THE CONDUCTOR OF LECACHEUX'S PARAMETRIC FAMILY OF CYCLIC QUINTIC FIELDS

Alan K. Silvester*1, Blair K. Spearman**2 and Kenneth S. Williams***3
*Department of Mathematics and Statistics, Okanagan University of British Columbia. Kelowna, B.C. Canada VIV 1 V7
e-mail: mascdman@canada.com
** Department of Mathematics and Statistics, Okanagan University of British Columbia, Kelowna, B.C. Canada VIV IV7
e-mail: blair:spearman@ubc.ca
**School of Mathematics and Statistics, Carleton University: Ottawa, Ontario, Canada KIS SB6
e-mail: williams@math.carleton.ca

(Received 25 January 2006; after final revision 9 October 2006; accepted 12 October 2006)

Abstract

A formula for the conductor of Lecacheux's parametric family of cylic quintic fields is given.

Key Words: Cyclic Quintic Fields; Conductor

1. Introduction

Spearman and Williams [7] have given a theorem which enables one to determine the discriminant of a cyclic field of odd prime degree directly from the coefficients of a defining polynomial. They applied their theorem to a family of cyclic quintic polynomials due to Lehmer [5]. In this paper we apply the theorem of Spearman and Williams to a family of cyclic quintic polynomials due to Lecacheux [3], [4].

[^0]
2. Spearman and Williams' Theorem

In this section we state the theorem of Spearman and Williams [7].
Theorem 1 - Let p be an odd prime. Let $f(X)=X^{p}+a_{p-2} X^{p-2}+\cdots+a_{1} X+a_{0} \in \mathbb{Z}[X]$ be such that $G a l(f) \simeq \mathbb{Z} / p \mathbb{Z}$ and such that there does not exist a prime q with $q^{p-i} \mid a_{i}(i=0$, $1, \ldots, p-2)$. Let $\theta \in \mathbb{C}$ be a root of $f(X)$ and set $K=\mathbb{Q}(\theta)$ so that K is a cyclic extension of \mathbb{Q} with $[K: \mathbb{Q}]=p$. Then

$$
d(K)=f(K)^{p-1}
$$

where the conductor $f(K)$ is given by
where q runs through primes and

$$
\alpha=\left\{\begin{array}{c}
0, \quad \text { if } p^{p(p-1)} \nmid \operatorname{disc}(f) \text { and } p \mid a_{i}(i=1, \ldots, p-2) \text { does not hold } \\
\text { or } \\
p^{p(p-1)} \mid \operatorname{disc}(f) \text { and } p^{p-1} \| a_{0}, p^{p-1}\left|a_{1}, p^{p+1-i}\right| a_{i} \\
(i=2, \ldots, p-2) \operatorname{does} \text { not hold } \\
2, \\
\text { if } p^{p(p-1)} \nmid \operatorname{disc}(f) \text { and } p \mid a_{i}(i=1, \ldots, p-2) \text { holds } \\
\text { or } \\
p^{p(p-1)} \mid \operatorname{disc}(f) \text { and } p^{p-1} \| a_{0}, p^{p-1}\left|a_{1}, p^{p+1-i}\right| a_{i} \\
(i=2, \ldots, p-2) \text { holds. }
\end{array}\right.
$$

3. Odile Lecacheux's Quintics

Let $t \in \mathbb{Q}$ and set

$$
f_{t}(X)=X^{5}+a_{4}(t) X^{4}+a_{3}(t) X^{3}+a_{2}(t) X^{2}+a_{1}(t) X+a_{0}(t)
$$

where

$$
\begin{aligned}
& a_{4}(t)=t^{5}-3, \\
& a_{3}(t)=-t^{9}-2 t^{8}-3 t^{7}-5 t^{6}-6 t^{5}-2 t^{4}+t^{3}-t^{2}+3, \\
& a_{2}(t)=t^{10}+2 t^{9}+4 t^{8}+6 t^{7}+10 t^{6}+9 t^{5}+4 t^{4}-2 t^{3}+2 t^{2}-1, \\
& a_{1}(t)=-t^{2}\left(t^{7}+2 t^{6}+3 t^{5}+5 t^{4}+5 t^{3}+2 t^{2}-t+1\right), \\
& a_{0}(t)=t^{5} .
\end{aligned}
$$

These polynomials were introduced by Odile Lecacheux [3] in 1990. We set

$$
t=u / v, u \in \mathbb{Z}, \quad v \in \mathbb{Z}, \quad(u, v)=1, \quad v>0
$$

and define

$$
\begin{aligned}
E_{1}= & E_{1}(u, v)=u^{4}-2 u^{3} v+4 u^{2} v^{2}-3 u v^{3}+v^{4} \\
E_{2}= & E_{2}^{\prime}(u, v)=u^{4}+3 u^{3} v+4 u^{2} v^{2}+2 u v^{3}+v^{4}, \\
F= & F(u, v)=2 u^{2}+3 u v+3 v^{2}, \\
G= & G(u, v)=4 u^{3}-u^{2} v-2 u v^{2}+2 v^{3}, \\
H= & H(u, v)=u^{3}+u^{2} v-3 u v^{2}+3 v^{3}, \\
J= & J(u, v)=-3 u^{5}+4 v^{5}, \\
L= & L(u, v)=4 u^{13}+9 u^{12} v-22 u^{11} v^{2}+22 u^{10} v^{3}+6 u^{8} v^{5}-74 u^{7} v^{6} \\
& +142 u^{6} v^{7}-142 u^{5} v^{8}+96 u^{3} v^{10}-84 u^{2} v^{11}+72 u v^{12}-72 v^{13}, \\
M= & M(u, v)=7 u^{3}+22 u^{2} v+29 u v^{2}+11 v^{3}, \\
N= & N(u, v)=7 u^{3}-13 u^{2} v+24 u v^{2}-14 v^{3}, \\
P= & P(u, v)=20 u^{12}+77 u^{11} v-14 u^{10} v^{2}+75 u^{8} v^{4}+105 u^{7} v^{5}-282 u^{6} v^{6} \\
& +159 u^{5} v^{7}-475 u^{3} v^{9}+5 u^{2} v^{10}+3 u v^{11}+49 v^{12}, \\
Q= & Q(u, v)=5 u^{3}-2 u^{2} v+10 u v^{2}+8 v^{3}, \\
R= & R(u, v)=12 u^{12}+47 u^{11} v-33 u^{10} v^{2}-75 u^{9} v^{3}+175 u^{8} v^{4}-12 u^{7} v^{5} \\
& -267 u^{6} v^{6}+108 u^{5} v^{7}+475 u^{4} v^{8}-1075 u^{3} v^{9}+528 u^{2} v^{10} \\
& +478 u v^{11}-527 v^{12}, \\
S= & S(u, v)=3 u^{3}+14 u^{2} v+24 u v^{2}+16 v^{3} .
\end{aligned}
$$

Let θ be a root of $f_{t}(X)$ and set $K=\mathbb{Q}(\theta)$. We prove
Theorem 2 - Let t be a rational number such that $f_{t}(X)$ is irreducible in $\mathbb{Q}[X]$. Then K is a cyclic quintic field.

Proof : As $f_{t}(X)$ is assumed to be irreducible in $\mathbb{Q}[X]$, we have

$$
[K: \mathbb{Q}]=\operatorname{deg}\left(f_{t}(X)\right)=5
$$

so that K is a quintic field. We next determine the Galois group of K over \mathbb{Q}. We set

$$
g_{t}(X)=5^{5} f_{t}\left(\frac{X-\left(t^{5}-3\right)}{5}\right)
$$

so that

$$
g_{t}(X)=X^{5}+g_{3} X^{3}+g_{2} X^{2}+g_{1} X+g_{0}
$$

where

$$
\begin{aligned}
& g_{3}=-5\left(2 t^{2}+3 t+3\right)\left(t^{4}+3 t^{3}+4 t^{2}+2 t+1\right)\left(t^{4}-2 t^{3}+4 t^{2}-3 t+1\right) \\
& g_{2}=5\left(4 t^{3}-t^{2}-2 t+2\right)\left(t^{4}-2 t^{3}+4 t^{2}-3 t+1\right)\left(t^{4}+3 t^{3}+4 t^{2}+2 t+1\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
g_{1}= & -5\left(t^{3}+t^{2}-3 t+3\right)\left(t^{4}-2 t^{3}+4 t^{2}-3 t+1\right)\left(3 t^{5}-4\right) \\
& \times\left(t^{4}+3 t^{3}+4 t^{2}+2 t+1\right)^{2}, \\
g_{0}= & \left(4 t^{13}+9 t^{12}-22 t^{11}+22 t^{10}+6 t^{8}-74 t^{7}+142 t^{6}-142 t^{5}+96 t^{3}-84 t^{2}\right. \\
& +72 t-72)\left(t^{4}-2 t^{3}+4 t^{2}-3 t+1\right)\left(t^{4}+3 t^{3}+4 t^{2}+2 t+1\right)^{2}
\end{aligned}
$$

Using MAPLE we find that

$$
\operatorname{disc}\left(g_{t}(X)\right)=5^{20} t^{18}\left(t^{4}-2 t^{3}+4 t^{2}-3 t+1\right)^{4}\left(t^{4}+3 t^{3}+4 t^{2}+2 t+1\right)^{8}
$$

As $f_{0}(X)$ is reducible we have $t \neq 0$ so that the discriminant of $g_{t}(X)$ is a nonzero perfect square. Thus $\operatorname{Gal}(K)$ is a subgroup of the alternating group A_{5}, and so $\operatorname{Gal}(K) \simeq \mathbb{Z}_{5}, D_{5}$ or A_{5}. Using the expression for the resolvent sextic of a quintic polynomial given by Dummit [2], we find using MAPLE that the resolvent sextic of $g_{t}(X)$ has the cational root

$$
\begin{aligned}
& 5\left(t^{4}-2 t^{3}+4 t^{2}-3 t+1\right)\left(4 t^{8}+4 t^{7}-12 t^{6}+12 t^{5}+78 t^{3}-47 t^{2}+16 t-16\right) \\
& \times\left(t^{4}+3 t^{3}+4 t^{2}+2 t+1\right)^{2}
\end{aligned}
$$

Thus $\operatorname{Gal}(K)$ is a solvable group and so $\operatorname{Gal}(K) \simeq \mathbb{Z}_{5}$ or D_{5}. Suppose that $\operatorname{Gal}(K) \simeq D_{5}$. Let $\theta_{1} \ldots . \theta_{5} \in \mathbb{C}$ be the roots of $g_{t}(X)$. Set

$$
g(X)=\prod_{\substack{i, j=1 \\ i \neq j}}^{5}\left(x-\left(\theta_{i}-\theta_{j}\right)\right) \in \mathbb{Q}[X]
$$

Soicher [6] (see also [1]) has shown that $g(X)$ can be determined by using resultants as

$$
g(X)=\frac{\text { resultant }\left(g_{t}(x+X), g_{t}(x)\right)}{X^{5}}
$$

MAPLE gives

$$
g(X)=q_{7}(X) q_{2}(X) q_{3}(X) q_{4}(X)
$$

where each $q_{2}(X)$ is a quintic polynomial in $\mathbb{Q}[X]$. Using MAPLE we find that

$$
\text { waltant }\left(q_{i}(X), q_{j}(X)\right) \neq 0 \text { for } t \neq 0, \quad 1 \leq i<j \leq 4
$$

and

$$
\text { resultant }\left(q_{i}(X), q_{i}^{\prime}(X)\right) \neq 0 \text { for } t \neq 0, \quad i=1,2,3,4
$$

so that $g(X)$ is a squarefree polynomial in $\mathbb{Q}[X]$. Then, by [1, Theorem 3.1(i)], $g(X)$ factors as a product of wo meducible polynomials of degrec 10 in $\mathbb{Q}[X]$. Thus $\operatorname{Gal}(K) \nsucceq D_{5}$. Therefore (GallK) $=\vec{z}$.

4. The Conducitor of K.

We apply Spearman and Williams' theorem to prove the following result.

Theorem 3 - Let t be a rational number such that $f_{t}(X)$ is irreducible in $\mathbb{Q}[X]$. Let θ be a root of $f_{t}(X)$. Set $K=\mathbb{Q}(\theta)$ so, by Theorem $2, K$ is a cyclic quintic field. Then the conductor $f(K)$ is given by
where q runs through primes,

$$
\alpha=\left\{\begin{array}{l}
0, \text { if } 2 u-v \neq 0(\bmod 5), \\
2, \text { if } 2 u-v \equiv 0(\bmod 5),
\end{array}\right.
$$

and

$$
q^{v_{q}\left(E_{1} E_{2}\right)} \| E_{1} E_{2}
$$

Proof : As in the proof of Theorem 2, we set

$$
g_{t}(X)=5^{5} f_{t}\left(\frac{X-\left(t^{5}-3\right)}{5}\right)=X^{5}+g_{3} X^{3}+g_{2} X^{2}+g_{1} X+g_{0}
$$

where $g_{3}, g_{2}, y_{1}, g_{0}$ are given in the proof of Theorem 2. Next we set

$$
h_{u, v}(X)=v^{25} g_{u / v}\left(X / v^{5}\right)=X^{5}+h_{3} X^{3}+h_{2} X^{2}+h_{1} X+h_{0},
$$

where

$$
\begin{aligned}
h_{3}= & -5\left(u^{4}-2 u^{3} v+4 u^{2} v^{2}-3 u v^{3}+v^{4}\right) \\
& \times\left(u^{4}+3 u^{3} v+4 u^{2} v^{2}+2 u v^{3}+v^{4}\right)\left(2 u^{2}+3 u v+3 v^{2}\right), \\
h_{2}= & 5\left(u^{1}-2 u^{3} v+4 u^{2} v^{2}-3 u v^{3}+v^{4}\right)\left(u^{4}+3 u^{3} v+4 u^{2} v^{2}+2 u v^{3}+v^{4}\right)^{2} \\
& \times\left(4 u^{3}-u^{2} v-2 u v^{2}+2 v^{3}\right), \\
h_{1}= & 5\left(u^{4}-2 u^{3} v+4 u^{2} v^{2}-3 u v^{3}+v^{4}\right)\left(u^{4}+3 u^{3} v+4 u^{2} v^{2}+2 u v^{3}+v^{4}\right)^{2} \\
& \times\left(u^{3}+u^{2} v-3 u v^{2}+3 v^{3}\right)\left(-3 u^{5}+4 v^{5}\right), \\
h_{0}= & \left(u^{4}-2 u^{3} v+4 u^{2} v^{2}-3 u v^{3}+v^{4}\right)\left(u^{4}+3 u^{3} v+4 u^{2} v^{2}+2 u v^{3}+v^{4}\right)^{2} \\
& \times\left(4 u^{13}+9 u^{12} v-22 u^{11} v^{2}+22 u^{10} v^{3}+6 u^{8} v^{5}-74 u^{7} v^{6}+142 u^{6} v^{7}\right. \\
& \left.-142 u^{5} v^{8}+96 u^{3} v^{10}-84 u^{2} v^{11}+72 u v^{12}-72 v^{13}\right),
\end{aligned}
$$

so that, from the definitions given in Section 3, we have

$$
\begin{equation*}
h_{3}=-5 E_{1} E_{2} F, \quad h_{2}=5 E_{1} E_{2}^{2} G, \quad h_{1}=5 E_{1} E_{2}^{2} H J, \quad h_{0}=E_{1} E_{2}^{2} L . \tag{4.1}
\end{equation*}
$$

Let m denote the largest positive integer such that

$$
\begin{equation*}
m^{2}\left|h_{3}, m^{3}\right| h_{2}, m^{4}\left|h_{1}, m^{5}\right| h_{0} \tag{4.2}
\end{equation*}
$$

and set

$$
\begin{equation*}
k_{u, v}(X)=h_{u, v}(m X) / m^{5}=X^{5}+k_{3} X^{3}+k_{2} X^{2}+k_{1} X+k_{0} \tag{4.3}
\end{equation*}
$$

where

$$
\begin{equation*}
k_{3}=h_{3} / m^{2}, \quad k_{2}=h_{2} / m^{3}, \quad k_{1}=h_{1} / m^{4}, \quad k_{0}=h_{0} / m^{5} \tag{4.4}
\end{equation*}
$$

Appealing to MAPLE, we find

$$
\begin{align*}
\operatorname{disc}\left(k_{u, v}(X)\right) & =\frac{5^{20} E_{1}^{4} E_{2}^{8} u^{18} v^{34}}{m^{20}} \tag{4.5}\\
E_{1} M-E_{2} N & =5^{2} v^{7} \tag{4.6}\\
E_{1} P-L Q & =5^{4} v^{16} \tag{4,7}
\end{align*}
$$

and

$$
\begin{equation*}
E_{2} R-L S=5^{4} v^{16} \tag{4.8}
\end{equation*}
$$

Clearly $k_{u, v}(X)$ is a defining polynomial for the cyclic quintic field K. Hence, by Theorem 1, we have

$$
\begin{equation*}
f(K)=5^{\alpha} \prod_{\substack{q \equiv 1(\bmod 5) \\ q\left|k_{0}, q\right| k_{1}, q\left|k_{2}, q\right| k_{3}}} q \tag{4.9}
\end{equation*}
$$

where q runs through primes and

$$
\alpha=\left\{\begin{array}{cc}
0, & \text { if } 5^{20} \nmid \operatorname{disc}\left(k_{u, v}\right) \text { and } 5\left|k_{1}, 5\right| k_{2}, 5 \mid k_{3} \text { does not hold } \tag{4.10}\\
\text { or } \\
5^{20} \mid \operatorname{disc}\left(k_{u, v}\right) \text { and } 5^{4}| | k_{0}, 5^{4}\left|k_{1}, 5^{4}\right| k_{2}, 5^{3} \mid k_{3} \\
\text { does not hold } \\
2, & \text { if } 5^{20} \nmid \operatorname{disc}\left(k_{u, v}\right) \text { and } 5\left|k_{1}, 5\right| k_{2}, 5 \mid k_{3} \\
\text { or } \\
5^{20} \mid \operatorname{disc}\left(k_{u, v}\right) \text { and } 5^{4} \| k_{0}, 5^{4}\left|k_{1}, 5^{4}\right| k_{2}, 5^{3} \mid k_{3}
\end{array}\right.
$$

Let q be a prime with

$$
q \equiv 1(\bmod 5), \quad q\left|k_{3}, \quad q\right| k_{2}, q\left|k_{1}, q\right| k_{0}
$$

We show that

$$
q \mid E_{1} E_{2}, \quad v_{q}\left(E_{1} E_{2}\right) \not \equiv 0(\bmod 5)
$$

As $q \equiv 1(\bmod 5)$ we have $q \neq 2,3,5$. Suppose $q \mid u$. As $q \mid h_{0}$, we see by (4,1) that $q \mid E_{1}$ or $q \mid E_{2}$ or $q \mid L$. If $q \mid E_{1}$ or $q \mid E_{2}$ then from the definitions of E_{1} and E_{2} we see that $q \mid v$, contradicting $(u, v)=1$. If $q \mid L$ then as $q \neq 2,3$ we see from the definition of L that $q \mid v$, contradicting $(u, v)=1$. Hence $q \nmid u$. Suppose $q \mid v$. As $q \mid h_{0}$, we see by (4.1) that $q \mid E_{1}$
or $q \mid E_{2}$ or $q \mid L$. If $q \mid E_{1}$ or $q \mid E_{2}$ then from the definitions of E_{1} and E_{2} we have $q \mid u$, contradicting $(u, v)=1$. If $q \mid L$ then as $q \neq 2$ we have from the definition of L that $q \mid u$, contradicting $(u, v)=1$. Thus $q \nmid u v$. As $q \mid f(K)$ we have $q \mid$ disc $\left(k_{u, v}\right)$. It follows by (4.5) that $q \mid E_{1}$ or $q \mid E_{2}$ as $q \nmid u, v, 5$. By (4.6) we see that $q \mid E_{1}$ or $q \mid E_{2}$ but not both. Assume that $q \mid E_{1}$. If $v_{q}\left(E_{1} E_{2}\right) \equiv 0(\bmod 5)$ then $v_{q}\left(E_{1}\right)=5 w$ for some $w \in \mathbb{N}$. By (4.7) we have $q \nmid L$. Thus by (4.1) we have

$$
q^{5 w}\left|h_{3}, q^{5 w}\right| h_{2}, q^{5 w} \mid h_{1}, \quad q^{5 w} \| h_{0}
$$

and by (4.2) we deduce that

$$
q^{w} \| m
$$

Thus

$$
q \nmid \frac{h_{0}}{m^{5}}=k_{0},
$$

contradicting $q \mid k_{0}$. Hence $v_{q}\left(E_{1}\right) \not \equiv 0(\bmod 5)$. Now assume $q \mid E_{2}$. If $v_{q}\left(E_{2}\right) \equiv 0(\bmod 5)$ then $v_{q}\left(E_{2}\right)=5 w$ for some $w \in \mathbb{N}$. By (4.8) we see that $q \nmid L$. As $q^{5 w} \| E_{2}$ we have $q^{10 w} \| E_{2}^{2}$. Thus by (4.1) we see that

$$
q^{5 w}\left|h_{3}, q^{10 w}\right| h_{2}, q^{10 w} \mid h_{1}, \quad q^{10 w} \| h_{0}
$$

and by (4.2) we have

$$
q^{2 w} \| m
$$

Thus

$$
q \nmid \frac{h_{0}}{m^{5}}=k_{0}
$$

contradicting $q \mid k_{0}$. Hence $v_{q}\left(E_{2}\right) \not \equiv 0(\bmod 5)$. Thus $v_{q}\left(E_{1} E_{2}\right) \not \equiv 0(\bmod 5)$.
Now conversely let q be a prime with

$$
q \equiv 1(\bmod 5), \quad q \mid E_{1} E_{2}, \quad v_{q}\left(E_{1} E_{2}\right) \not \equiv 0(\bmod 5)
$$

We show that

$$
q \equiv 1(\bmod 5), q\left|k_{3}, q\right| k_{2}, q\left|k_{1}, q\right| k_{0}
$$

By (4.6) we see that either $q \mid E_{1}$ or $q \mid E_{2}$ but not both. As $v_{q}\left(E_{1} E_{2}\right) \not \equiv 0(\bmod 5)$ we have $q^{5 z+r} \| E_{1} E_{2}$ for some nonnegative integer z and $r \in\{1,2,3,4\}$. Assume $q \mid E_{1}$. Then by (4.7) we see that $q \nmid L$. We have by (4.1)

$$
q^{5 z+r}\left|h_{3}, \quad q^{5 z+r}\right| h_{2}, q^{5 z+r} \mid h_{1}, \quad q^{5 z+r} \| h_{0}
$$

and by (4.2) we have

$$
q^{z} \| m
$$

so

$$
q^{3 z+r}\left|k_{3}, q^{2 z+r}\right| k_{2}, q^{z+r}\left|k_{1}, q^{r}\right| k_{0}
$$

Thus

$$
q\left|k_{3}, q\right| k_{2}, q\left|k_{1}, q\right| k_{0}
$$

Now assume $q \mid E_{2}$. Then by (4.8) we have $q \nmid L$. As $v_{q}\left(E_{2}\right)=5 z+r$ we see that $q^{10 z+2 r} \| E_{2}^{2}$. Thus by (4.1) we have

$$
q^{5 z+r}\left|h_{3}, \quad q^{10 z+2 r}\right| h_{2}, \quad q^{10 z+2 r} \mid h_{1}, \quad q^{10 z+2 r} \| h_{0}
$$

From the definition of m it follows that $q^{2 z} \| m$ if $r=1,2$ and $q^{2 z+1} \| m$ if $r=3$, 4. In the second case we note that $(5 z+r)-(4 z+2)=z+(r-2)>0$ so $q \mid k_{3}$. Thus

$$
q\left|k_{3}, q\right| k_{2}, q\left|k_{1}, q\right| k_{0}
$$

We have proved

$$
\begin{equation*}
\prod_{\substack{q \equiv 1(\bmod 5) \\ q\left|k_{0}, q\right| k_{1}, q\left|k_{2}, q\right| k_{3}}} q=\prod_{\substack{q \equiv 1(\bmod 5) \\ v_{q}\left(E_{1} E_{2}\right) \neq \equiv 0(\bmod 5)}} q \tag{4.11}
\end{equation*}
$$

It remains to show that

$$
\alpha=\left\{\begin{array}{l}
0, \text { if } 2 u-v \not \equiv 0(\bmod 5) \\
2, \text { if } 2 u-v \equiv 0(\bmod 5)
\end{array}\right.
$$

The following simple divisibilty result will be useful.
Lemma -
(a) $5 \nmid E_{1}, E_{2}, F, G, H, J, L$, if $2 u-v \not \equiv 0(\bmod 5)$.
(b) $5 \mid E_{1}, E_{2}, F, G . H$ and $5^{2} \mid J, L$, if $2 u-v \equiv 0(\bmod 5)$.

Prool: : (a) Suppose $2 u-v \not \equiv 0(\bmod 5)$. Then $u+2 v \not \equiv 0(\bmod 5)$ and

$$
\begin{aligned}
E_{1} & \equiv(u+2 v)^{4} \not \equiv 0(\bmod 5) \\
E_{2} & \equiv(u+2 v)^{4} \not \equiv 0(\bmod 5) \\
F & \equiv 2(u+2 v)^{2} \not \equiv 0(\bmod 5) \\
G & \equiv 4(u+2 v)^{3} \not \equiv 0(\bmod 5) \\
H & \equiv(u+2 v)^{3} \not \equiv 0(\bmod 5) \\
J & \equiv 2(u+2 v)^{5} \not \equiv 0(\bmod 5) \\
L & \equiv 4(u+2 v)^{13} \not \equiv 0(\bmod 5)
\end{aligned}
$$

(b) Suppose $2 u-v \equiv 0(\bmod 5)$. Then $v=2 u+5 w$ for some $w \in \mathbb{Z}$. Thus

$$
\begin{aligned}
E_{1} & \equiv 5 u^{4}(\bmod 25) \\
E_{2} & \equiv 5 u^{4}(\bmod 25) \\
F & \equiv 20 u^{2}(\bmod 25) \\
G & \equiv 10 u^{3}(\bmod 25) \\
H & \equiv 15 u^{3}(\bmod 25) \\
J & \equiv 0(\bmod 25) \\
L & \equiv 0(\bmod 25)
\end{aligned}
$$

As $(u, v)=1$ we have $5 \nmid u$. Thus $5\left\|E_{1}, 5\right\| E_{2}, 5\|F, 5\| G, 5 \| H, 5^{2} \mid J$ and $5^{2} \mid L$.
We now show that $2 u-v \not \equiv 0(\bmod 5)$ implies $\alpha=0$. By the Lemma we have

$$
\begin{equation*}
5 \nmid E_{1}, E_{2}, F, G, H, J, L \tag{4.12}
\end{equation*}
$$

and by (4.1)

$$
5\left\|h_{3}, \quad 5\right\| h_{2}, \quad 5 \| h_{1}, \quad 5 \nmid h_{0} .
$$

Thus by (4.2) we have

$$
\begin{equation*}
5 \nmid m \tag{4.13}
\end{equation*}
$$

and by (4.4) we have

$$
\begin{equation*}
5\left\|k_{3}, \quad 5\right\| k_{2}, \quad 5 \| k_{1}, \quad 5 \nmid k_{0} \tag{4.14}
\end{equation*}
$$

Now by (4.5), (4.13) and (4.14) we have $5^{20} \mid \operatorname{disc}\left(k_{u, v}\right)$. By (4.13) the conditions $5^{4} \| k_{0}$, $5^{4}\left|k_{1}, 5^{4}\right| k_{2}, 5^{3} \mid k_{3}$ do not hold. Thus by (4.10) we have $\alpha=0$.

Finally we show that $2 u-v \equiv 0(\bmod 5)$ implies $\alpha=2$. In this case $5 \nmid u, 5 \nmid v$. By the Lemma we have

$$
\begin{equation*}
5 \| E_{1}, E_{2}, F, G, H \text { and } 5^{2} \mid J, L \tag{4.15}
\end{equation*}
$$

and by (4.1)

$$
5^{4}\left\|h_{3}, 5^{5}\right\| h_{2}, 5^{7}\left|h_{i}, 5^{5}\right| h_{0}
$$

As $5^{5} \mid h_{0}$ and $5^{5} \| h_{2}$, we see from (4.2) that

$$
\begin{equation*}
5 \| m \tag{4.16}
\end{equation*}
$$

and thus from (4.4) we have

$$
\begin{equation*}
5^{2}\left\|k_{3}, 5^{2}\right\| k_{2}, 5^{3} \mid k_{1} \tag{4.17}
\end{equation*}
$$

Now, by (4.5), (4.15) and (4.16), we have $5^{12} \| \operatorname{disc}\left(k_{u, v}\right)$ so that $5^{20} \nmid \operatorname{disc}\left(k_{u, v}\right)$. By (4.17) the conditions $5\left|k_{1}, 5\right| k_{2}, 5 \mid k_{3}$ hold. So by (4.10) we have $\alpha=2$. Thus

$$
\alpha=\left\{\begin{array}{l}
0, \text { if } 2 u-v \not \equiv 0(\bmod 5) \tag{4.18}\\
2, \text { if } 2 u-v \equiv 0(\bmod 5)
\end{array}\right.
$$

Theorem 3 now follows from (4.9), (4.10), (4.11) and (4.18).

References

1. L. Cangelmi, Polynomials with Frobenius Galois groups, Comm. Algebra, 28 (2000), 845-859.
2. D. S. Dummit. Solving solvable quintics, Math. Comp., 57 (1991), 387-401.
3. O. Lecacheux. Unités d'une famille de corps lié's à la courbe $X_{1}(25)$, Ann. Inst. Fourier (Grenoble), 40 (1990), 237-253.
4. O. Lecacheux, Constructions de polynômes génériques à groupe de Galois résoluble, Acta Arith., 86 (1998), 207-216.
5. E. Lehmer, Connection between Gaussian periods and cyclic units, Math. Comp., 50 (1988), 535-541.
6. L. Soicher, The computation of Galois groups, M. Comp. Sci. thesis, Concordia University, Montreal, (1981).
7. B. K. Spearman and K. S. Williams, The discriminant of a cyclic field of odd prime degree, Rocky Mountain J. Math., 32 (2003), 1101-1122.

[^0]: ${ }^{1}$ The first author was supported at The University of British Columbia Okanagan by an undergraduate student research award from the Natural Scicnces and Engineering Research Council of Canada.
 ${ }^{2}$ The second author was supported by a research grant from the Natural Sciences and Engineering Research Council of Canada.
 ${ }^{3}$ The third author was supported by Natural Sciences and Enginecring Research Council of Canada grant A-7233.

