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1. Introduction

Let L be an algebraic number field of degree n. Let OL denote the ring of integers of L.
The element α∈OL is called a generator of L if L=Q(α). The index of α is the positive
integer indα given by

D(α)= (indα)2d(L), (1.1)

where d(L) is the discriminant of L and D(α) is the discriminant of the minimial polyno-
mial of α. The index of L is

i(L)= gcd
{

indα | α is a generator of L
}
. (1.2)

A positive integer > 1 dividing i(L) is called a common index divisor of L. If OL possesses
an element β such that {1,β,β2, . . . ,βn−1} is an integral basis for L, then L is said to be
monogenic. If L is monogenic, then i(L) = 1. Thus a field possessing a common index
divisor is nonmonogenic.

Let f (x) be an irreducible polynomial in Z[x] of odd prime degree q and suppose
that Gal( f (x)) � Dq (the dihedral group of order 2q). We note that Dq = 〈σ ,τ〉 with
σq = τ2 = (στ)2 = 1. Let M be the splitting field of f (x). Let θ be a root of f (x) and set
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L =Q(θ) so that the degree of L over Q is equal to q. We denote the unique quadratic
subfield of M by K .

We prove in Section 2 the following theorem which gives a criterion for a prime p to
be a common index divisor of L.

Theorem 1.1. Let f (x) ∈ Z[x] be irreducible, deg( f (x)) = q (an odd prime), and
Gal( f (x)) � Dq. Let M be the splitting field of f (x). Let θ ∈ C be a root of f (x). Set
L =Q(θ) so that [L :Q] = q. Let K be the unique quadratic subfield of M. If p is a prime
satisfying

p <
1
2

(q+ 1), p | d(K), (1.3)

then

p = R1R
2
2 ···R2

(q+1)/2 (1.4)

for distinct prime ideals R1,R2, . . . ,R(q+1)/2 of OL, and p is a common index divisor of L.

As an application of Theorem 1.1, we determine in Section 3 the index of a field de-
fined by a dihedral quintic trinomial of the form x5 + ax+ b, a,b ∈ Z.

In Section 4, we determine the index of an infinite family of fields defined by dihedral
polynomials of degree 7.

Finally in Section 5, we consider a dihedral field of degree 11 and use Theorem 1.1 to
show that it is nonmonogenic.

We note that a method for calculating a generator of K , and hence d(K), directly from
f (x) is given in [1].

2. Proof of Theorem 1.1

As p | d(K), we have p = ℘2 for some prime ideal ℘ of OK . Suppose that ℘ is inert in
M/K . Then p = ℘2 in M/Q. This contradicts [2, Theorem 10.1.26, part (6)]. Hence ℘ is
not inert in M/K . Suppose ℘ totally ramifies in M/K . Then ℘=Qq for some prime ideal
Q of M. Thus p = ℘2 =Q2q in M. Hence, by [2, Theorem 10.1.26, part (9)], we have p | q.
But p and q are primes so p = q. This contradicts the assumption p < (1/2)(q+ 1). Hence
℘ does not totally ramify in M. Then, as M is normal over K of prime degree q, we have

℘=Q1Q2 ···Qq (2.1)

for distinct prime ideals Q1,Q2, . . . ,Qq of M. Thus

p = ℘2 =Q2
1Q

2
2 ···Q2

q. (2.2)

Hence, by [2, Theorem 10.1.26, part (6)], we have

p = R1R
2
2 ···R2

(q+1)/2 (2.3)

for distinct prime ideals R1,R2, . . . ,R(q+1)/2 of L, which is (1.4). We note that the decom-
position of p in L can be checked directly by studying the Gal(M/L) action on the coset
space Dq/D, where D is a decomposition subgroup at p.
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Let g(x) be any defining polynomial for L, so that deg(g(x))= q. Let φ be a root of g(x)
such that Q(φ)= L. Suppose p � ind(φ). The inertial degree f = 1 in the extension M/Q
(using the tower M/K/Q), hence in L/Q, so that all the irreducible factors of g(x) modulo
p are linear. Thus g(x) has at most p irreducible factors modulo p. Hence, by Dedekind’s
theorem, p factors into at most p prime ideals in L. Thus by (1.4) we have (1/2)(q+ 1)≤
p. This contradicts p < (1/2)(q+ 1). Hence p | ind(φ) for all defining polynomials g. Thus
p is a common index divisor of L.

3. Dihedral quintic trinomials

Let f (x)= x5 + ax+ b ∈ Z[x] have Galois group D5. Then there exist coprime integers m
and n and i, j ∈ {0,1} such that

a= 22−4i51−4 jd2
(
m2−mn−n2)E2F,

b = 24−5i5−5 jd1(2m−n)(m+ 2n)E3F,
(3.1)

where d2
1 is the largest square dividing m2 +n2, d5

2 is the largest fifth power dividing m2 +
mn−n2, and

E = m2 +n2

d2
1

, F = m2 +mn−n2

d5
2

. (3.2)

This result is due to Roland et al. [3, page 138], see also [4, page 139]. The discriminant
of x5 + ax+ b is

D( f )= 216−20i56−20 j(2m6 + 4m5n+ 5m4n2− 5m2n4 + 4mn5− 2n6)2
E10F4, (3.3)

see [3, equation (3), page 139]. As gcd(m,n)= 1, we have 3 � m2 +n2 and 3 � m2 +mn−n2

so 3 � E and 3 � F. If 3 | n, then 3 � m, and so 3 � 2m6 + 4m5n+ 5m4n2 − 5m2n4 + 4mn5 −
2n6. If 3 � n, then as the polynomial 2x6 + 4x5 + 5x4− 5x2 + 4x− 2 is irreducible (mod3),
we deduce that 3 � 2m6 + 4m5n+ 5m4n2− 5m2n4 + 4mn5− 2n6. Hence 3 � D( f ). Thus 3 �

ind(θ), where L=Q(θ), f (θ)= 0. Hence 3 � i(L). By Engstrom [5, page 234] as [L :Q]=
5, the only primes that can divide i(L) are 2 and 3. We use our theorem to show that
2 | i(L). From Spearman and Williams [4, pages 149, 150], the discriminant d(K) of the
unique quadratic subfield of the splitting field of f (x) satisfies

22‖d(K) if m≡ n+ 1 (mod2),

23‖d(K) if m≡ n≡ 1 (mod2).
(3.4)

Thus 2 | d(K). Hence, by Theorem 1.1, 2 is a common index divisor of L. From Engstrom
[5, Table, page 234], as 2= R1R

2
2R

2
3 by Theorem 1.1, we deduce, i(L)= 2. As i(L) 	= 1, this

gives an infinite family of nonmonogenic dihedral quintic fields. In [6], an infinite family
of monogenic dihedral quintic fields was exhibited.
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4. A class of dihedral polynomials of degree 7

We recall a family of polynomials of degree 7 due to Smith [7, page 790]. This family is
ft(x) (t ∈ Z), where ft(x) is given by

ft(x)= x7− (7t3 + 35t2 + 21t+ 1
)[

21x5 + (98t+ 70)x4

− (1029t3 + 4557t2 + 343t− 105
)
x3

− 28(7t+ 1)
(
49t3 + 147t2 + 63t− 3

)
x2

+ 7
(
7t2 + 42t− 1

)(
7t2 + 14t− 5

)
(7t+ 1)2x

+ 235298t7 + 1236858t6 + 1138074t5

+ 562226t4 + 11270t3− 4914t2− 322t+ 6
]
.

(4.1)

Smith showed that the Galois group of ft(x) over Q(t) is D7. We are interested in de-
termining integers t for which the Galois group of ft(x) (considered as a polynomial in
Z[x]) overQ is D7. MAPLE gives the discriminant of ft(x) as

D
(
ft
)= 246712t15(7t2− 14t− 9

)6(
7t3 + 35t2 + 21t+ 1

)6

× (63t2 + 266t− 25
)2(

49t4− 196t3− 1694t2− 140t− 3
)2
.

(4.2)

Lemma 4.1. (i) If t ≡ 1 (mod3), then 3 � D( ft).
(ii) If t ≡ 1,2 or 4 (mod5), then 5 � D( ft).

The proof follows from (4.2).

Lemma 4.2. If t ∈ Z is such that

2 | t, 7t3 + 35t2 + 21t+ 1 is square-free > 1, (4.3)

then ft(x) is irreducible overQ.

Proof. Set a(t) = 7t3 + 35t2 + 21t + 1 and b(t) = −235298t7 − 1236858t6 − 1138074t5 −
562226t4− 11270t3 + 4914t2 + 322t− 6. Then, from (4.1), we see that

ft(x)≡ x7 (
moda(t)

)
, (4.4)

ft(0)= a(t)b(t). (4.5)

The resultant of a(t) and b(t) as polynomials in t is (by MAPLE) 24577. Clearly 7 � a(t)
and (as 2 | t) 2 � a(t). Thus gcdZ(a(t),b(t))= 1. Let q be any prime dividing a(t) (so q 	=
2,7). Then q‖a(t) and q � b(t). Thus, by (4.1) and (4.4), q divides the coefficients of xi

(i= 0,1,2,3,4,5,6) in ft(x) and by (4.5) q‖ ft(0). Hence, by Eisenstein’s criterion, ft(x) is
irreducible overQ. �



Blair K. Spearman et al. 5

Let θ denote one of the roots of ft(x). Let α1 = θ,α2, . . . ,α7 be all the roots of ft(x). Set
L=Q(θ). Under condition (4.3), we have [L :Q]= 7.

Lemma 4.3. For t ∈ Z, set

Pft (x)=
∏

1≤i< j≤7

(
x− (αi +αj

))
. (4.6)

Then Pft (x)∈ Z[x] and

Pft (x)= Ft(x)Gt(x)Ht(x), (4.7)

where Ft(x), Gt(x), and Ht(x) are distinct polynomials of degree 7 in Z[x], which satisfy

Ft(x)≡Gt(x)≡Ht(x)≡ x7(moda(t)
)
,

Ft(0)=−32a(t)c(t),

Gt(0)=−32a(t)d(t),

Ht(0)= 32a(t)e(t),

(4.8)

where

c(t)= 27783t6 + 43218t5− 300615t4 + 131516t3 + 17241t2− 14t− 25,

d(t)= 8575t6− 52822t5 + 34153t4 + 27244t3 + 2737t2− 406t− 25,

e(t)= 1029t6− 4802t5− 9457t4− 5292t3− 973t2 + 14t+ 25.

(4.9)

Proof. The assertion Pft (x)∈ Z[x] follows from [8, Lemma 11.1.3, page 359] and the fact
that α1,α2, . . . ,α7 are algebraic integers. The remaining assertions of the lemma can be
verified using MAPLE. �

Lemma 4.4. If t ∈ Z is such that

2 | t, 7t3 + 35t2 + 21t+ 1 is square-free > 1 (4.10)

then the polynomials Ft(x), Gt(x), and Ht(x) are irreducible overQ.

Proof. The resultants of a(t) and c(t) (resp., a(t) and d(t), a(t) and e(t)) regarded as
polynomials in t are by MAPLE −23076 (resp., −23076, 23076). Exactly as in the proof of
Lemma 4.2, making use of Lemma 4.3, we find by Eisenstein’s criterion that the polyno-
mials Ft(x), Gt(x), and Ht(x) are irreducible overQ. �
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Lemma 4.5. If t ∈ Z is such that

2 | t, 7t3 + 35t2 + 21t+ 1 is square-free > 1,

t is not a perfect square,
(4.11)

then

Gal
(
ft(x)

)�D7. (4.12)

Proof. Jensen and Yui [8, Theorem II.1.2, page 359] have shown that a monic polynomial
f (x)∈Q[x] of degree p, where p is a prime ≡ 3 (mod4), has Gal( f )�Dp if and only if

(i) f (x) is irreducible overQ,
(ii) D( f ) is not a perfect square,

(iii) Pf (x) factors as a product of (p− 1)/2 distinct irreducible polynomials of degree
p overQ.

By Lemma 4.2, ft(x) is irreducible overQ. As t is not a perfect square, we see by (4.2) that
D( ft) is not a perfect square. Finally, by Lemmas 4.3 and 4.4, Pft (x) factors as a product of
3 distinct irreducible polynomials of degree 7 overQ. Hence, by the Jensen-Yui criterion,
Gal( ft(x))�D7. �

Theorem 4.6. (i) There exist infinitely many integers t satisfying

2‖t, t ≡ 1 (mod3), t ≡ 1,2 or 4 (mod5),

7t3 + 35t2 + 21t+ 1 is square-free > 1,
(4.13)

and for these values of t,

i(L)= 24. (4.14)

(ii) There exist infinitely many integers t satisfying

2‖t, 3‖t, t ≡ 1,2 or 4 (mod5),

7t3 + 35t2 + 21t+ 1 is square-free > 1.
(4.15)

and for these values of t,

i(L)= 243. (4.16)

Proof. The infinitude of integers of the required forms follows from a result of Erdös [9].
Under conditions (4.13) and (4.15), L is a dihedral field of degree 7, by Lemma 4.5.

With the notation of Theorem 1.1, we see from (4.2) that K =Q(
√
t). Clearly 2 | d(K). By

Theorem 1.1, 2 is a common index divisor of L. Also from Theorem 1.1, we see that 2=
R1R

2
2R

2
3R

2
4 for distinct prime ideals R1, R2, R3, R4 of L. Hence, by Engstrom [5, Table, page

235], we see that 24‖i(L). For both (4.13) and (4.15) we have by Lemma 4.1(ii) 5 � D( ft)
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so 5 � i(L). For (4.13) by Lemma 4.1(i) we have 3 � D( ft), so 3 � i(L). As [L :Q]= 7, by [5,
page 224], the only possible prime divisors of i(L) are 2, 3, and 5. Hence i(L)= 24 in case
(i). For case (ii), by Theorem 1.1, 3 is a common index divisor of L. Also, by Theorem 1.1,
we see that 3= R1R

2
2R

2
3R

2
4 for distinct prime ideals R1, R2, R3, R4 of L. Hence, by Engstrom

[5, Table, page 235], we see that 3‖i(L). Finally, as the only possible prime divisors of i(L)
are 2, 3, and 5, we deduce that i(L)= 243 in case (ii). �

5. A dihedral field of degree 11

Let

f (x)= x11− 2x10− 51x9− x8 + 536x7

+ 3x6− 1999x5 + 281x4 + 2571x3

− 485x2− 680x+ 69.

(5.1)

By MAPLE, f (x) is irreducible over Q. Let θ be a root of f (x) and set L=Q(θ), so that
[L :Q] = 11. Let M be the splitting field of f (x). It is known that M is the Hilbert class
field of K =Q(

√
10401) [10] so that L is a dihedral extension of Q. By Theorem 1.1, 3 is

a common index divisor of L, hence L is not monogenic.
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