 − 9)2,

where t ∈ Q. It is our purpose to present a simpler family of octic polynomials
having D4 as Galois group. We show that if x8 + ax4 + 1 is irreducible over
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Q for some rational a then its Galois group is D4 if and only if a = t2 + 2 for
some t ∈ Q. Moreover, if t ∈ N, we show that x8 + (t2 + 2)x4 + 1 is irreducible
over Q and thus {x8 + (t2 + 2)x4 + 1 | t ∈ N} is an infinite parametric family
of D4-octic polynomials. For t ∈ N let θ ∈ C be a root of x8 + (t2 + 2)x4 + 1
and set K = Q(θ) so that [K : Q] = 8. We give an explicit formula for the
discriminant d(K) of K in Theorem 3.1. Further, when t2 + 4 (t ∈ N) is
squarefree, we give an explicit integral basis for K in Theorem 3.2. Finally
we show in a simple manner that an irreducible polynomial x8 + a (a ∈ Q)
cannot have D4 as Galois group, thus justifying that the octic polynomials
x8 + (t2 + 2)x4 + 1 are the simplest ones with Galois group D4.

2 The family x8 + (t2 + 2)x4 + 1

In this section we determine those irreducible octic polynomials x8 + ax4 + 1
(a ∈ Q) having D4 as Galois group.

Theorem 2.1. Let a ∈ Q be such that x8+ax4+1 is irreducible over Q. Then

Gal(x8 + ax4 + 1) � D4 ⇐⇒ a = t2 + 2 for some t ∈ Q.

Proof. Throughout this proof we assume that a ∈ Q is such that x8 +
ax4 + 1 is irreducible over Q.

Suppose first that a = t2 + 2 for some t ∈ Q. If t = 0 then a = 2 so
x8 + ax4 + 1 = (x4 + 1)2 is reducible, a contradiction. Hence t �= 0. Let θ ∈ C
be a root of x8 + (t2 + 2)x4 + 1 = 0. Clearly θ �= 0. Then(

θ4 + 1

tθ2

)2

= −1(2.1)

so that i ∈ Q(θ). The eight roots of x8 + (t2 + 2)x4 + 1 are

±θ, ±iθ, ±1

θ
, ± i

θ
.

Hence Q(θ) is a normal extension of Q. From (2.1) we obtain

θ4 + 1

tθ2
= εi

for some ε ∈ {−1, +1}. Replacing θ by iθ, if necessary, we may suppose that
ε = 1. Then

−2 + ti = −2 +
θ4 + 1

θ2
=

(
θ − 1

θ

)2
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so that

√−2 + ti ∈ Q(θ).

Next we prove that

t2 + 4 /∈ Q2.

Suppose on the contrary that t2 + 4 = u2 for some u ∈ Q. Then there exists
v ∈ Q∗ such that

t =
v

2
− 2

v
, u =

v

2
+

2

v
.

Hence

a = t2 + 2 =
v2

4
+

4

v2
,

and so

x8 + ax4 + 1 = x8 +

(
v2

4
+

4

v2

)
x4 + 1 =

(
x4 +

v2

4

)(
x4 +

4

v2

)
,

contradicting that x8 + ax4 + 1 is irreducible over Q. As (−2 + ti)(−2− ti) =
t2 + 4 /∈ Q2 we see that (−2 + ti) �= (x + yi)2 for any x, y ∈ Q. Thus[
Q(

√−2 + ti) : Q(i)
]

= 2 and so
[
Q(

√−2 + ti) : Q
]

= 4. By [3, Theorem 3,

p. 135] the quartic field Q(
√−2 + ti) is a dihedral extension of Q. By Galois

theory the normal closure of Q(
√−2 + ti) is of degree 8 over Q. However Q(θ)

is a normal extension of degree 8 over Q containing Q(
√−2 + ti). Thus Q(θ)

is the normal closure of Q(
√−2 + ti) and thus is dihedral with Galois group

D4. Hence Gal(x8 + ax4 + 1) � D4.
Now suppose that Gal(x8+ax4+1) � D4. Let θ ∈ C be a root of x8+ax4+1.

Then the eight roots of x8 + ax4 + 1 are

±θ, ±iθ, ±1

θ
, ± i

θ
.

Thus the normal closure of Q(θ) contains i. As x8 + ax4 +1 is irreducible over
Q so are x2 + ax + 1 and x4 + ax2 + 1. As x2 + ax + 1 is irreducible over Q we
must have a2−4 /∈ Q. Hence Q(

√
a2 − 4) is a quadratic subfield of the splitting

field L of x4 +ax2 +1. The discriminant of x4 +ax2 +1 is 24(a2 −4)2, which is
a square in Q. Thus Gal(x4 +ax2 +1) is either Z/2Z×Z/2Z or A4. The latter
cannot occur [3, Theorem 3, p. 135] so Gal(x4 + ax2 + 1) � Z/2Z × Z/2Z.
The four roots of x4 + ax2 + 1 are

±1

2

√
−2a ± 2

√
a2 − 4.
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As

2 − a =
1

4

(√
−2a + 2

√
a2 − 4 + ε

√
−2a − 2

√
a2 − 4

)2

for some ε ∈ {−1, +1} then

−2 − a =
1

4

(√
−2a + 2

√
a2 − 4 − ε

√
−2a − 2

√
a2 − 4

)2

,

so that

√
2 − a,

√−2 − a ∈ L.

Since (2 − a)(−2 − a) = a2 − 4 /∈ Q2 at least one of 2 − a and −2 − a /∈ Q2.
If 2 − a /∈ Q2 then Q

(√
2 − a

)
is a quadratic subfield of L. Suppose that

Q
(√

a2 − 4
)

= Q
(√

2 − a
)
. Then there exists b ∈ Q∗ such that a2 − 4 =

b2(2 − a). As a2 − 4 /∈ Q2 we have a − 2 �= 0 and so a + 2 = −b2. Thus
a = − (b2 + 2). Hence

x4 + ax2 + 1 = x4 − (b2 + 2)x2 + 1 = x4 − 2x2 + 1 − b2x2

= (x2 − 1)2 − b2x2 = (x2 − bx − 1)(x2 + bx − 1),

contradicting that x4 + ax2 + 1 is irreducible over Q. Thus Q
(√

a2 − 4
) �=

Q
(√

2 − a
)
. Since (a2 − 4)(2 − a) = (2 − a)2(−2 − a) it is easy to check that

Q
(√−2 − a

)
is the third quadratic subfield of L. The argument is similar

if −2 − a /∈ Q2. As Gal(x8 + ax4 + 1) � D4, the splitting field M of x8 +
ax4+1 contains exactly three quadratic subfields. These must be Q

(√
a2 − 4

)
,

Q
(√

2 − a
)

and Q
(√−2 − a

)
. However Q

(√−1
) ⊆ M . Thus (i) a2−4 = −b2

or (ii) 2 − a = −b2 or (iii) −2 − a = −b2 for some b ∈ Q∗. First we show that
(i) cannot occur. If a2 − 4 = −b2 then a2 + b2 = 4 and so

a =
4v

v2 + 1
, b =

2(v2 − 1)

v2 + 1

for some v ∈ Q∗. If 2(v2 + 1) ∈ Q2 then

v =
2t2 − 4t + 1

2t2 − 1

for some t ∈ Q. In this case

x8 + ax4 + 1 = x8 +
4v

v2 + 1
x4 + 1
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= x8 +
2(2t2 − 1)(2t2 − 4t + 1)

(2t2 − 2t + 1)2
x4 + 1

=

(
x4 − (4t − 2)

(2t2 − 2t + 1)
x2 + 1

)(
x4 +

(4t − 2)

(2t2 − 2t + 1)2
x2 + 1

)

is reducible over Q. Hence 2(v2 + 1) /∈ Q2. In particular we have v �= ±1. Let
θ1, . . . , θ8 be the eight complex roots of f(x) = x8 + 4v

v2+1
x4 + 1. Set

g(x) :=
8∏

i,j=1

(x − (θi + θj)) ∈ Q[x].

Using MAPLE we can calculate g(x) by means of

g(x) = Resultant (f(x − X), f(X)) .

One factor of g(x) is found to be

h(x) := x4 − 4x2 +
2(v + 1)2

v2 + 1
.

If h(x) is reducible over Q then

h(x) = (x2 + ax + b)(x2 + cx + d)

for some a, b, c, d ∈ Q. Thus

a + c = 0,

ac + b + d = −4,

ad + bc = 0,

bd =
2(v + 1)2

v2 + 1
.

Clearly c = −a so that

a(d − b) = 0.

If a = 0 then c = 0 and

b + d = −4, bd =
2(v + 1)2

v2 + 1
.

Thus

(b − d)2 = (b + d)2 − 4bd = 16 − 8(v + 1)2

v2 + 1
=

8(v − 1)2

v2 + 1
,
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so that 2(v2 + 1) ∈ Q2, a contradiction. Hence a �= 0 so b = d. Thus

b2 =
2(v + 1)2

v2 + 1

so 2(v2 + 1) ∈ Q2, a contradiction. Thus h(x) is irreducible over Q. Let α be
one of the four roots of h(x). Set E = Q(α). Then [E : Q] = 4. All four roots
of h(x) are

±α, ±
(

(v2 + 1)

(v − 1)
α3 − (3v2 − 2v + 3)

(v2 − 1)
α

)
.

Thus E is a normal extension of Q. The discriminant of h(x) is

disc(h) =
211(v − 1)4(v + 1)2

(v2 + 1)3
.

As 2(v2 +1) /∈ Q2 we see that disc(h) /∈ Q2. Thus E is not a bicyclic extension
of Q. Hence E is a cyclic quartic extension of Q. Such an extension cannot be
a subfield of an octic field with Galois group D4 [1, p. 291]. Thus a2−4 �= −b2

showing that (i) does not occur. Suppose now that (ii) occurs. If −2−a = −b2

then a = b2 − 2 and we set

h1(x) = x4 + (b + 2)2

and

h2(x) = x4 + (b − 2)2.

We note that b �= ±2 as a �= 2. Let α1, α2, α3, α4 be the roots of h1 and
β1, β2, β3, β4 the roots of h2. Then the polynomial with roots (α1 − β1), (α1 −
β2), . . . , (α4 − β4) is found using MAPLE to be(

x8 + (64 − 8b2)x4 + 16b4
)
(x8 + (16b2 − 32)x4 + 256).

As θ is a root of x8 + (b2 − 2)x4 + 1, 2θ is a root of x8 + (16b2 − 32)x4 + 256,

and so 2θ = αi − βj for some i, j ∈ {1, 2, 3, 4}. Thus θ = αi

2
− βj

2
belongs to

the compositum of the splitting fields of h1 and h2. Hence

θ ∈ Q
(√

2(b + 2),
√
−2(b + 2),

√
2(b − 2),

√
−2(b − 2)

)
.

Thus θ belongs to an abelian extension of Q, contradicting that Gal(f ) is D4.
Hence (ii) does not occur. This leaves only the possibility (iii) 2 − a = −b2,
that is a = b2 + 2 as required.

This completes the proof of Theorem 2.1.
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Next we show that x8 + (t2 + 2)x4 + 1 is irreducible over Q for t ∈ N.

Theorem 2.2. If t ∈ N then x8 + (t2 + 2)x4 + 1 is irreducible over Q.

Proof. Let θ be a root of x8 + (t2 + 2)x4 + 1. As in the proof of Theorem 2.1
we can choose θ so that

√−2 + ti ∈ Q(θ).

Suppose that

−2 + ti = (r + si)2

for some r, s ∈ Z. Then

4 + t2 = (r2 + s2)2.

However 4 + t2 ∈ N2 for t ∈ N only for t = 0, a contradiction. Thus −2 +
ti /∈ (Z + Zi)2 so Q

(√−2 + ti
)

is a dihedral quartic field [3, Theorem 3, p.
135]. Q(θ) is a normal extension of Q so Q(θ) contains the normal closure of
Q
(√−2 + ti

)
. The field Q

(√−2 + ti
)

is a dihedral quartic field so Q (θ) is an
octic field. Thus x8 + (t2 + 2)x4 + 1 is irreducible over Q.

We observe that there are t ∈ Q+ \ N for which x8 + (t2 + 2)x4 + 1 is
reducible as well as t ∈ Q+ \N for which x8 + (t2 + 2)x4 + 1 is irreducible. For
example for t = 3/2 we have

x8 +

((
3

2

)2

+ 2

)
x4 + 1 = x8 +

17

4
x4 + 1 =

(
x4 +

1

4

)(
x4 + 4

)
,

whereas for t = 8/3 the octic polynomial

x8 +

((
8

3

)2

+ 2

)
x4 + 1 = x8 +

82

9
x4 + 1

is irreducible over Q.

3 The field Q(θ), θ8 + (t2 + 2)θ4 + 1 = 0, t ∈ N

First we determine the discriminant of the octic field Q(θ), where θ8 + (t2 +
2)θ4 + 1 = 0 and t ∈ N.
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Theorem 3.1. Let t ∈ N. Let s denote the squarefree part of the positive
integer t2 + 4. Let θ be a root of x8 + (t2 + 2)x4 + 1. Then

d(Q(θ)) = 2γs4,

where

γ =

⎧⎨
⎩

16, if t ≡ 1 (mod 2),
18, if t ≡ 2 (mod 4),
16, if t ≡ 0 (mod 4).

Proof. Q(θ) is the normal closure of the dihedral quartic field Q(
√−2 + ti),

we can apply Theorem 1 of [1]. In the notation of [1] we have

a = −2, b = t, c ≡ −1 (mod 4)

so

a ≡ 2 (mod 4), c ≡ 3 (mod 4).

Thus the only cases that arise are cases B1, B7 and B8, that is

B1 : t ≡ 1 (mod 2), θ = 16, 2 � s,

B7 : t ≡ 2 (mod 4), θ = 18, 2 ‖ s,

B8 : t ≡ 0 (mod 4), θ = 12, 2 � s.

Then, by Theorem 1 of [1], we obtain

γ =

⎧⎨
⎩

16, if t ≡ 1 (mod 2),
18, if t ≡ 2 (mod 4),
16, if t ≡ 0 (mod 4).

This completes the proof of Theorem 3.1.

Next we determine an integral basis for the field Q(θ), where θ8 + (t2 +
2)θ4 + 1 = 0, under the assumption that t2 + 4 is squarefree.

Theorem 3.2. Let t ∈ N be such that t2 + 4 is squarefree. Then an integral
basis for Q(θ), where θ8 + (t2 + 2)θ4 + 1 = 0, is{

1, θ, θ2, θ3,
θ4 + 1

t
,
θ(θ4 + 1)

t
,
θ2(θ4 + 1)

t
,
θ3(θ4 + 1)

t

}
.

Proof. By Theorem 3.1, as t is odd, we have

d(Q(θ)) = 216(t2 + 4)4.
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As (
θ4 + 1

t

)2

= −θ2

we have

θ4 + 1

t
= ±iθ(3.1)

so that θ4+1
t

is an integer of Q(θ). Finally

d

(
1, θ, θ2, θ3,

θ4 + 1

t
,
θ(θ4 + 1)

t
,
θ2(θ4 + 1)

t
,
θ3(θ4 + 1)

t

)

=
1

t8
d(1, θ, θ2, θ3, θ4, θ5, θ6, θ7)

=
1

t8
216t8(t2 + 4)4 = 216(t2 + 4)4 = d(Q(θ))

so
{

1, θ, θ2, θ3, θ4+1
t

, θ(θ4+1)
t

, θ2(θ4+1)
t

, θ3(θ4+1)
t

}
is an integral basis.

By Nagel’s theorem [4] there exist infinitely many t ∈ N such that t2 + 4 is
squarefree.

In view of (3.1) {
1, θ, θ2, θ3, i, iθ, iθ2, iθ3

}
is also an integral basis for Q(θ).

Taking t = 1 in Theorem 3.2 we see that the octic field Q(θ), where θ8 +
3θ4 + 1 = 0, has a power basis.

4 The polynomials x8 + a, a ∈ Z

Finally we show that the polynomials x8 + (t2 + 2)x4 + 1 are the simplest ones
that give rise to octic fields with Galois group D4 by giving a simple direct
proof that the binomials x8 + a (a ∈ Z) do not have Galois group D4. We
note that Jacobson and Vélez [2] treat the problem of determining the Galois
group of the more general polynomial x2e

+ a.

Theorem 4.1. Let a ∈ Z be such that the polynomial x8+a is irreducible over
Q. Then

Gal(x8 + a) �� D4.
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Proof. Suppose a ∈ Z is such that x8+a is irreducible over Q and Gal(x8+a) �
D4. Let θ be a root of x8 + a so that θ8 + a = 0 and Q(θ) is a normal octic
extension of Q. Now disc(x8 + a) = 224a7 and by [1, Theorem] d(Q(θ)) ∈ Z2.
Thus a ∈ Z2, say a = b2 for b ∈ N. Thus x8 + a = x8 + b2. As the eighth roots
of unity belong to Q(θ) we have

Q(θ) ⊃ Q(
√

2,
√−1).

As θ8 + b2 = 0 we have

b = ±
(

θ2(1 + i)2

√
2

)2

so that

Q(
√

b) ⊂ Q(θ), Q(
√−b) ⊂ Q(θ).

If [Q(
√

2,
√−1,

√
b) : Q] =8 then Q(θ) = Q(

√
2,
√−1,

√
b) and so

Gal(Q(θ)) = Gal
(
Q(

√
2,
√−1,

√
b)
)
� Z/2Z × Z/2Z × Z/2Z,

a contradiction. Thus
√

b ∈ Q(
√

2,
√−1) so that b, 2b, −b or −2b ∈ Q2. If

±2b ∈ Q2 then b = ±2c2 (c ∈ Q) and

x8 + a = x8 + b2 = x8 + 4c4 =
(
x4 − 2cx2 + 2c2

) (
x4 + 2cx2 + 2c2

)
,

contradicting that x8+a is irreducible over Q. If ±b ∈ Q2 then b = ±c2 (c ∈ Q)
so x8+a = x8+c4. Then the polynomial with roots θi+θj (i, j ∈ {1, 2, . . . , 8})
is by MAPLE

x8
(
x8 + 256c4

)
(x8 + 16c4)2(x4 + 4cx2 + 2c4)2(x4 − 4cx2 + 2c2)2(x8 + 12c2x4 + 4c4)2.

The factor x4 − 4cx2 + 2c2 of this polynomial has roots

±
√

2c ± c
√

2.

The field Q
(√

2c + c
√

2
)

is a cyclic quartic field, which cannot occur as a

subfield of Q (θ). This completes the proof.
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