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ON A DOUBLE SERIES OF CHAN AND ONG 

KENNETH S. WILLIAMS 

Abstract. An arithmetic identity is used to prove a relation satisfied by the 
double series Cz,n=-oo qm2+mn+2n2. As an application an explicit formula 
is given for the number of representatioils of the positive integer n by the 
form 21 + 2 1 2 2  + 22; + xz + 23x4 + 22: + xg + x5x6 + 22: + 2; + x7x8 + 22:. 

2000 Mathematics Subject Classification: 1 lF27, 1 lE25. 
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1. Introduction. Let N, No, Z,  R,  C denote the sets of positive integers, 
nonnegative integers, integers, real numbers, complex numbers, respectively. 
For m E Z and n E N we define 

where d runs through the positive integers dividing n. We also set a ( n )  = 

a ~ ( n )  = x d and d(n)  = oo(n) = 1. If n @ N, we set am(n)  = 0. The 
din dln 

Bernoulli numbers Bo = 1, B1 = -;, B2 = i, B3 = 0, B4 = -1 30 , .  . . are 
defined by 

The Eisenstein series Ek(q) (k  E N) is defined by 

We set 
03 

L(q) := El(g)  = 1 - 2 4 x  o(n)qn. (1.4) 
n= 1 

In this paper we use a recent elementary arithmetic identity due to Huard, 
Ou, Spearman and Williams [3] to prove in Section 5 the following result, after 
some preliminary results are proved in Sections 2, 3 and 4. 

Theorem 1.1. Let n E N. Set n - i"N, where a E No, N E N and 
gcd(N, 7) = 1.  Then the number of (x, y, z ,  t)  E Z4 such that 
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In 1999 H. H. Chan and Y. L. Ong [2] introduced the two-dimensional theta 
series 

They proved a result equivalent to the following identity [2, Remark 3, p. 17421. 

7 1 
Theorem 1.2. S2(4) = G ~ ( q i )  - ~ ( 4 ) .  6 
This identity is also equivalent to the one stated by Ramanujan as  entry 5 

of his second notebook [10] and first proved by Berndt [ l ,  p. 467, entry 5(i)]. 
Both Berndt and Chan and Ong used modular equations of degree 7 in their 
proofs of Theorem 1.2. We show in Section 6 that  Theorem 1.2 is a simple 
consequence of Theorem 1.1 and thus can be viewed as an elementary identity. 

Klein and Fricke in their book [6, p. 4001 gave an analytic proof of the fol- 
lowing theorem. 

Theorem 1.3. Let n E N. Then the nusnber of (x, y, z, t )  E Z4 such that 

We show in Section 7 that Theorem 1.3 is also a n  elementary consequence of 
Theorem 1.1, thus providing an  elementary proof of Theorem 1.3. The elernen- 
tary proof of Theorem 1.3 given by Humbert 141 is restricted to odd n .  

Next, making use of a result, which was proved recently by Lemire and 
Williams [8, Lemma 4.6, p. 1131 in order to evaluate the convolution sum 

in conjunction with Theorem 1.2, we prove in Section 8 the following result. 

Theorem 1.4. Le tn  E N. Then the number of ( x ~ , x ~ , x ~ , x ~ , x ~ , x 6 , x 7 , 2 ~ )  E 
Z8 such that 

is given by 
24 1176 16 
Tu3(n) + -us 5 (;) + -c7(n), 5 
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where the c7(n) (n  E N) are integers defined b y  

This result should be compared with that of Kachakhidze [5]. 
Finally, we make use of a classical identity of Jacobi, which is given for 

example in (7, Corollary 6, p. 371, to prove the following formula for c7(n,) 
(n E N) in Section 9. 

Theorem 1.5. For n E N we have  

Here 
1, if d = 1 , 2 , 4  (mod 7), 

(i) = { -1, if d - 3 ,5 ,6  (mod 7), 
0, if d = 0 (mod 7), 

is the LegendreJacobi-Kronecker symbol for discriminant -7. 

2. Some properties of Fk(n).  For k E N and n E Z we define 

Let a E Z. Denote the gcd of k and a by (k, a) .  Clearly 

For x E R we denote the greatest integer less than or equal to x by [XI. The 
following results are easily proved: 

X d ~ k ( d )  = k a  (f) ; 
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Adding (2.9) and (2.12) we obtain 

d ( n  1<1Ld 
I d  (mod 2) 

3. An identity of Huard, Ou, Spearman and Williams. Using nothing 
more than the rearrangement of terms in finite sums, Huard, Ou, Spearman 
and Williams [3] proved the following elementary arithmetic formula. 
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Theorem 3.1. Let F  : Z4 + C be such that 

F ( a ,  b, 2, Y )  - F ( x ,  Y ,  a ,  b) = F(-a ,  -4 x ,  Y )  - F ( x ,  Y ,  -a, -b) 

for all ( a ,  b, x ,  y )  E Z4.  Then, for n E N ,  we have 

Taking F ( a ,  b, x ,  y )  = f (b) in Theorem 3.1, where f : Z + C is an  even 
function, we obtain 

Corollary 3.1. Let f : Z + C be an even function. Then for n E N we have 

Corollary 3.1 was stated but not proved by Liouville in [9]. Replacing n by 2n 
in Theorem 3.1, and choosing F ( a ,  b , x ,  y )  = Fz(a)  f ( b )Fz (y ) ,  where f : Z4 -+ C 
is even, we obtain 

Corollary 3.2. Let f : Z + C be an even function. Then for n E N we have 
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din l l l s d  
l ~ d  (mod 2) 

Let k  E N. Taking f ( x )  = F k ( x )  ( x  E Z) in Corollary 3.1 and appealing to 
(2.3),  (2.4),  (2.5) and (2 .6) ,  we obtain 

Theorem 3.2. Let k ,  n E N. Then 

C - b) - h ( a  + b) 
(a,b1x,y)€N4 

ax+by=n 

= o(n) - ( k -  2 )  ( )  - d ( n )  + d (i) - 2~ [i] . 
din 

Finally, taking f ( x )  = F k ( x )  ( x  E Z) in Corollary 3.2, and appealing to (2 .2) ,  
(2 .3) ,  (2 .4) ,  (2.5),  (2.6) and (2.13), we obtain 

Theorem 3.3. Let k ,  n E N .  Then if k is odd we have 

and if k  is even 

4. Evaluation of some finite sums. Our task in this section is to give the 

values of the sums 
d + k  2 d + k  

occurring in Theorems 3.2 and 3.3 in the special case where k  = 7. 
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For a E Z and m, n E N we define 

din 
d ~ a  (mod m )  

so that 

In particular we set 

and 

ei:=diYl4(n), i=0,1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10,11,12,13.  

Clearly, 

d i=e ;+e i t7 ,  i = 0 , 1 , 2 , 3 , 4 , 5 , 6 .  

Also, 

dsO (mod 7) 

and, similarly, 

Thus 

We need the following results, all of which are simple to prove. 
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We are now in a position to prove the three theorems that we will need in 
the proof of Theorem 1.1 in Section 5. 

Theorem 4.1. Let n E N. Then 

Proof. This result follows by taking k = 7 in Theorem 3.2 and appealing to 
(4.5), (4.9), (4.11) and (4.13). 

Theorem 4.2. Let n E N. Then 

Proof. This result follows by taking k = 7 in Theorem 3.3 and appealing to 
(4.5)) (4.9)) (4.10), (4.11)) (4.14), (4.15), (4.16) and (4.17). 

Theorem 4.3. For all a , b  E N 

+ F7(2a - b) - F7(2a + b)). ( 
Proof. If a a 0 (mod 7) or b = 0 (mod 7) both the left-hand side and right-hand 
side of the asserted formula are zero. Thus we may suppose that a $ 0 (mod 7) 
and b f 0 (mod 7). Define c $ 0  (mod 7) by a r bc (mod 7). Then the assertion 
of the theorem becomes 
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This is easily checked for the six cases c = 1 , 2 , 3 , 4 , 5 , 6  (mod 7). 

5. Proof of Theorem 1.1. For m E No we let 

Clearly, 

For n E N i t  is a classical result that 

r (n)  = 2~ (G). 
din 

Thus 

The number of (x, y ,  r, t )  E Z4 such that  

is (appealing to (5.2)) (5.3), Theorem 4.3, Theorem 4.1, Theorem 4.2 and (5.4)) 
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This completes the proof of Theorem 1.1. 

6. Proof of Theorem 1.2. We have by (1 .5) ,  Theorem 1.1 and (1.4) 

7. Proof of Theorem 1.3. Let n E N. Set 

A(n) := { ( I ,  y , ~ ,  t )  E Z4 1 4n  = x2 + y2 + 7z2  + 7 t2 ,  x - z (mod 2 ) )  (7.1) 

and 

B(n) := { ( x ,  y ,  z ,  t )  E Z4 1 n = x2  + x y  + 2y2 + z2 + z t  + 2t2}.  (7 .2)  

Let ( x , y , ~ , t )  E A@). Then 4 n  = x2  + y2 + 7z2  + 7t2  and x = z(mod 2 )  SO 
2 - 2  

2 
E Z and 

so --- - E Z .  Further 
2 

x - z  
Y - t , t  E B ( n ) .  Thus we can define A :  A(n) -+ B(n)  by ( I . " ' -  2 ) 
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Clearly, X is injective. Let ( X I ,  y l ,  z l ,  t l )  E B ( n ) .  Set x = 2x1 + yl E Z, 
y = 221 + tl E Z, z  = yl E Z, t = tl E Z .  Clearly, x - yl = z  (mod 2) .  Also 

2 2 x  + y + 7 t 2  + 7t2 = (2x1 + y 1 ) 2  + ( 2 t 1  + t1)2 + 7Y: + 7t ;  

= 4 ( x f  + x ly l  + z y f  + 2: + t l t l  + 2t:) -- 472. 

Hence ( x ,  y ,  z ,  t )  E A ( n ) .  Moreover 

so X is surjective. Thus X is a bijection and we have by Theorem 1.1 

card A(n) = card B(n) = 4 0 ( n )  - 280 (;) = 4 C d  

as asserted. 

8. Proof of Theorem 1.4. Let n E W. Let N ( n )  denote the number of 
( x l , x 2 , x 3 ,  xp, 1 5 . 2 6 ,  x7 ,  x 8 )  E Z8 such that 

2 
= x ,  + x1x2 f 22: f 2: f 23x4 f 21: + X: f x g x ~  f 22: f X ;  f 27x8 + 22:. 

Then by Theorem 1.2 we have 

Appealing to [8, Lemma 4.6, p. 1131 we obtain 

Equating coefficients of qn (n  E W ) ,  we obtain the asserted result. 

9. Proof of Theorem 1.5. As in 18, equation (4 .1))  p. 1121 we define 

where 
00 

From the proof of Theorem 1.4 and 18, Lemma 4.2, p. 1121 we have 

so that  S ( q )  = w ( q ) H ( q ) ,  where ~ ( q ) ~  = 1. From (1.5) and (9.1) we find for 
I ql < 1 that  S ( q )  = 1 + 2q + 4q2 + o ( ~ ~ )  and H = 1 + 2q + 4q2 + 0(g3) so that  
w ( q )  = 1 and 
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This also follows from 12, Lemma 2.2, p. 17371 (with a typo corrected). Next, 
by 18, Lemma 4.4, p. 1121 (with a typo corrected ) and (9.3) we have 

n=l 

Now, by (1.5)) (5.1)) (5.2) and (5.3)) we have 

Hence, from (9.2)) (9.4) and (9.5)) we deduce 

By Jacobi's identity 17, Corollary 6, p. 371 

equation (9.6) becomes 

Equating coefficients of qn-' (n E N) we obtain the asserted formula for 
c7 (72). 
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