ON LIOUVILLE'S TWELVE SQUARES THEOREM

KENNETH S. WILLIAMS

Centre for Research in Algebra and Number Theory
School of Mathematics and Statistics
Carleton University
Ottawa, Ontario, Canada K1S 5B6
e-mail: kwilliam@connect.carleton.ca

Abstract

A simple proof is given of a formula for the number of representations of a positive integer as the sum of twelve squares.

1. Introduction

Let q be a complex variable with $|q|<1$. Following [1, p. 6] we set

$$
\begin{equation*}
\varphi(q):=\sum_{n=-\infty}^{\infty} q^{n^{2}} . \tag{1.1}
\end{equation*}
$$

Then, as in [1, p. 120], we set

$$
\begin{equation*}
x:=1-\frac{\varphi^{4}(-q)}{\varphi^{4}(q)}, \quad z:=\varphi^{2}(q) . \tag{1.2}
\end{equation*}
$$

Let \mathbb{N} denote the set of positive integers. For $k, n \in \mathbb{N}$ we define

$$
\begin{equation*}
\sigma_{k}(n)=\sum_{\substack{d \in \mathbb{N} \\ d \mid n}} d^{k} . \tag{1.3}
\end{equation*}
$$

2000 Mathematics Subject Classification: 11E25, 11F27.
Keywords and phrases: sums of twelve squares, Liouville's formula, theta functions.
Research of the author was supported by Natural Sciences and Engineering Research Council of Canada grant A-7233.

Received January 26, 2008

If $n \notin \mathbb{N}$ we set $\sigma_{k}(n)=0$. The Eisenstein series $E_{2 k}(q)$ is defined by

$$
\begin{equation*}
E_{2 k}(q):=1+\frac{2}{\zeta(1-2 k)} \sum_{n=1}^{\infty} \sigma_{2 k-1}(n) q^{n} \tag{1.4}
\end{equation*}
$$

where ζ denotes the Riemann zeta function. For brevity we set

$$
\begin{equation*}
R(q):=E_{6}(q)=1-504 \sum_{n=1}^{\infty} \sigma_{5}(n) q^{n} \tag{1.5}
\end{equation*}
$$

It is shown in [1, pp. 127, 128] that

$$
\begin{equation*}
R(q)=\left(1-33 x-33 x^{2}+x^{3}\right) z^{6} \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
R\left(q^{4}\right)=\left(1-\frac{3}{2} x+\frac{15}{32} x^{2}+\frac{1}{64} x^{3}\right) z^{6} \tag{1.7}
\end{equation*}
$$

Ramanujan's discriminant function $\Delta(q)$ is defined by

$$
\begin{equation*}
\Delta(q):=q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24} \tag{1.8}
\end{equation*}
$$

From [4, eq. (26), p. 392], we have

$$
\begin{equation*}
\Delta\left(q^{2}\right):=\frac{1}{256} x^{2}(1-x)^{2} z^{12} \tag{1.9}
\end{equation*}
$$

We define integers $b(n)(n \in \mathbb{N})$ by

$$
\begin{equation*}
\sum_{n=1}^{\infty} b(n) q^{n}=q \prod_{n=1}^{\infty}\left(1-q^{2 n}\right)^{12} \tag{1.10}
\end{equation*}
$$

so that

$$
\begin{equation*}
\sum_{n=1}^{\infty} b(n) q^{n}=\Delta\left(q^{2}\right)^{1 / 2}=\frac{1}{16} x(1-x) z^{6} \tag{1.11}
\end{equation*}
$$

We make use of (1.1), (1.2), (1.6), (1.7), (1.10) and (1.11) to determine a formula for the number $r_{12}(n)$ of representations of $n(n \in \mathbb{N})$ as a sum of twelve squares, that is, for the quantity

$$
r_{12}(n):=\operatorname{card}\left\{\left(x_{1}, \ldots, x_{12}\right) \in \mathbb{Z}^{12} \mid n=x_{1}^{2}+\cdots+x_{12}^{2}\right\}
$$

where \mathbb{Z} denotes the set of all integers. We prove
Theorem. Let $n \in \mathbb{N}$. Then

$$
r_{12}(n)=8 \sigma_{5}(n)-512 \sigma_{5}(n / 4)+16 b(n) .
$$

2. Proof of Theorem

We have

$$
\begin{aligned}
\sum_{n=0}^{\infty} r_{12}(n) q^{n}= & \varphi^{12}(q) \\
= & z^{6} \\
= & -\frac{1}{63}\left(1-33 x-33 x^{2}+x^{3}\right) z^{6} \\
& +\frac{64}{63}\left(1-\frac{3}{2} x+\frac{15}{32} x^{2}+\frac{1}{64} x^{3}\right) z^{6}+x(1-x) z^{6} \\
= & -\frac{1}{63} R(q)+\frac{64}{63} R\left(q^{4}\right)+16 \sum_{n=1}^{\infty} b(n) q^{n} \\
= & 1+\sum_{n=1}^{\infty}\left(8 \sigma_{5}(n)-512 \sigma_{5}(n / 4)+16 b(n)\right) q^{n} .
\end{aligned}
$$

Equating coefficients of $q^{n}(n \in \mathbb{N})$, we obtain the asserted formula for $r_{12}(n)$.

From (1.10) we see that

$$
\begin{equation*}
b(n)=0, \quad \text { if } n \equiv 0(\bmod 2) \tag{2.1}
\end{equation*}
$$

Hence

$$
\begin{equation*}
r_{12}(n)=8 \sigma_{5}(n)-512 \sigma_{5}(n / 4), \text { if } n \equiv 0(\bmod 2) . \tag{2.2}
\end{equation*}
$$

This result was stated by Liouville [3] in a slightly different form. For other formulae for $r_{12}(n)$, see [2].

References

[1] B. C. Berndt, Number Theory in the Spirit of Ramanujan, Amer. Math. Soc., Providence, RI, USA, 2006.
[2] J. G. Huard and K. S. Williams, Sums of twelve squares, Acta Arith. 109 (2003), 195204.
[3] J. Liouville, Extrait d'une lettre adressée à M. Besge, J. Math. Pures Appl. 9 (1864), 296-298.
[4] K. S. Williams, The convolution sum $\sum_{m<n / 8} \sigma(m) \sigma(n-8 m)$, Pacific J. Math. 228 (2006), 387-396.

