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A formula for the conductor of I,ccachcux's parametric family of cylic quintic fields is given. 
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Spearman and Williams [7] have given a theorem which enables one to determine the discriminant 

of a cyclic field of odd prime degree directly from the coefficients of a defining polynomial. They 

applied their theorem to a familyof cyclic quintic polynomials due to Lehmer [ S ] .  In this paper 

we apply the theorem of Spearnian and Williams to a family of cyclic quintic polynomials due to 

Lecacheux [3], [4]. 
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2. SPEARMAN AND WILLIAMS' THEOREM 

In this section we state the theorem of Spearman and Williams [7]. 
Theorem 1 - Letp  be an oddprime. Ler f ( X )  = X P  + a p - 2 ~ ~ - 2  -I- . . . + a l X  + a0 E Z[X] 

be such rhat Gal( f )  - ZlpZ and such rhar there does nor exisr a prime q with qP-' I ai (i = 0,  
1, . . . , p  - 2). Ler 8 E @ be a root of f (X)  and ser K = Q(8) so rhat K is a cyclic extension of Q 
with [K : Q] = p. Then 

d(K) = f ( K ) P - I ,  

where the conductor f (K)  is given by 

q11 (mod p )  
qla; ( i = O . l .  ..., p-2)  

where q runs through primes and 

0, if f(p-1) t disc( f )  and p I a, (i = 1, . . . , p - 2) does not hold 
or 

~ ( p - ' )  ) disc( f )  and 9-' ( 1  ao, 9-' ( a1 , 9+'-i I ai 
( i  = 2 , .  . . , p - 2) does not hold 

2, if $ ( P - ' )  1. disc( f )  and p 1 a, (i = 1, . . . , p - 2) holds 
or 

$'(p-') 1 disc ( f )  and 9-' I( ao, pP-' 1 a1 , 9+1-i I ai 

(i = 2, . . . , p - 2) holds. 

3. ODILE LECACHEUX'S QUINTICS 

Let t 6 Q and set 

where 

These polynomials were introduced by Odile Lecacheux [3] in 1990. We set 
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and define 

El = El(u,  v )  = u4 - 2u3v + 4u2v2 - 3uv3 + 214, 

Ez = E;(u,v) = u4 + 3u3v + 4u2v2 + 2uv3 + v4,  

F = F (u ,  v )  = 2u2 + 3uv + 3v2, 

G = G(U,V)  = 4~~ - U ~ V  - ~ u v ~ + ~ v ~ ,  

H = H ( u , v )  = U ~ + U ~ V - ~ U V ~ + ~ V ~ ~  

J = J(u ,  v )  = -3u5 + 4v5, 

L = L ( U ,  V )  = du13 + g u l 2 ~  - + 2 2 ~ ~ 0 ~ ~  + 6u8v5 - 7 4 ~ 7 ~ ~  

+142u6v7 - 142u5v8 + 96u3v10 - 8 4 ~ ~ ~ ~ ~  + 72uv12 - 72v13, 

M = M ( u ,  v )  = 7u3 + 22u2v + 29uv2 + 11v3, 

N = N ( u ,  v )  = 7u3 - 13u2v + 24uv2 - 14v3, 
r 

P = P(u ,v )  = 2h12 + 77ul1v - 1 4 ~ " ~ ~  + 75u8v4 + 105u7v5 - 282u6v6 

+ 159u5v7 - 475u3v9 + 5u2v10 + 3uvl1 + 49v12, 

Q = Q(U,  V )  = 5 ~ 3  - 2 ~ 2 ~  + I O U V ~  + gv3,  

R = R(u,  v )  = 12u12 + 47u3'v - 3 3 ~ ~ ~ ~ ~  - 75u9v3 + 175u8v4 - 12u7v5 

-267u6v6 + 108u5v7 + 475u4v8 - 1075u3v9 + 528u2v10 

+478uv11 - 527v12, 

S = S ( u ,  v )  = 3u3 + 14u2v + 24uv2 + 16v3. 

Let B be a root of f i ( X )  and set K = Q(0). We prove 

Theorem 2 - Let t be a rational nrrrnber such that f t ( X )  is irreducible in Q [ X ] .  Then K is a 

cyclic quinticfield. 

PROOF : As j t ( X )  is assumed to be irreducible in Q[X], we have 

so that K is a quintic field. We next determine the Galois group of K over Q. We set 

so that 

9 t ( X )  = x5 + g3x3 + 92x2 + 91X + 90, 
where 
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Using MAPLE we find that 

As j o ( X j  is reducible we have t # 0 so that the discriminant of gt(X) is a nonzero perfect 

square. Thus GaliKj is a subgroup of the alternating group A5, and so Gal(K) E Z5, D5 or A5. 
Using the expression ior thc ~.esolvent sextic of a quintic polynomial given by Dummit [2], we find 

using MAPLE that the resolvent sextic of gt(X) has the rational root 

Thus Gal(K) is a solvnble group and so Gal(K) 2: Z5 or D5. Suppose that Gal(K) rz Ds. Let 

19,. . . . . H s  E C be [he roots of gt(X).  Set 

Soichel. [6] (see also [ I  1) has shown that g(X) can be determined by using resultants as 

resultant (gt (x + X), gt (x)) 
. q ( X )  = X5 

MAPLE gives 

s ( - ~ )  = ql (x)~2(x)q3(x)q4(X)i 

wherr each i l L ( X )  is n quintic polynomial i n  $?[XI. Using MAPLE we lind that 

~ o x r ! l t ; ~ r ~ t ( q , [ X ) , q , ( X ) )  # 0 for t # 0, 1 < i < j 5 4, 

and 

~.c!s~lltnnt (qi(X), q i ( X ) )  # 0 for t # 0, i = 1,2,3,4, 

so that q( .Y)  i s  a ,sqii:lrrl.~.cc polyno~nial in Q(X] .  Then, by [ I ,  Theorem 3.l; i) l .  g ( X )  factors as 

3 j?rocI11~1 01 IWO 11.i.ild~ciS1~ !)oly~~omiaIs of degree 10 in Q[X]. Thus Gal(K)  $ D s  Therefore 

(.,all /< j -: z:.;, 0 
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4. THE CONDUCTOR OF K 

We apply Spearman and Williams' theorem to prove the following result 

Theorem 3 - Let t be a rational number s~lch that f t ( X )  is irreducible in Q [ X ] .  Let 0 be a 

root of ft ( X ) .  Set K = Q(8) so, by Theorem 2 ,  K is a cyclic gninric Jield. Then [he condrlcror 

f ( K )  is given by 

fW) = 5a JJ q, 
y l l  ( m o d  5 )  

q1E1Ez 
u~IEI Ez)£O(mod 5 )  

where q runs through primes, 

and 

QVq(E1 E z )  (1 El E2. 

PROOF : AS in .the proof of Theorem 2, we set 

where 93, g2. y l ,  yo are given in the proof of Theorem 2. Next we set 

where 

so that, from the definitions given in  Section 3, we have 
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Let m denote the largest positive integer such that 

and set 
k,,,(X) = h U , , ( m ~ ) / m 5  = x5 + k 3 x 3  + k 2 x 2  + k l X  + ko, (4.3) 

where 
k3 = h 3 / m 2 ,  k2 = h z / m 3 ,  kl  = h l / m 4 ,  ko = holm5. (4.4) 

Appealing to MAPLE, we find 
5 2 0 ~ 4 ~ 8 ~ 1 8 ~ 3 4  

disc (k , , , (X))  = 
1 2  

m20 
, 

and 
E2R - LS = 54v16. 

Clearly k,,,(X) is a defining polynomial for the cyclic quintic field K. Hence, by Theorem 1, 

we have 

q Z l  (mod 5 )  
qlk" ,  qIC.1 I q l k z ,  qlk3  

where q runs through primes and 

' 0, i f  520 { disc(k,,,) and 5 1 kl, 5 1 k2, 5 1 k3 does not hold 

or 
520 1 disc(k,,,) and 54 1) k o ,  54 ( k l ,  54 ( k2 ,  53 ( k3 

does not hold 

2,  i f  520 j disc (k,,,) and 5 1 k l ,  5 1 kz, 5 1 k3 
or 

520 1 disc(k,,,) and 54 1) ko, 54 1 k1, 54 1 k2, 53 1 k3. 

Let q be a prime with 

We show that 

4 1 E1E2, vq(E1E2)  f: O(mod5). 

As q 1 (mod 5) we have q # 2,3,5.  Suppose q I u.  As q I ho, we see by (4.1) that q I El 
or q ( E;! or q I L. If q I El or q 1 E 2  then from the definitions of El and E2 we see that g 1 v ,  
contradicting (u ,  v )  = 1. If q 1 L then as q # 2, 3 w e  see from the definition of L that g I IJ, 

contradicting ( u , v )  = 1. Hence q u. Suppose I v .  As q I hol we see by (4.1) that q ] El 
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or q I E2 or 4 1 L. If q I El or q ( Ez then from the definitions of El and E2 we have q ( u ,  

contradicting (u ,v )  = 1. If q I L then as q # 2 we have from the definition of L that q 1 u,  

contradicting (u ,  v )  = 1. Thus q { uv. As q I f ( K )  we have q I .  disc (k,,,,). It follows by (4.5) 

that q El or q I E2 as q i u,  u, 5 .  By (4.6) we see that q ( El or q I E 2  but not both. Assume that 

q I El. If vq(El E2) E 0 (mod 5) then vq (E l )  = 5w for some w E N. By (4.7) we have q { L. Thus 

by (4.1) we have 

q5w 1 h3, q5W 1 h2, 95w 1 hl ,  q5w 1 1  ho, 

and by (4.2) we deduce that 

qW I1 
Thus 

ho 
q'i3=k0, m 

contradicting q I ko.  Hence vq(E1) $ 0 (mod 5). Now assume q 1 E2. If uq(E2) Z 0 (mod 5) then 

vq(E2) = 5w for some w E N. By (4.8) we see that g { L. As q5w 1 1  E2 we have qlOw ( 1  E;. Thus 

by (4. I )  we see that 

qSw 1 h.31 g low 1 h21 qlDw 1 h l l  glow 11 h ~ ,  

and by (4.2) we have 

Q~~ I l  m. 

Thus 

contradicting q I ko. Hence v,(E2) f 0 (mod 5). Thus vq(E1E2) f 0 (mod 5). 

Now conversely let q be a prime with 

q z 1 (mod 5 ) ,  q 1 El E2, v9(E1 E2) $O(mod 5 )  

We show that 

q=l (mod5) ,  q l k s ,  q lkz ,  q l k i ,  qlko. 

By (4.6) we see that either q I El or q I E2 but not both. As vq(EI E2) f 0 (mod 5) we have 
q51+' 11 E1E2 for some nonnegative integer z and r E {1,2,3,4). Assume q I El. Then by (4.7) 

we see that q { L. We have by (4.1) 

and by (4.2) we have 

qZ I I  m 
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Now assume q I E2. Then by (4.8) we have q j L. As v,(E2) = 5z+r  we see that q10z+2'  )I E;. 
Thus by (4.1) we have 

From the definition of rn i t  follows that q" 1 )  rn if r = 1, 2 and q2"' ) (  m if r = 3, 4. In the 

second case we note that (5a + r )  - (42 + 2) = z + ( r  - 2) > 0 SO q / k3. Thus 

We have proved 

q ~ l  (mod 5 )  p a l  (mod  5 )  
q1ko. q l k l  q l k z .  4 l k 3  v I E I E ~  

v q ( E I  E2)$0(mod 5 )  

It remains to show that 

0, if 2u - v $ 0 (mod 5)) 

2,if 2u - v s 0 (mod 5). 

The following simple divisibilty result will be useful. 

Lemma - 
(a) 5 t E l , E 2 , F . G , H .  J ,L , i f2u -11$  O(mod5). 

(b) 5 11 E l ,  El.  F .  G. H and 52 ( J, L, if 2u - v 5 0 (mod 5). 
PRoor; : (a) Suppose 2u - v f 0 (mod 5). Then u + 22) f 0 (mod 5) and 

El = (u + 2 ~ ) ~  $ 0 (mod 5), 

E2 = (u + 2 ~ ) ~  f 0 (mod 5), 

F z 2 ( ~ + 2 v ) ~  f 0 (mod5), 

G = 4(u + 2 ~ ) ~  f 0 (mod 5),  

H -= (u + 2 ~ ) ~  9 0 (mod 5) ,  

J r 2(u + 2 ~ ) ~  f 0 (mod 5), 

L ,= 4(u + 2v)13 f 0 (mod 5). 

(b) Suppose 2u - v = 0 (mod 5). Then v = 2u + 570 for some w E Z. Thus 

El EE 5u4 (mod 25)) 

E2 r 5u4 (mod 25), 

F 20u2 (mod 25) ,  

G - 10u3 (mod 25), 

H - 15u3 (rnod25), 

J = 0 (mod 25)) 

L E 0 (mod 25). 
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As (u,  v )  = 1 we have 5 '1 u. Thus 5 ( (  E l ,  5 ( 1  E2 ,5  ( 1  F, 5 11 G,  5 11 H, 5' [ J and 52 1 L. 
We now show that 2u - v f 0 (mod 5) implies a = 0. By the Lemma we have 

and by (4. I )  

' 5  11 h3, 5 I 1  h2, 5 / I  h l ,  5 4 ho. 

Thus by (4.2) we have 

5 i m  

and by (4.4) we have 

5 I l k 3 ,  5 l l k 2 ,  5 1 I k 1 ~  5'1ko. 

Now by (4.5). (4.13) and (4.14) we have 520 1 disc (k,,,). By (4.13) the conditions 54 (1 ko, 

54 1 k l ,  54 1 k2, 53 1 k3 do not hold. Thus by (4.10) we have a = 0. 

Finally we show that 2u - v 0 (mod 5) implies a = 2. In this case 5 '1 u, 5 { v. By the Lemma 

we have 

5 ( ( E l ,  E2 ,  F, G,  H a n d 5 ' 1  J ,  L, 

and by (4.1) 

54 I 1  h3, 5' ( I  h2, 57 1 h i ,  55 I ha. 

As 55 ( ho and 55 ( 1  h2,  we see from (4.2) that 

and thus from (4.4) we have 

52 (1 k3, 52 11 k2, 53 1 k l .  

Now, by ( 4 . 3 ,  (4.15) and (4.16), we have 512 1 1  disc (k,,,) so that 520 1 disc (k,,,). By (4.17) 

the conditions 5 1 k l ,  5 1 k g ,  5 ( k3 hold. So by (4.10) we have a = 2. Thus 

Theorem 3 now follows from (4.9), (4. lo), (4.1 1) and (4.18). 
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