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Abstract. An infinite family of monogenic sextic fields with Galois
group A4 is exhibited.

1. Introduction. Let K be an algebraic number field of degree n. Let
OK denote the ring of integers of K. The field K is said to possess a power
basis if there exists an element θ ∈ OK such that OK = Z+Zθ+· · ·+Zθn−1.
A field having a power basis is called monogenic. For an extended history of
monogenic number fields the reader should consult [3]. For recent work on
this topic see [4, 5, 6, 8]. In this paper we exhibit infinitely many monogenic
sextic fields with Galois group A4.

We prove the following result.

Theorem. Let d ∈ Z. Set

fd(x) := x6 + (2d+ 2)x4 + (2d− 1)x2 − 1 ∈ Z[x]. (1.1)

Let θd ∈ C be a root of fd(x). Set Kd = Q(θd). Then

[Kd : Q] = 6, Gal(fd) ' A4,

and the fields Kd (d ∈ Z) are distinct. Moreover Kd is monogenic with ring
of integers Z[θd] for infinitely many values of d.

Remark. We prove that Kd is monogenic whenever 4d2 + 2d + 7 is
squarefree, which occurs for infinitely many values of d by a result of Nagel
[7].

We remark that Anai and Kondo [1] have stated without proof that

Gal(x6 + (2a+ 2)x4 + (2a− 1)x2 − 1) ' A4

for all a ∈ Q for which x6 + (2a + 2)x4 + (2a − 1)x2 − 1 is irreducible in
Q[x]. We show in Section 2 that fd(x) is, in fact, irreducible in Z[x] for all
d ∈ Z (Lemma 2.2) and that Gal(fd) ' A4 for all d ∈ Z (Lemma 2.4). In
Section 3 we complete the proof of the theorem.

2. Irreducibility and Galois Group of fd. Throughout this section
d ∈ Z, fd(x) is given by (1.1), θd ∈ C is a root of fd(x), and Kd = Q(θd).
Clearly [Kd : Q] ≤ 6. We denote the splitting field of fd(x) by Ld.
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Lemma 2.1.

(a) Kd contains a unique cubic subfield Cd.
(b) Cd is cyclic over Q.

Proof.

(a) Let

gd(x) := x3 + (2d+ 2)x2 + (2d− 1)x− 1 ∈ Z[x]

so that gd(x
2) = fd(x). Suppose that gd(x) is reducible in Q[x]. As

deg(gd(x)) = 3, gd(x) has a rational root r. As gd(x) ∈ Z[x], we have
r ∈ Z. Then r | gd(0)(= −1) so r = ±1. As gd(−1) = 1 we have r 6= −1
so r = 1. Hence, 4d + 1 = gd(1) = 0, contradicting d ∈ Z. Thus, gd(x) is
irreducible in Q[x] so that Q(θ2

d) is a cubic subfield of Kd.
Suppose Cd = Q(θ2d) and F are two distinct cubic subfields of Kd.

Then the compositum field Cd ∨ F is a subfield of Kd of degree 9 over Q.
Hence, 9 | [Kd : Q], contradicting [Kd : Q] ≤ 6.

We have shown that Cd = Q(θ2d) is the unique cubic subfield of Kd.

(b) As disc(gd(x)) = (4d2 + 2d+ 7)2, Cd is a cyclic field.

Lemma 2.2. fd(x) is irreducible in Q[x].

Proof. Suppose that fd(x) is reducible over Q so that [Kd : Q] < 6. As

3 = [Cd : Q] | [Kd : Q]

we have [Kd : Q] = 3. Thus, θd is a root of an irreducible cubic in Z[x], say,

h(x) = x3 + ax2 + bx+ c.

Clearly −θd is a root of h(−x) and h(−x) 6= −h(x). As θd and −θd are
roots of fd(x) it follows that

fd(x) = −h(x)h(−x) = x6 + (−a2 + 2b)x4 + (b2 − 2ac)x2 − c2.

Equating constant terms of fd(x), we deduce that c = ±1. Next, equating
the coefficients of x4 and x2, we obtain

2d+ 2 = −a2 + 2b,

2d− 1 = b2 − 2ac.

Eliminating d, we have

(a− c)2 + (b− 1)2 = −1,
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a contradiction, proving that fd(x) is irreducible in Q[x].

Lemma 2.3. [Ld : Q] ≤ 12.

Proof. Let ±φ1,±φ2,±φ3 be the roots of fd(x) with φ1 = θd. Then
−1 = fd(0) = −φ2

1φ
2

2φ
2

3 so φ1φ2φ3 = ±1. Then Ld = Q(φ1, φ2, φ3) =
Q(φ1,φ2) = Cd(φ1, φ2) as Cd = Q(θ2d) = Q(φ2

1
). Hence, [Ld : Cd] ≤ 2×2 = 4

and so [Ld : Q] = [Ld : Cd][Cd : Q] ≤ 4 × 3 = 12 by Lemma 2.1(a).

Lemma 2.4. Gal(fd) ' A4.

Proof. The field Kd satisfies [Kd : Q] = 6 (Lemma 2.2), Kd contains a
cubic subfield (Lemma 2.1(a)), and

disc(fd) = 26(4d2 + 2d+ 7)4 ∈ Z2.

Hence, from Cohen [2], we see that Gal(fd) ' A4 or S4. By Lemma 2.3 we
deduce that Gal(fd) ' A4.

Lemma 2.5. Cd is the only subfield (6= Q, Kd) of Kd.

Proof. This follows immediately from Lemmas 2.1 and 2.4.

3. Proof of Theorem. We begin by recalling the following result [8].

Lemma 3.1. Let f(x) = xn + an−1x
n−1 + · · · + a1x + a0 ∈ Z[x] be

irreducible. Suppose that θ ∈ C is a root of f(x) and K = Q(θ). If p is a
prime number such that p ‖ a0 and p | a1, then the ideal < p > ramifies in
K.

We now prove our theorem. It is assumed throughout this section
that d ∈ Z is such that 4d2 + 2d + 7 is squarefree. If d ≡ 2 (mod 3), say
d = 3m+ 2 (m ∈ Z), then

4d2 + 2d+ 7 = 36m2 + 54m+ 27 ≡ 0 (mod 9),

a contradiction. Hence, d 6≡ 2 (mod 3). As d ∈ Z we have (4d + 1)2 ≥ 1.
Therefore,

4d2 + 2d+ 7 =
(4d+ 1)2

4
+

27

4
≥

1

4
+

27

4
= 7.

Also,

(4d2 + 2d+ 7, 4d+ 1) = (d+ 7, 4d+ 1) = (d+ 7, 27) = 1 (3.1)
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as d+7 6≡ 0 (mod 3). Let p be a prime dividing 4d2+2d+7. As 4d2+2d+7
is assumed to be squarefree we have p ‖ 4d2 + 2d+ 7. Then from (3.1), we
deduce that p - 4d+ 1. Let

kd(x) = 33gd

(

x− 2d− 2

3

)

= x3−3(4d2 +2d+7)x+(4d+1)(4d2 +2d+7).

Recall from the proof of Lemma 2.1(a) that gd(x) is irreducible in Q[x].
Hence, kd(x) is irreducible in Q[x]. A root of kd(x) is λ = 3θ2d + (2d + 2)
and Q(λ) = Q(3θ2

d + (2d + 2)) = Q(θ2

d) = Cd. Hence, by Lemma 3.1, the
ideal < p > ramifies in Cd so by Dedekind’s Theorem p | d(Cd). Thus, we
have shown that every prime dividing 4d2 + 2d+ 7 divides d(Cd). As

(4d2 + 2d+ 7)2 = disc(gd) = m2d(Cd) (3.2)

for some m ∈ N, we see that every prime p dividing d(Cd) divides 4d2 +
2d+ 7. Thus, 4d2 + 2d+ 7 and d(Cd) are divisible by exactly the same set
of primes. As 4d2 + 2d+ 7 is squarefree, we deduce from (3.2) that m = 1
and

d(Cd) = (4d2 + 2d+ 7)2. (3.3)

Next, by the conductor-discriminant formula, see for example [2], we deduce
using Lemma 2.1(a) and (3.3) that

4d2 + 2d+ 7)4 | d(Kd),

say
d(Kd) = t(4d2 + 2d+ 7)4 (3.4)

for some t ∈ N. Hence,

26(4d2 + 2d+ 7)4 = disc(fd) = l2d(Kd) = l2t(4d2 + 2d+ 7)4 (3.5)

for some l ∈ N. From (3.5) we see that t = u2 for some u ∈ N and lu = 23.
Thus, u = 1, 2, 22 or 23 and

d(Kd) = 2α(4d2 + 2d+ 7)4, α ∈ {0, 2, 4, 6}.

We wish to show that α = 6. To do this it suffices to prove that none of
the 32 elements

{

a0 + a1θd + a2θ
2

d + a3θ
3

d + a4θ
4

d + θ5d
2

∣

∣

∣
a0, a1, a2, a3, a4 ∈ {0, 1}

}
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is an algebraic integer. We just illustrate this with the element

θd + θ3d + θ4d + θ5d
2

as the remaining 31 elements can be treated in a similar manner.
Let γ = θd + θ3d + θ4d + θ5d. We show first that γ does not belong

to a proper subfield of Kd. Suppose on the contrary that γ ∈ F , where
F is a subfield of Kd with F 6= Kd. Then by Lemma 2.5, γ ∈ Cd. As
γ = θd(1 + θ2d + θ4d) + θ4d and θ2d, θ4d ∈ Cd, we deduce that θd ∈ Cd, a
contradiction. Hence, the minimal polynomial of γ over Q is of degree 6.
Using MAPLE we find that the minimal polynomial of γ over Q is

x6 + a1x
5 + a2x

4 + a3x
3 + a4x

2 + a5x+ a6,

where

a1 = −(8d2 + 8d+ 12),

a2 = 32d5 + 64d4 + 152d3 + 168d2 + 140d+ 74,

a3 = −(64d5 + 64d4 + 240d3 + 144d2 + 212d+ 76),

a4 = 64d5 + 208d3 − 116d2 + 148d− 208,

a5 = 32d4 + 32d3 + 144d2 + 72d+ 144,

a6 = −(32d4 + 40d3 + 128d2 + 72d+ 104).

Clearly,

a6

23
= −(4d4 + 5d3 + 16d2 + 9d+ 13) ≡ d3 + d+ 1 ≡ 1 (mod 2).

Hence, 26 - a6 so that γ/2 is not an integer of Kd. We treat the remaining
31 elements in a similar manner obtaining the same conclusion each time.

Thus, we have proved that α = 6 and d(Kd) = 26(4d2 + 2d + 7)4 =
disc(fd). Hence,

{

1, θd, θ
2

d, θ
3

d, θ
4

d, θ
5

d

}

is an integral basis for Kd.
As

4d2 + 2d+ 7 = 4d2

1
+ 2d1 + 7 (d, d1 ∈ Z) =⇒ d = d1,
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we deduce that the fields Kd are distinct.

4. Other Power Bases. If 4d2 +2d+7 is squarefree, we have shown
that {1, θd, θ

2

d, θ
3

d, θ
4

d, θ
5

d} is a power basis for the ring OKd
of integers of Kd.

As N(θd) = −1,

{

1,
1

θd

,
1

θ2d
,

1

θ3d
,

1

θ4d
,

1

θ5d

}

is also a power basis for OKd
, that is {1, φd, φ

2

d, φ
3

d, φ
4

d, φ
5

d} is a power basis
for OKd

with

φd =
1

θd

= (2d− 1)θd + (2d+ 2)θ3

d + θ5d.

With d = 0 we carried out a computer search using an index form corre-
sponding to

{

1, θd, θ
2

d, θ
3

d, θ
4

d, θ
5

d

}

, and found five more power bases, namely

the bases
{

1, ψi, ψ
2

i , ψ
3

i , ψ
4

i , ψ
5

i

}

(i = 1, 2, 3, 4, 5) with

ψ1 = 2θ3d + θ5d,

ψ2 = −2θd + 2θ3d + θ5d,

ψ3 = −2θd + θ3d + θ5d,

ψ4 = 2θd + 3θ3d + θ5d,

ψ5 = 2θd + 3θ2d + 3θ3d + θ4d + θ5d.

None of these power bases is an integer translate or a Galois conjugate of
θd. This can easily be checked by finding the minimal polynomials of the
above elements and observing that they are distinct, even under integer
translation. We do not know if there are any other power bases for this
sextic field.
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