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1. INTRODUCTION

Spearman and Williams [7] have given a theorem which enables one to determine the discriminant
of a cyclic field of odd prime degree directly from the coefficients of a defining polynomial. They
applied their theorem to a family of cyclic quintic polynomials due to Lehmer [S]. In this paper

we apply the theorem of Spearman and Williams to a family of cyclic quintic polynomals due to
Lecacheux [3], [4].
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2. SPEARMAN AND WILLIAMS’ THEOREM

In this section we state the theorem of Spearman and Williams [7].

Theorem 1 — Let p be an.oddprime. Let f(X) = XP+a,2XP 2+ + a1 X +ap € Z[X]
be such that Gal(f) ~ Z/pZ and such that there does not exist a prime q with ¢?~* | a;(i = 0,
L,...,p—2). Let 6 € Cbe arootof f(X) andset K = Q(0) so thar K is a cyclic extension of Q
with |[K : Q] = p. Then

q=1 (mod p)
qla; (i=0,1,...,p-2)

where g runs through primes and

(0, if pP>~D tdisc(f) andp|a; i =1,...,p — 2) does not hold
or ‘
pPP=1 | disc(f) and p*~! || @0, PP [ a1, PPN as
(¢ =2,...,p — 2) does not bold
2, if pPP=V tdisc(f) andp|a; (i =1,...,p — 2) holds
or
PP~V | disc (f) and P71 || ag, "7 | a1, PP | 0y
(:=2,...,p—2) holds.

. 3. ODILE LECACHEUX’S QUINTICS

Let ¢t € @ and set

FUX) = X7+ ag(t)X* + az(t) X° + a2 () X2 + a1 (6)X + ao(t),

where

as(t) = t°-3,

as(t) = —t7—208 347~ 50 65 — 2t 443 42 43,

az(t) = t10+ 2% + 4¢84 607 + 105 + 965 + 4¢t — 243 + 212 — 1,
a1(t) = —t2(t"+25 + 35 + 561 + 52 + 262 —t + 1),

ag(t) = t5.

These polynomials were introduced by Odile Lecacheux [3] in 1990. We set

t=ufv, u€Z, veEZ (yv)=1, v>0,
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and define

By = Ei(uv) = v - 2430 + 4u%0? — 3up® + 0,
Ey = Ey(u,v) = u'+3udv+ du? + 2ur® + 0t

F = F(u,v) = 2u® + 3uv + 3v?,

G = G(u,v) = 4u® -1y — 2u? + 2%,

H = H(uv) = ©®+u% - 3u? + 308,

J = Ju,v) = =3+ 405,

L = L(u,v) = 4u?® +9u'% — 22u1v? 4 224193 + 61845 — 744715

+142u807 — 1420%0® 4+ 96uv'0 — 84V + T2up1? — 72013,

M = M(u,v) = 7u®+22u% + 29uv? + 1103,

= N{u,v) = 7ud — 13u?v + 24un? — 1403,
P = P(u,v) = 20u'? + 77uv — 14u'%? + 75uév4 +105uv® — 2820808
+159u%07 — 475u%0° 4 50?00 4 3uv!! + 49012,

= 5u’ — 2u%v + 10uv? + 8v°,

R = R(u,v) = 12u*? + 47uv — 33u%2 — 750%% + 175u80? — 120745
—267uv® + 108u5v” + 475u%0® — 1075u30? + 52842010
+478uv'! — 527017,

S = S(u,v) = 3ud+14u% + 24uv? + 160°.

O
i
2
g
<

Let @ be a root of fi(X) and set K = Q(F). We prove

Theorem 2 — Lel t be a rational number such that f(X) is irreducible in Q[X]. Then K is a

cyclic quintic field.

PROOF : As f¢(X) is assumed to be irreducible in Q[X], we have
[K : Q] =deg(fe(X)) =5

so that K is a quintic field. We next determine the Galois group of K over Q. We set

—_ (5 _
9:(X) = 5°f; (u)

5
so that
gt(X) = X° + g3 X% + 92X2 + 1. X + g0,
where
gy = —5(2° +3t+3)(t +33 + 4t 2t + 1)(t* -2 + 4t -3t + 1),

g = 5(dt® —12 -2t +2) (t' — 2t° + 4% = 3t + )(t* + 3t° + 4® + 2t + 1)°,

233 .
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o= -5 +2 =3t +3)(t* — 263 + 42 — 3¢+ 1)(35 — q)
(143t + 4t + 2t + 1)2,.
go = (4883 4+ 9817 — 228" 4+ 22610 4 6% — 7487 + 14215 — 14245 + 96¢° — 8412
+72t = 72)(t* — 263 + 4 - 3t + 1)t + 363 + 4¢% + 2t +1)2.
Using MAPLE we find that

“disc(g, (X)) = 52018 (11 — 26 + 4e? — 3t + 1)4(¢* + 3t% + 412 + 2t + 1)8.

As fo(X) is reducible we have t # 0 so that the discriminant of g;{X) is a nonzero perfect
square. Thus Gal(K) is a subgroup of the alternating group As, and so Gal(K) ~ Zs, Ds or As.
Using the expression for the resolvent sextic of a quintic polynomial given by Dummit [2], we find
using MAPLE that the resolvent sextic of ¢;(X) has the gational root

5t — 263 + 41 — 3t + 1) (4¢® + 467 — 1265 + 12¢° + 78¢> — 477 + 16t — 16)
x (11 + 30 + 42 42t +1)°

Thus Gal(K) is a solvable group and so Gal(K') =~ Zs or Ds. Suppose that Gal(K) ~ D;. Let
Oy..... s € C be the roots of g;( X ). Set

5
9(X) =[] (= - (6: - 67)) € QX].
x;_];l

Soicher [6] (see also [1]) has shown that g{X ) can be determined by using resultants as

resultant {(g¢(z + X), g:(x))

g(X) = X5

MAPLE gives
9(X) = q1(X)g2(X)g3(X)ga(X),
where each ¢,{ X} is a guintic polynomial in Q[X]. Using MAPLE we find that
resultant (g1 X), ¢ (X)) #0fort £0, 1 <7<y <4,
and
resultant (q:(X),gi(X)) #0fort #0, i =1,2,3,4,

so that ¢{X) is a square(ree polynomial in @[X]. Then, by [}, Theorem 3.11)], g{X) factors as
a product of two wreducible polynomials of degree 10 in Q[X]. Thus Gal(K) # Ds. Therefore
Gal () o= Zs. d
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[38]
¥,

4. THE CONDUCTOR OF K.

We apply Spearman and Williams' theorem to prove the following result.

Theorem 3 — Let t be a rational number such that f;(X) is irreducible in Q[X]. Let 0 be a

root of fi(X). Set K = Q(B) so, by Theorem 2, K is a cyclic quintic field Then the conductor
S{K) is given by
fEy=s Il w
9=1 (mod 5)

- qlE By
vq £} B7)#0(mod §)

where g runs through primes,

_ | 0,if 2u — v % 0(mod 5),
| 2,if 2u—v = 0(mod 5),

and
qvq(E'sz) || E:Es.

PROOF : As in the proof of Theorem 2, we set

, (X - -3
a(X) =8 f, (——(?‘—-)') = X4 g3 X% + 2 X% + 91 X + g0,
where g3, g2. g1, yo are given in the proof of Theorem 2. Next we set
hual X) = 29,4 (X/0°) = X3+ hs X3 + o X% + by X + o,

where

hs = -5(u! - 2udv + 4u?0? - Bur® + v%)

x(ut + 3udv + 4u?v? + 2uv® + v*)(2u? + Buv + 30?),

hy = 5(ut — 2udv + 4u? ~ 3uvd + v?) (u? + 3utu + 4u?0? + 2uod + v?)?
x(4u® — u?v - 2uv? + WP,

hy = 5(u' — 2udn + 4uP0? - 3un® + v (u? + 3udv + 4uPo? + 2w +0)?
x(u® + ufll.) — 3uv? + 30%)(=3u® + 40°),

hey = (u'—2ulv +4u®v? = 3uv® + 01 (! + 3udv + 4ute? 4 2udd + 0*)?

><[4u]3 + 902y — 220! 0? + 2201008 + 6ubyd — T4uT0® + 1424507

1420508 + 96u30!0 — 84wyl 4 T2un!? — 72013,
so that, from the definitions given in Section 3, we have

hs = -5E EoF, hy = SE\E2G, hy=5EE3HJ, ho = E\E3L. (4.1)
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Let m denote the largest positive integer such that

m? | hg, m®|hy, m'|h, m® | ho, 4.2y

and set
kuo(X) = hyo(mX)/m® = X® + ks X° + ko X2 + k1 X + ko, (4.3)

where
k3 = hg/mQ, ky = hz/ms, ki = hl/mq, ko = ho/ms. 4.4)

Appealing to MAPLE, we find

520 E;i Egul 8U34

disc (kup(X)) = —— 55— (4.5)
EM—E,N = 5%, (4.6)
EP-LQ = 5%, 4.7

and
E;R ~ LS =518, (4.8)

Clearly ky »(X) is a defining polynomial for the cyclic quintic field K. Hence, by Theorem 1,

we have
f(K)=5° 11 g, (4.9)

@=1{mod 5)
qlkg, 2k, qlha, qlky

where ¢ runs through primes and

(0, if 5% ¢ disc(kuy) and 5 ) k), 5| ka2, 5| k3 does not hold
or '
520 | disc(ky,y) and 5% || ko, 5% | k1, 54 |k, 53 | k3
a =< does not hold : (4.10)
2, if 5%t disc (kyy) and 5| ky, 5 | k2, 5 | ks
or
| 5% | disc(ky,) and 5% || ko, 5% | k1, 5% ko, 53| ks. .

Let g be a prime with

qg= 1(mod5), qfk3, q l kg, q | k], qlko.
We show that
q| ErxEy, vg(ErE,) # 0(mod5).
As g = 1(mod 5) we have ¢ # 2,3,5. Suppose g | u. As g | hg, we see by (4.1) that ¢ | E;
orq| Eyorgq| L. Ifq| E; org | E; then from the definitions of Ey and E, we see that g | v,

contradicting (u,v) = 1. If ¢ | L then as ¢ # 2, 3 we see from the definition of L that g | v,
contradicting (u,v) = 1. Hence g { u. Suppose g | v. As g | ho, we see by (4.1) that ¢ | F,
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orq | BEporqg| L. If g| Eyorq | E; then from the definitions of F) and E; we have q | u,
contradicting {u,v) = 1. If ¢ | L then as ¢ # 2 we have from the definition of L that q | %,
contradicting (u,v) = 1. Thus g { uv. As g | f(K) we have g |. disc (ky ). It follows by (4.5)
thatq | Eyorq | Eg as ¢ {u, v, 5. By (4.6) we see that g | By or g | E; but not both. Assume that
q | Br. fvg(E1E2) = 0 (mod 5) then vy(E1) = 5w for some w € N. By (4.7) we have g { L. Thus
by (4.1) we have
g™ | hs, ¢ | ha, @ |, ¢* || ho,
and by (4.2) we deduce that
' g* [l m.
Thus h
gt == ko,
contradicting q | ko. Hence vy(Ey) # 0 (mod 5). Now assume ¢ | Ey. If v,(E>) = 0 (mod 5) then
vg(Ez) = 5w for some w € N. By (4.8) we see that ¢ L. As ¢°* || E; we have ¢'% || E. Thus
by (4.1) we see that
¢ | hs, ¢'° | ha, ¢ b1, ¢ ho,

and by (4.2) we have
¢* || m.
Thus B
0
qf me = ko,

contradicting q | ko. Hence v (E2) # 0 (mod 5). Thus vy(E) E3) # 0 (mod 5).

Now conversely let g be a prime with

g=1(mod5), q|E1E,, vy(EyEp) # 0(mod 5)
We show that
q= 1(m0d5), q|k31 q|k2) q|k1> Q|k0

By (4.6) we see that either g | E, or g | E; but not both, As vy(EjE>) # 0 (mod 5) we have
¢®**" || Ey B, for some nonnegative integer z and r € {1,2,3,4}. Assume g | E,. Then by (4.7)
we see that ¢ { L. We have by (4.1)

q5z+r | h3, q51+r I ha, q52+r |hlv q51+r ” hO,

and by (4.2) we have
@ llm
S0

q32+r | kC’n q2z+r l k'Zy qz+r lkh qr ‘ kO'

Thus
gl ks, qlke, gk, qlko
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Now assume g | E;. Then by (4.8) we have g | L. As vy(E2) = 5z+r we see that g102+%" || E2.
Thus by (4.1) we have

q5z+r | h3a q10;+2r | th q10z+2r l hlw q102+21' “ hO'

From the definition of m it follows that g2* || mif 7 = 1, 2 and ¢***! || m if r = 3, 4. In the
second case we note that (5z +7) — (42 +2) = z+ (r — 2) > 00 ¢ | k3. Thus

Q|k37 qle’ QIkla qlkﬂ

We have proved

11 q= 11 q. (4.11)

q=1{mod 5) ¢=1{mod 5)
alkp, gliy. glky, qlka WlE1 By
vq(E) E2)#0(mod 5)

1t remains to show that

) 0if2u-v # 0 (mod 5),
~ ] 2,if 2u — v = 0 (mod 5).

The following simple divisibilty result will be useful.
Lemma — ‘

(@) 5{E\, Ey, F.G.H.J, L, if 2u —v # 0 (mod 5).
(b) 5| E\, By, F.G.Hand 5% | J, L, if 2u — v = 0 (mod S).
PROOT: : (a) Suppose 2u — v # 0 (mod 5). Then u + 2v # 0 (mod 5) and

Ei = (u+2v)* #0 (mod5),
E» = (u+2v)* # 0 (mod 5),
2(u + 2v)% # 0 (mod 5),
4(u + 2v)> # 0 (mod 5),
(u +2v)® 20 (mod 5),
2(u + 2v)° Z 0 (mod 5),
4(ﬁ +20)"® 20 (mod 5).

it

I

i

~ o mQ,
1l

i

(b) Suppose 2u — v = 0 (mod 5). Then v = 2u + 5w for some w € Z. Thus

E, = 5u' (mod 25),
E, = 5u' (mod 25),
F = 20u? (mod 25),
G = 10u® (mod 25),
H = 15u% (mod 25),
J = 0 (mod 25),

L = 0(mod25).
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As (u,v) = lwehave 5{u. Thus 5 || By, 5 || E3,5 || F,5 | G.5 || H.5? | Jand 5? | L. O
We now show that 2u — v #Z 0 (mod 5) implies a = 0. By the Lemma we have

StEy, Ez, F. G, H, J, L, (4.12)
and by (4.1)
5 ” h3v 5 " h?y 5 “ hl, S{hO
Thus by (4.2) we have
‘ 5¢m (4.13)
and by (4.4) we have
5| ks, 51 k2, 51 k1, 51ko. (4.14)

Now by (4.5). (4.13) and (4.14) we have 52° | disc (ky ). By (4.13) the conditions 5% || ko.
5% | ki, 5| k2, 5% | k3 do not hold. Thus by (4.10) we have o = 0.

Finally we show that 2u ~v = 0 (mod 5) implies & = 2. In this case’5 { u, 5 { v. By the Lemma
we have ' ’

5| Ey, By, F, G, Hand 5% | J, L, (4.15)

and by (4.1) .
5 || ha, 5° | ko, 57 | hi, 5° | ho.

As 5% | hp and 5% || hy, we see from (4.2) that
5| m (4.16)

and thus from (4.4) we have
52 || ks, 5% || ke, 5°] k1. (4.17)

Now, by (4.5), (4.15) and (4.16), we have 5'2 || disc (ky,,) so that 5% § disc (kv ). By (4.17)
the conditions 5 | k1, 5 | k2, 5 | k3 hold. So by (4.10) we have a = 2. Thus

_J 0,if 2u — v # 0(mod 5), 4.18)
"1 2,if 2u — v = 0(mod 5).
Theorem 3 now follows from (4.9), (4.10), (4.11) and (4.18). 4
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