A $_{4}$-SEXTIC FIELDS WITH A
 POWER BASIS

Daniel Eloff, Blair K. Spearman, and Kenneth S. Williams

Abstract. An infinite family of monogenic sextic fields with Galois group A_{4} is exhibited.

1. Introduction. Let K be an algebraic number field of degree n. Let O_{K} denote the ring of integers of K. The field K is said to possess a power basis if there exists an element $\theta \in O_{K}$ such that $O_{K}=\mathbb{Z}+\mathbb{Z} \theta+\cdots+\mathbb{Z} \theta^{n-1}$. A field having a power basis is called monogenic. For an extended history of monogenic number fields the reader should consult [3]. For recent work on this topic see $[4,5,6,8]$. In this paper we exhibit infinitely many monogenic sextic fields with Galois group A_{4}.

We prove the following result.
Theorem. Let $d \in \mathbb{Z}$. Set

$$
\begin{equation*}
f_{d}(x):=x^{6}+(2 d+2) x^{4}+(2 d-1) x^{2}-1 \in \mathbb{Z}[x] . \tag{1.1}
\end{equation*}
$$

Let $\theta_{d} \in \mathbb{C}$ be a root of $f_{d}(x)$. Set $K_{d}=\mathbb{Q}\left(\theta_{d}\right)$. Then

$$
\left[K_{d}: \mathbb{Q}\right]=6, \quad \operatorname{Gal}\left(f_{d}\right) \simeq A_{4}
$$

and the fields $K_{d}(d \in \mathbb{Z})$ are distinct. Moreover K_{d} is monogenic with ring of integers $\mathbb{Z}\left[\theta_{d}\right]$ for infinitely many values of d.

Remark. We prove that K_{d} is monogenic whenever $4 d^{2}+2 d+7$ is squarefree, which occurs for infinitely many values of d by a result of Nagel [7].

We remark that Anai and Kondo [1] have stated without proof that

$$
\operatorname{Gal}\left(x^{6}+(2 a+2) x^{4}+(2 a-1) x^{2}-1\right) \simeq A_{4}
$$

for all $a \in \mathbb{Q}$ for which $x^{6}+(2 a+2) x^{4}+(2 a-1) x^{2}-1$ is irreducible in $\mathbb{Q}[x]$. We show in Section 2 that $f_{d}(x)$ is, in fact, irreducible in $\mathbb{Z}[x]$ for all $d \in \mathbb{Z}$ (Lemma 2.2) and that $\operatorname{Gal}\left(f_{d}\right) \simeq A_{4}$ for all $d \in \mathbb{Z}$ (Lemma 2.4). In Section 3 we complete the proof of the theorem.
2. Irreducibility and Galois Group of \mathbf{f}_{d}. Throughout this section $d \in \mathbb{Z}, f_{d}(x)$ is given by (1.1), $\theta_{d} \in \mathbb{C}$ is a root of $f_{d}(x)$, and $K_{d}=\mathbb{Q}\left(\theta_{d}\right)$. Clearly $\left[K_{d}: \mathbb{Q}\right] \leq 6$. We denote the splitting field of $f_{d}(x)$ by L_{d}.

Lemma 2.1.
(a) K_{d} contains a unique cubic subfield C_{d}.
(b) C_{d} is cyclic over \mathbb{Q}.

Proof.
(a) Let

$$
g_{d}(x):=x^{3}+(2 d+2) x^{2}+(2 d-1) x-1 \in \mathbb{Z}[x]
$$

so that $g_{d}\left(x^{2}\right)=f_{d}(x)$. Suppose that $g_{d}(x)$ is reducible in $\mathbb{Q}[x]$. As $\operatorname{deg}\left(g_{d}(x)\right)=3, g_{d}(x)$ has a rational root r. As $g_{d}(x) \in \mathbb{Z}[x]$, we have $r \in \mathbb{Z}$. Then $r \mid g_{d}(0)(=-1)$ so $r= \pm 1$. As $g_{d}(-1)=1$ we have $r \neq-1$ so $r=1$. Hence, $4 d+1=g_{d}(1)=0$, contradicting $d \in \mathbb{Z}$. Thus, $g_{d}(x)$ is irreducible in $\mathbb{Q}[x]$ so that $\mathbb{Q}\left(\theta_{d}^{2}\right)$ is a cubic subfield of K_{d}.

Suppose $C_{d}=\mathbb{Q}\left(\theta_{d}^{2}\right)$ and F are two distinct cubic subfields of K_{d}. Then the compositum field $C_{d} \vee F$ is a subfield of K_{d} of degree 9 over \mathbb{Q}. Hence, $9 \mid\left[K_{d}: \mathbb{Q}\right]$, contradicting $\left[K_{d}: \mathbb{Q}\right] \leq 6$.

We have shown that $C_{d}=\mathbb{Q}\left(\theta_{d}^{2}\right)$ is the unique cubic subfield of K_{d}.
(b) As $\operatorname{disc}\left(g_{d}(x)\right)=\left(4 d^{2}+2 d+7\right)^{2}, C_{d}$ is a cyclic field.

Lemma 2.2. $f_{d}(x)$ is irreducible in $\mathbb{Q}[x]$.
Proof. Suppose that $f_{d}(x)$ is reducible over \mathbb{Q} so that $\left[K_{d}: \mathbb{Q}\right]<6$. As

$$
3=\left[C_{d}: \mathbb{Q}\right] \mid\left[K_{d}: \mathbb{Q}\right]
$$

we have $\left[K_{d}: \mathbb{Q}\right]=3$. Thus, θ_{d} is a root of an irreducible cubic in $\mathbb{Z}[x]$, say,

$$
h(x)=x^{3}+a x^{2}+b x+c .
$$

Clearly $-\theta_{d}$ is a root of $h(-x)$ and $h(-x) \neq-h(x)$. As θ_{d} and $-\theta_{d}$ are roots of $f_{d}(x)$ it follows that

$$
f_{d}(x)=-h(x) h(-x)=x^{6}+\left(-a^{2}+2 b\right) x^{4}+\left(b^{2}-2 a c\right) x^{2}-c^{2}
$$

Equating constant terms of $f_{d}(x)$, we deduce that $c= \pm 1$. Next, equating the coefficients of x^{4} and x^{2}, we obtain

$$
\begin{aligned}
& 2 d+2=-a^{2}+2 b \\
& 2 d-1=b^{2}-2 a c
\end{aligned}
$$

Eliminating d, we have

$$
(a-c)^{2}+(b-1)^{2}=-1
$$

a contradiction, proving that $f_{d}(x)$ is irreducible in $\mathbb{Q}[x]$.
Lemma 2.3. $\left[L_{d}: \mathbb{Q}\right] \leq 12$.
Proof. Let $\pm \phi_{1}, \pm \phi_{2}, \pm \phi_{3}$ be the roots of $f_{d}(x)$ with $\phi_{1}=\theta_{d}$. Then $-1=f_{d}(0)=-\phi_{1}^{2} \phi_{2}^{2} \phi_{3}^{2}$ so $\phi_{1} \phi_{2} \phi_{3}= \pm 1$. Then $L_{d}=\mathbb{Q}\left(\phi_{1}, \phi_{2}, \phi_{3}\right)=$ $\mathbb{Q}\left(\phi_{1}, \phi_{2}\right)=C_{d}\left(\phi_{1}, \phi_{2}\right)$ as $C_{d}=\mathbb{Q}\left(\theta_{d}^{2}\right)=\mathbb{Q}\left(\phi_{1}^{2}\right)$. Hence, $\left[L_{d}: C_{d}\right] \leq 2 \times 2=4$ and so $\left[L_{d}: \mathbb{Q}\right]=\left[L_{d}: C_{d}\right]\left[C_{d}: \mathbb{Q}\right] \leq 4 \times 3=12$ by Lemma 2.1(a).

Lemma 2.4. $\operatorname{Gal}\left(f_{d}\right) \simeq A_{4}$.

Proof. The field K_{d} satisfies $\left[K_{d}: \mathbb{Q}\right]=6$ (Lemma 2.2), K_{d} contains a cubic subfield (Lemma 2.1(a)), and

$$
\operatorname{disc}\left(f_{d}\right)=2^{6}\left(4 d^{2}+2 d+7\right)^{4} \in \mathbb{Z}^{2}
$$

Hence, from Cohen [2], we see that $\operatorname{Gal}\left(f_{d}\right) \simeq A_{4}$ or S_{4}. By Lemma 2.3 we deduce that $\operatorname{Gal}\left(f_{d}\right) \simeq A_{4}$.

Lemma 2.5. C_{d} is the only subfield $\left(\neq \mathbb{Q}, K_{d}\right)$ of K_{d}.
Proof. This follows immediately from Lemmas 2.1 and 2.4.
3. Proof of Theorem. We begin by recalling the following result [8].

Lemma 3.1. Let $f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \in \mathbb{Z}[x]$ be irreducible. Suppose that $\theta \in \mathbb{C}$ is a root of $f(x)$ and $K=\mathbb{Q}(\theta)$. If p is a prime number such that $p \| a_{0}$ and $p \mid a_{1}$, then the ideal $<p>$ ramifies in K.

We now prove our theorem. It is assumed throughout this section that $d \in \mathbb{Z}$ is such that $4 d^{2}+2 d+7$ is squarefree. If $d \equiv 2(\bmod 3)$, say $d=3 m+2(m \in \mathbb{Z})$, then

$$
4 d^{2}+2 d+7=36 m^{2}+54 m+27 \equiv 0 \quad(\bmod 9)
$$

a contradiction. Hence, $d \not \equiv 2(\bmod 3)$. As $d \in \mathbb{Z}$ we have $(4 d+1)^{2} \geq 1$. Therefore,

$$
4 d^{2}+2 d+7=\frac{(4 d+1)^{2}}{4}+\frac{27}{4} \geq \frac{1}{4}+\frac{27}{4}=7
$$

Also,

$$
\begin{equation*}
\left(4 d^{2}+2 d+7,4 d+1\right)=(d+7,4 d+1)=(d+7,27)=1 \tag{3.1}
\end{equation*}
$$

as $d+7 \not \equiv 0(\bmod 3)$. Let p be a prime dividing $4 d^{2}+2 d+7$. As $4 d^{2}+2 d+7$ is assumed to be squarefree we have $p \| 4 d^{2}+2 d+7$. Then from (3.1), we deduce that $p \nmid 4 d+1$. Let
$k_{d}(x)=3^{3} g_{d}\left(\frac{x-2 d-2}{3}\right)=x^{3}-3\left(4 d^{2}+2 d+7\right) x+(4 d+1)\left(4 d^{2}+2 d+7\right)$.

Recall from the proof of Lemma 2.1(a) that $g_{d}(x)$ is irreducible in $\mathbb{Q}[x]$. Hence, $k_{d}(x)$ is irreducible in $\mathbb{Q}[x]$. A root of $k_{d}(x)$ is $\lambda=3 \theta_{d}^{2}+(2 d+2)$ and $\mathbb{Q}(\lambda)=\mathbb{Q}\left(3 \theta_{d}^{2}+(2 d+2)\right)=\mathbb{Q}\left(\theta_{d}^{2}\right)=C_{d}$. Hence, by Lemma 3.1, the ideal $\langle p\rangle$ ramifies in C_{d} so by Dedekind's Theorem $p \mid d\left(C_{d}\right)$. Thus, we have shown that every prime dividing $4 d^{2}+2 d+7$ divides $d\left(C_{d}\right)$. As

$$
\begin{equation*}
\left(4 d^{2}+2 d+7\right)^{2}=\operatorname{disc}\left(g_{d}\right)=m^{2} d\left(C_{d}\right) \tag{3.2}
\end{equation*}
$$

for some $m \in \mathbb{N}$, we see that every prime p dividing $d\left(C_{d}\right)$ divides $4 d^{2}+$ $2 d+7$. Thus, $4 d^{2}+2 d+7$ and $d\left(C_{d}\right)$ are divisible by exactly the same set of primes. As $4 d^{2}+2 d+7$ is squarefree, we deduce from (3.2) that $m=1$ and

$$
\begin{equation*}
d\left(C_{d}\right)=\left(4 d^{2}+2 d+7\right)^{2} \tag{3.3}
\end{equation*}
$$

Next, by the conductor-discriminant formula, see for example [2], we deduce using Lemma 2.1(a) and (3.3) that

$$
\left.4 d^{2}+2 d+7\right)^{4} \mid d\left(K_{d}\right)
$$

say

$$
\begin{equation*}
d\left(K_{d}\right)=t\left(4 d^{2}+2 d+7\right)^{4} \tag{3.4}
\end{equation*}
$$

for some $t \in \mathbb{N}$. Hence,

$$
\begin{equation*}
2^{6}\left(4 d^{2}+2 d+7\right)^{4}=\operatorname{disc}\left(f_{d}\right)=l^{2} d\left(K_{d}\right)=l^{2} t\left(4 d^{2}+2 d+7\right)^{4} \tag{3.5}
\end{equation*}
$$

for some $l \in \mathbb{N}$. From (3.5) we see that $t=u^{2}$ for some $u \in \mathbb{N}$ and $l u=2^{3}$. Thus, $u=1,2,2^{2}$ or 2^{3} and

$$
d\left(K_{d}\right)=2^{\alpha}\left(4 d^{2}+2 d+7\right)^{4}, \quad \alpha \in\{0,2,4,6\}
$$

We wish to show that $\alpha=6$. To do this it suffices to prove that none of the 32 elements

$$
\left\{\left.\frac{a_{0}+a_{1} \theta_{d}+a_{2} \theta_{d}^{2}+a_{3} \theta_{d}^{3}+a_{4} \theta_{d}^{4}+\theta_{d}^{5}}{2} \right\rvert\, a_{0}, a_{1}, a_{2}, a_{3}, a_{4} \in\{0,1\}\right\}
$$

is an algebraic integer. We just illustrate this with the element

$$
\frac{\theta_{d}+\theta_{d}^{3}+\theta_{d}^{4}+\theta_{d}^{5}}{2}
$$

as the remaining 31 elements can be treated in a similar manner.
Let $\gamma=\theta_{d}+\theta_{d}^{3}+\theta_{d}^{4}+\theta_{d}^{5}$. We show first that γ does not belong to a proper subfield of K_{d}. Suppose on the contrary that $\gamma \in F$, where F is a subfield of K_{d} with $F \neq K_{d}$. Then by Lemma 2.5, $\gamma \in C_{d}$. As $\gamma=\theta_{d}\left(1+\theta_{d}^{2}+\theta_{d}^{4}\right)+\theta_{d}^{4}$ and $\theta_{d}^{2}, \theta_{d}^{4} \in C_{d}$, we deduce that $\theta_{d} \in C_{d}$, a contradiction. Hence, the minimal polynomial of γ over \mathbb{Q} is of degree 6 . Using MAPLE we find that the minimal polynomial of γ over \mathbb{Q} is

$$
x^{6}+a_{1} x^{5}+a_{2} x^{4}+a_{3} x^{3}+a_{4} x^{2}+a_{5} x+a_{6},
$$

where

$$
\begin{aligned}
& a_{1}=-\left(8 d^{2}+8 d+12\right), \\
& a_{2}=32 d^{5}+64 d^{4}+152 d^{3}+168 d^{2}+140 d+74, \\
& a_{3}=-\left(64 d^{5}+64 d^{4}+240 d^{3}+144 d^{2}+212 d+76\right), \\
& a_{4}=64 d^{5}+208 d^{3}-116 d^{2}+148 d-208, \\
& a_{5}=32 d^{4}+32 d^{3}+144 d^{2}+72 d+144, \\
& a_{6}=-\left(32 d^{4}+40 d^{3}+128 d^{2}+72 d+104\right) .
\end{aligned}
$$

Clearly,

$$
\frac{a^{6}}{2^{3}}=-\left(4 d^{4}+5 d^{3}+16 d^{2}+9 d+13\right) \equiv d^{3}+d+1 \equiv 1 \quad(\bmod 2) .
$$

Hence, $2^{6} \nmid a_{6}$ so that $\gamma / 2$ is not an integer of K_{d}. We treat the remaining 31 elements in a similar manner obtaining the same conclusion each time.

Thus, we have proved that $\alpha=6$ and $d\left(K_{d}\right)=2^{6}\left(4 d^{2}+2 d+7\right)^{4}=$ $\operatorname{disc}\left(f_{d}\right)$. Hence, $\left\{1, \theta_{d}, \theta_{d}^{2}, \theta_{d}^{3}, \theta_{d}^{4}, \theta_{d}^{5}\right\}$ is an integral basis for K_{d}.

As

$$
4 d^{2}+2 d+7=4 d_{1}^{2}+2 d_{1}+7\left(d, d_{1} \in \mathbb{Z}\right) \Longrightarrow d=d_{1},
$$

we deduce that the fields K_{d} are distinct.
4. Other Power Bases. If $4 d^{2}+2 d+7$ is squarefree, we have shown that $\left\{1, \theta_{d}, \theta_{d}^{2}, \theta_{d}^{3}, \theta_{d}^{4}, \theta_{d}^{5}\right\}$ is a power basis for the ring $O_{K_{d}}$ of integers of K_{d}. As $N\left(\theta_{d}\right)=-1$,

$$
\left\{1, \frac{1}{\theta_{d}}, \frac{1}{\theta_{d}^{2}}, \frac{1}{\theta_{d}^{3}}, \frac{1}{\theta_{d}^{4}}, \frac{1}{\theta_{d}^{5}}\right\}
$$

is also a power basis for $O_{K_{d}}$, that is $\left\{1, \phi_{d}, \phi_{d}^{2}, \phi_{d}^{3}, \phi_{d}^{4}, \phi_{d}^{5}\right\}$ is a power basis for $O_{K_{d}}$ with

$$
\phi_{d}=\frac{1}{\theta_{d}}=(2 d-1) \theta_{d}+(2 d+2) \theta_{d}^{3}+\theta_{d}^{5}
$$

With $d=0$ we carried out a computer search using an index form corresponding to $\left\{1, \theta_{d}, \theta_{d}^{2}, \theta_{d}^{3}, \theta_{d}^{4}, \theta_{d}^{5}\right\}$, and found five more power bases, namely
the bases $\left\{1, \psi_{i}, \psi_{i}^{2}, \psi_{i}^{3}, \psi_{i}^{4}, \psi_{i}^{5}\right\}(i=1,2,3,4,5)$ with

$$
\begin{aligned}
& \psi_{1}=2 \theta_{d}^{3}+\theta_{d}^{5} \\
& \psi_{2}=-2 \theta_{d}+2 \theta_{d}^{3}+\theta_{d}^{5} \\
& \psi_{3}=-2 \theta_{d}+\theta_{d}^{3}+\theta_{d}^{5} \\
& \psi_{4}=2 \theta_{d}+3 \theta_{d}^{3}+\theta_{d}^{5} \\
& \psi_{5}=2 \theta_{d}+3 \theta_{d}^{2}+3 \theta_{d}^{3}+\theta_{d}^{4}+\theta_{d}^{5}
\end{aligned}
$$

None of these power bases is an integer translate or a Galois conjugate of θ_{d}. This can easily be checked by finding the minimal polynomials of the above elements and observing that they are distinct, even under integer translation. We do not know if there are any other power bases for this sextic field.

Acknowledgement. The second and third authors were supported by grants from the Natural Sciences and Engineering Research Council of Canada.

1. H. Anai and T. Kondo, "A Family of Sextic Polynomials With Galois Group A_{5}-the Computation of Splitting Fields and Galois Groups," Studies in the Theory of Computer Algebra and Its Applications, Kyoto, (1995), 57-72.
2. H. Cohen, A Course in Computational Algebraic Number Theory, Springer-Verlag, 2000.
3. I. Gaál, Diophantine Equations and Power Integral Bases: New Computational Methods, Birkhäuser, Boston, 2002.
4. M. J. Lavallee, B. K. Spearman, K. S. Williams, and Q. Yang, "Dihedral Quintic Fields With a Power Basis," Math. J. Okayama Univ., 47 (2005), 75-79.
5. I. Járási, "Power Integral Bases in Sextic Fields With a Cubic Subfield," Acta Sci. Math. (Szeged), 69 (2003), 3-15.
6. L. Miller-Sims and L. Robertson, "Power Integral Bases for Real Cyclotomic Fields," Bull. Austral. Math. Soc., 71 (2005), 167-173.
7. T. Nagel, "Zur Arithmetik der Polynome," Abh. Math. Sem. Hamburg, 1 (1922), 179-194.
8. B. K. Spearman, A. Watanabe, and K. S. Williams, "PSL(2,5) Sextic Fields With a Power Basis," Kodai Math. J., 29 (2006), 5-12.
Mathematics Subject Classification (2000): 11R21
Daniel Eloff
Department of Mathematics and Statistics
University of British Columbia Okanagan
Kelowna, B.C.
Canada V1V 1V7
email: dan.eloff@gmail.com
Blair K. Spearman
Department of Mathematics and Statistics
University of British Columbia Okanagan
Kelowna, B.C.
Canada V1V 1V7
email: blair.spearman@ubc.ca
Kenneth S. Williams
School of Mathematics and Statistics
Carleton University
Ottawa, Ontario
Canada K1S 5B6
email: williams@math.carleton.ca
