TAIWANESE JOURNAL OF MATHEMATICS

Vol. 10, No. 6, pp. 1633-1660, December 2006

This paper is available online at http://www.math.nthu.edu.tw/tjm/

EVALUATION OF COMPLETE ELLIPTIC INTEGRALS OF THE FIRST KIND AT SINGULAR MODULI

Habib Muzaffar and Kenneth S. Williams

Abstract. The complete elliptic integral of the first kind K(k) is defined for 0 < k < 1 by

$$K(k) := \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1 - k^2 \sin^2 \theta}}.$$

The real number k is called the modulus of the elliptic integral. The complementary modulus is $k' = (1 - k^2)^{\frac{1}{2}}$ (0 < k' < 1). Let λ be a positive integer. The equation

$$K(k') = \sqrt{\lambda}K(k)$$

defines a unique real number $k(\lambda)$ ($0 < k(\lambda) < 1$) called the singular modulus of K(k). Let H(D) denote the form class group of discriminant D. Let d be the discriminant -4λ . Using some recent results of the authors on values of the Dedekind eta function at quadratic irrationalities, a formula is given for the singular modulus $k(\lambda)$ in terms of quantities depending upon H(4d) if $\lambda \equiv 0 \pmod{2}$; H(d) and H(4d) if $\lambda \equiv 1 \pmod{4}$; H(d/4) and H(4d) if $\lambda \equiv 3 \pmod{4}$. Similarly a formula is given for the complete elliptic integral $K[\sqrt{\lambda}] := K(k(\lambda))$ in terms of quantities depending upon H(d) and H(4d) if $\lambda \equiv 0 \pmod{2}$; H(d) if $\lambda \equiv 1 \pmod{4}$; H(d/4) and H(d) if $\lambda \equiv 3 \pmod{4}$. As an example the complete elliptic integral $K[\sqrt{17}]$ is determined explicitly in terms of gamma values.

1. Introduction

Let $k \in \mathbb{R}$ be such that

$$(1.1) 0 < k < 1.$$

Received July 19, 2004, accepted September 16, 2005.

Communicated by Wen-Ching, Winnie Li.

2000 Mathematics Subject Classification: Primary 11F20. Secondary 11E16, 11E25.

Key words and phrases: Complete elliptic integral of the first kind; Singular modulus; Dedekind eta function; Weber's functions.

Research of the second author was supported by Natural Sciences and Engineering Research Council of Canada grant A-7233.

The complete elliptic integral K(k) of the first kind is defined by

(1.2)
$$K(k) := \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1 - k^2 \sin^2 \theta}} = \int_0^1 \frac{dt}{\sqrt{(1 - t^2)(1 - k^2 t^2)}}.$$

Clearly

$$\lim_{k \to 0^+} K(k) = \frac{\pi}{2}, \quad \lim_{k \to 1^-} K(k) = +\infty.$$

The quantity k is called the modulus of the elliptic integral K(k). The complementary modulus k' is defined by

$$(1.3) k' := \sqrt{1 - k^2}.$$

From (1.1) and (1.3) we see that

$$(1.4) 0 < k' < 1.$$

The complete elliptic integral K(k') of modulus k' is denoted by K'(k) so that

(1.5)
$$K'(k) = K(k') = K(\sqrt{1 - k^2})$$

and

(1.6)
$$\lim_{k \to 0^+} K'(k) = +\infty, \quad \lim_{k \to 1^-} K'(k) = \frac{\pi}{2}.$$

Let $\lambda \in \mathbb{N}$. As k increases from 0 to 1, the function K'(k)/K(k) decreases from $+\infty$ to 0. Hence there is a unique modulus $k=k(\lambda)$ with 0< k<1 such that

(1.7)
$$\frac{K'(k)}{K(k)} = \sqrt{\lambda}.$$

The real number $k(\lambda)$ is called the singular modulus corresponding to λ . The value of the complete elliptic integral K(k) of the first kind at the singular modulus $k=k(\lambda)$ is denoted by

(1.8)
$$K[\sqrt{\lambda}] := K(k(\lambda)).$$

The first five singular moduli are

$$k(1) = \frac{1}{\sqrt{2}},$$

 $k(2) = \sqrt{2} - 1,$
 $k(3) = \frac{\sqrt{3} - 1}{\sqrt{8}},$

$$k(4) = 3 - 2\sqrt{2},$$

 $k(5) = \frac{\sqrt{\sqrt{5} - 1} - \sqrt{3 - \sqrt{5}}}{2},$

see for example [1, p. 139]. The values of $K[\sqrt{\lambda}]$ for $\lambda = 1, 2, ..., 16$ are given in [1, Table 9.1, p. 298]. Other values can be found scattered in the literature. For example in [2, p. 277] the values

(1.9)
$$k(22) = -99 - 70\sqrt{2} + 30\sqrt{11} + 21\sqrt{22}$$

and

$$(1.10) K[\sqrt{22}] = 2^{-5/2} 11^{-1/2} (7 + 5\sqrt{2} + 3\sqrt{22})^{1/2} \pi^{1/2} \left\{ \prod_{m=1}^{88} \Gamma\left(\frac{m}{88}\right)^{\left(\frac{-88}{m}\right)} \right\}^{1/4}$$

are given, where $\Gamma(x)$ is the gamma function and $\left(\frac{d}{n}\right)$ is the Kronecker symbol. The values of k(25) and $K[\sqrt{25}]$ are given in [5, p. 259].

Let H(D) denote the form class group of discriminant D. Let d be the discriminant -4λ . Using some recent results of the authors on values of the Dedekind eta function at quadratic irrationalities, a formula is given for the singular modulus $k(\lambda)$ in terms of quantities depending upon H(4d) if $\lambda \equiv 0 \pmod 2$; H(d) and H(4d) if $\lambda \equiv 1 \pmod 4$; H(d/4) and H(4d) if $\lambda \equiv 3 \pmod 4$, see Theorem 1 in Section 4. Similarly a formula is given for the complete elliptic integral $K[\sqrt{\lambda}] := K(k(\lambda))$ in terms of quantities depending upon H(d) and H(4d) if $\lambda \equiv 0 \pmod 2$; H(d) if $\lambda \equiv 1 \pmod 4$; H(d/4) and H(d) if $\lambda \equiv 3 \pmod 4$, see Theorem 1 in Section 4. Zucker [5, p. 258] has determined but not published the values of $K[\sqrt{\lambda}]$ for $\lambda = 17$, 18, 19 and 20, so as an example we determine explicitly the complete elliptic integral $K[\sqrt{17}]$ in terms of gamma values, see Theorem 2 in Section 5. Our method is different from that of Zucker.

2. Preliminary Results

Let $\lambda \in \mathbb{N}$ and set

$$(2.1) q = e^{-\pi\sqrt{\lambda}}$$

so that 0 < q < 1. We define

(2.2)
$$Q_0 := \prod_{n=1}^{\infty} (1 - q^{2n}),$$

(2.3)
$$Q_1 := \prod_{n=1}^{\infty} (1 + q^{2n}),$$

(2.4)
$$Q_2 := \prod_{n=1}^{\infty} (1 + q^{2n-1}),$$

(2.5)
$$Q_3 := \prod_{n=1}^{\infty} (1 - q^{2n-1}).$$

Since

$$Q_1Q_2 = \prod_{n=1}^{\infty} (1+q^n), \quad Q_0Q_3 = \prod_{n=1}^{\infty} (1-q^n),$$

we have

$$Q_0Q_1Q_2Q_3 = \prod_{n=1}^{\infty} (1 - q^{2n}) = Q_0,$$

so that

$$(2.6) Q_1 Q_2 Q_3 = 1.$$

Jacobi [3] [4, p. 147] has shown that

$$(2.7) 16qQ_1^8 + Q_3^8 = Q_2^8.$$

He has also shown that the singular modulus $k = k(\lambda)$, the complementary singular modulus $k'(\lambda)$, and the complete elliptic integral $K[\sqrt{\lambda}] = K(k(\lambda))$ are given by

(2.8)
$$k(\lambda) = 4\sqrt{q} \left(\frac{Q_1}{Q_2}\right)^4,$$

(2.9)
$$k'(\lambda) = \left(\frac{Q_3}{Q_2}\right)^4,$$

and

$$(2.10) K[\sqrt{\lambda}] = \frac{\pi}{2} \left(\frac{Q_0 Q_2}{Q_1 Q_3}\right)^2,$$

see [3] [4, p. 146]. Next we recall that the Dedekind eta function $\eta(z)$ is defined by

(2.11)
$$\eta(z) := e^{\pi i z/12} \prod_{m=1}^{\infty} (1 - e^{2\pi i m z}), \quad z \in \mathbb{C}, \quad \text{Im}(z) > 0,$$

and that Weber's functions f(z), $f_1(z)$ and $f_2(z)$ are defined in terms of the Dedekind eta function by

(2.12)
$$f(z) = e^{-\pi i/24} \frac{\eta\left(\frac{1+z}{2}\right)}{\eta(z)},$$

$$(2.13) f_1(z) := \frac{\eta\left(\frac{z}{2}\right)}{\eta(z)},$$

(2.14)
$$f_2(z) := \sqrt{2} \, \frac{\eta(2z)}{\eta(z)},$$

see [9, p. 114]. It is convenient to set

$$f_0(z) := f(z)$$

so that $f_j(z)$ is defined for j = 0, 1, 2. From (2.1)-(2.5) and (2.11), we deduce that

(2.15)
$$\eta(\sqrt{-\lambda}) = q^{1/12}Q_0,$$

(2.16)
$$\eta(2\sqrt{-\lambda}) = q^{1/6}Q_0Q_1,$$

(2.17)
$$\eta(\sqrt{-\lambda}/2) = q^{1/24}Q_0Q_3,$$

(2.18)
$$\eta((1+\sqrt{-\lambda})/2) = e^{\pi i/24}q^{1/24}Q_0Q_2.$$

From (2.12)-(2.18) we obtain

(2.19)
$$Q_0 = q^{-1/12} \eta(\sqrt{-\lambda}),$$

(2.20)
$$Q_1 = 2^{-1/2} q^{-1/12} f_2(\sqrt{-\lambda}),$$

(2.21)
$$Q_2 = q^{1/24} f_0(\sqrt{-\lambda}),$$

$$(2.22) Q_3 = q^{1/24} f_1(\sqrt{-\lambda}).$$

Then, from (2.6), (2.7), (2.20), (2.21) and (2.22), we obtain

$$(2.23) f_0(\sqrt{-\lambda})f_1(\sqrt{-\lambda})f_2(\sqrt{-\lambda}) = \sqrt{2}$$

and

(2.24)
$$f_0(\sqrt{-\lambda})^8 = f_1(\sqrt{-\lambda})^8 + f_2(\sqrt{-\lambda})^8,$$

see [9, p, 114]. Then, from (2.8), (2.10) and (2.19)-(2.23), we obtain $k(\lambda)$ and $K[\sqrt{\lambda}]$ in terms of λ , namely,

(2.25)
$$k(\lambda) = \left(\frac{f_2(\sqrt{-\lambda})}{f_0(\sqrt{-\lambda})}\right)^4$$

and

(2.26)
$$K[\sqrt{\lambda}] = \frac{\pi}{2} \eta(\sqrt{-\lambda})^2 f_0(\sqrt{-\lambda})^4.$$

Recent results of Muzaffar and Williams [6] give the values of $\eta(\sqrt{-\lambda})$, $f_0(\sqrt{-\lambda})$, $f_1(\sqrt{-\lambda})$ and $f_2(\sqrt{-\lambda})$ for all $\lambda \in \mathbb{N}$, see Section 3. Using these values in (2.25) and (2.26), we obtain the singular modulus $k(\lambda)$ and the complete elliptic integral of the first kind $K[\sqrt{\lambda}]$ in Section 4.

3. EVALUATION OF
$$\eta(\sqrt{-\lambda})$$
, $f_0(\sqrt{-\lambda})$, $f_1(\sqrt{-\lambda})$ and $f_2(\sqrt{-\lambda})$

Let d be an integer satisfying

(3.1)
$$d < 0, d \equiv 0 \text{ or } 1 \pmod{4}.$$

Let f be the largest positive integer such that

(3.2)
$$f^2 \mid d, d/f^2 \equiv 0 \text{ or } 1 \pmod{4}.$$

We set $\Delta = d/f^2 \in \mathbb{Z}$ so that

(3.3)
$$d = \Delta f^2, \quad \Delta \equiv 0, 1 \pmod{4}.$$

For a prime p, the nonnegative integer $v_p(f)$ is defined by $p^{v_p(f)} \mid f$, $p^{v_p(f)+1} \nmid f$. We set

(3.4)
$$\alpha_p(\Delta, f) = \frac{\left(p^{v_p(f)} - 1\right)\left(1 - \left(\frac{\Delta}{p}\right)\right)}{p^{v_p(f) - 1}(p - 1)\left(p - \left(\frac{\Delta}{p}\right)\right)},$$

where $\left(\frac{\Delta}{p}\right)$ is the Legendre symbol modulo p. The quantity $\alpha_p(\Delta,f)$ is used in Proposition 1 below.

The positive-definite, primitive, integral, binary quadratic form $ax^2 + bxy + cy^2$ is denoted by (a, b, c). Its discriminant is the quantity $d = b^2 - 4ac$, which satisfies (3.1). The class of the form (a, b, c) is

$$(3.5) \quad [a,b,c] = \{(a(p,r), b(p,q,r,s), c(q,s)) \mid p,q,r,s \in \mathbb{Z}, ps-qr=1\},\$$

where

$$a(p,r) = ap^2 + bpr + cr^2, \ b(p,q,r,s) = 2apq + bps + bqr + 2crs, \ c(q,s) = aq^2 + bqs + cs^2.$$

The group of classes of positive-definite, primitive, integral, binary quadratic forms of discriminant d under Gaussian composition is denoted by H(d). H(d) is a finite abelian group. We denote its order by h(d). The identity I of the group H(d) is the principal class

(3.6)
$$I = \begin{cases} [1, 0, -d/4], & \text{if } d \equiv 0 \pmod{4}, \\ [1, 1, (1-d)/4], & \text{if } d \equiv 1 \pmod{4}. \end{cases}$$

The inverse of the class $K=[a,b,c]\in H(d)$ is the class $K^{-1}=[a,-b,c]\in H(d)$. If p is a prime with $\left(\frac{d}{p}\right)=1$, we let h_1 and h_2 be the solutions of $h^2\equiv d\ (\mathrm{mod}\ 4p),\ 0\leq h<2p$, with $h_1< h_2$. The class K_p of H(d) is defined by

$$K_p = \left[p, h_1, rac{h_1^2 - d}{4p}
ight].$$

Then

$$K_p^{-1} = \left[p, -h_1, \frac{h_1^2 - d}{4p}\right] = \left[p, h_2, \frac{h_2^2 - d}{4p}\right],$$

as $h_1 + h_2 = 2p$. If p is a prime with $\left(\frac{d}{p}\right) = 0$, $p \nmid f$, the class K_p of H(d) is defined by

$$K_p = \left\{ \begin{array}{ll} [p,0,-d/4p], & \text{if} \quad p>2, \ d\equiv 0 \ (\bmod \ 4), \\ [p,p,(p^2-d)/4p], & \text{if} \quad p>2, \ d\equiv 1 \ (\bmod \ 4), \\ [2,0,-d/8], & \text{if} \quad p=2, \ d\equiv 8 \ (\bmod \ 16), \\ [2,2,(4-d)/8], & \text{if} \quad p=2, \ d\equiv 12 \ (\bmod \ 16), \end{array} \right.$$

so that $K_p = K_p^{-1}$. We do not define K_p for any other primes p.

As H(d) is a finite abelian group, there exist positive integers $h_1, h_2, \ldots, h_{\nu}$ and generators $A_1, A_2, \ldots, A_{\nu} \in H(d)$ such that

$$h_1 h_2 \cdots h_{\nu} = h(d), \quad 1 < h_1 | h_2 | \dots | h_{\nu}, \quad \text{ord}(A_i) = h_i \ (i = 1, \dots, \nu),$$

and, for each $K \in H(d)$, there exist unique integers k_1, \ldots, k_{ν} with

$$K = A_1^{k_1} \cdots A_{\nu}^{k_{\nu}} \ (0 \le k_j < h_j, \ j = 1, \dots, \nu).$$

We fix once and for all the generators A_1, \ldots, A_{ν} of the group H(d). For $j = 1, \ldots, \nu$ we set

$$\operatorname{ind}_{A_j}(K) := k_j,$$

and for $K, L \in H(d)$, we define $\chi: H(d) \times H(d) \longrightarrow \Omega_{h_{\nu}}$ (group of h_{ν} th roots of unity) by

$$\chi(K,L) = e^{\displaystyle 2\pi i \sum_{j=1}^{\nu} \frac{\operatorname{ind}_{A_j}(K)\operatorname{ind}_{A_j}(L)}{h_j}}$$

The function χ has the properties

$$\chi(K,L)=\chi(L,K), \text{ for all } K,L\in H(d),$$

$$\chi(K,I)=1, \text{ for all } K\in H(d),$$

$$\chi(KL,M)=\chi(K,M)\chi(L,M), \text{ for all } K,L,M\in H(d),$$

$$\chi(K^r,L^s)=\chi(K,L)^{rs}, \text{ for all } K,L\in H(d) \text{ and all } r,s\in\mathbb{Z},$$

see [6, Lemma 6.2]. It is known that for $K(\neq I) \in H(d)$ the limit

(3.7)
$$j(K,d) = \lim_{s \to 1^+} \prod_{\substack{p \ (\frac{d}{p}) = 1}} \left(1 - \frac{\chi(K, K_p)}{p^s} \right) \left(1 - \frac{\chi(K^{-1}, K_p)}{p^s} \right)$$

exists and is a nonzero real number such that $j(K,d)=j(K^{-1},d)$, see [6, Lemma 7.6]. For $n \in \mathbb{N}$ and $L \in H(d)$ we define

$$H_L(n) := \operatorname{card}\{h \mid 0 \le h < 2n, \quad h^2 \equiv d \pmod{4n}, \quad \left[n, h, \frac{h^2 - d}{4n}\right] = L\}.$$

The properties of $H_L(n)$ are developed in [6, Section 5]. Then, for $n \in \mathbb{N}$ and $K \in H(d)$, we set

$$Y_K(n) := \sum_{L \in H(d)} \chi(K, L) H_L(n).$$

Properties of $Y_K(n)$ are given in [6, Section 7]. Further, for a prime p and a class $K(\neq I) \in H(d)$, we set

(3.8)
$$A(K, d, p) = \sum_{j=0}^{\infty} \frac{Y_K(p^j)}{p^j}.$$

Next, for $K(\neq I) \in H(d)$, we set

(3.9)
$$l(K,d) = \prod_{\substack{p \mid d \\ p \nmid f}} \left(1 + \frac{\chi(K, K_p)}{p} \right) \prod_{p \mid f} A(K, d, p),$$

where the products are over all primes p satisfying the stated conditions. Finally, for $K \in H(d)$, we define

(3.10)
$$E(K,d) = \frac{\pi\sqrt{|d|}w(d)}{48h(d)} \sum_{\substack{L \in H(d) \\ T = 1}} \chi(L,K)^{-1} \frac{t_1(d)}{j(L,d)} l(L,d),$$

see [6, Section 9], where

and

(3.11)
$$w(d) = 6, 4 \text{ or } 2 \text{ according as } d = -3, d = -4 \text{ or } d < -4,$$

(3.12)
$$t_1(d) := \prod_{p \atop \left(\frac{d}{p}\right) = 1} \left(1 - \frac{1}{p^2}\right).$$

The following evaluation of $\eta(\sqrt{-\lambda})$ follows immediately from [6, Theorem 1], as $\eta(\sqrt{-\lambda})$ is real and positive for $\lambda \in \mathbb{N}$.

Proposition 1. Let $\lambda \in \mathbb{N}$. Let $d = -4\lambda = \Delta f^2$, where Δ and f are defined in (3.2) and (3.3). Let $K = [1, 0, \lambda] \in H(d)$. Then

$$\eta(\sqrt{-\lambda}) = 2^{-3/4} \pi^{-1/4} \lambda^{-1/4} \prod_{p|f} p^{\alpha_p(\Delta,f)/4} \left(\prod_{m=1}^{|\Delta|} \Gamma\left(\frac{m}{|\Delta|}\right)^{\left(\frac{\Delta}{m}\right)} \right)^{\frac{w(\Delta)}{8h(\Delta)}} e^{-E(K,d)},$$

where $\alpha_p(\Delta, f)$ is defined in (3.4) and $\left(\frac{\Delta}{m}\right)$ is the Kronecker symbol.

The following result is Theorem 3 of [6].

Proposition 2. Let $\lambda \in \mathbb{N}$. Let $d = -4\lambda$. Let $K = [1, 0, \lambda] \in H(d)$. (a) $\lambda \equiv 0 \pmod{4}$. Set

$$M_0 = [4, 4, \lambda + 1] \in H(4d),$$

 $M_1 = \left[1, 0, \frac{\lambda}{4}\right] \in H\left(\frac{d}{4}\right),$
 $M_2 = [1, 0, 4\lambda] \in H(4d).$

Let $\lambda = 4^{\alpha}\mu$, where α is a positive integer and $\mu \equiv 1, 2$ or $3 \pmod{4}$.

(i) $\mu \equiv 1 \text{ or } 2 \pmod{4}$ (so that Δ is even and $v_2(f) = \alpha$). We have

$$f_0(\sqrt{-\lambda}) = 2^{\frac{1}{2\alpha+3}} e^{E(K,d) - E(M_0,4d)},$$

$$f_1(\sqrt{-\lambda}) = 2^{\frac{2^{\alpha+1}-1}{2^{\alpha+2}}} e^{E(K,d) - E(M_1,d/4)}$$

$$f_2(\sqrt{-\lambda}) = 2^{\frac{1}{2^{\alpha+3}}} e^{E(K,d) - E(M_2,4d)}.$$

(ii) $\mu \equiv 3 \pmod{4}$ (so that $\Delta \equiv -\mu \pmod{8}$ and $v_2(f) = \alpha + 1$). If $\mu \equiv 3 \pmod{8}$, we have

$$f_0(\sqrt{-\lambda}) = 2^{\frac{1}{3 \cdot 2^{\alpha+2}}} e^{E(K,d) - E(M_0,4d)},$$

$$f_1(\sqrt{-\lambda}) = 2^{\frac{3 \cdot 2^{\alpha} - 1}{3 \cdot 2^{\alpha+1}}} e^{E(K,d) - E(M_1,d/4)},$$

$$f_2(\sqrt{-\lambda}) = 2^{\frac{1}{3 \cdot 2^{\alpha+2}}} e^{E(K,d) - E(M_2,4d)},$$

If $\mu \equiv 7 \pmod{8}$, we have

$$f_0(\sqrt{-\lambda}) = e^{E(K,d) - E(M_0,4d)},$$

$$f_1(\sqrt{-\lambda}) = \sqrt{2}e^{E(K,d) - E(M_1,d/4)},$$

$$f_2(\sqrt{-\lambda}) = e^{E(K,d) - E(M_2,4d)}.$$

(b) $\lambda \equiv 1 \pmod{4}$ (so that Δ is even and f is odd). Set

$$M_0 = \left[2, 2, \frac{\lambda + 1}{2}\right] \in H(d),$$

 $M_1 = [4, 0, \lambda] \in H(4d),$
 $M_2 = [1, 0, 4\lambda] \in H(4d).$

Then

$$f_0(\sqrt{-\lambda}) = 2^{1/4} e^{E(K,d) - E(M_0,d)},$$

 $f_1(\sqrt{-\lambda}) = 2^{1/8} e^{E(K,d) - E(M_1,4d)},$
 $f_2(\sqrt{-\lambda}) = 2^{1/8} e^{E(K,d) - E(M_2,4d)}.$

(c) $\lambda \equiv 2 \pmod 4$ (so that Δ is even and f is odd). Set $M_0 = [4,4,\lambda+1] \in H(4d),$ $M_1 = \left[2,0,rac{\lambda}{2}
ight] \in H(d),$ $M_2 = [1,0,4\lambda] \in H(4d).$

Then

$$f_0(\sqrt{-\lambda}) = 2^{1/8} e^{E(K,d) - E(M_0,4d)},$$

$$f_1(\sqrt{-\lambda}) = 2^{1/4} e^{E(K,d) - E(M_1,d)},$$

$$f_2(\sqrt{-\lambda}) = 2^{1/8} e^{E(K,d) - E(M_2,4d)}.$$

(d)
$$\lambda \equiv 3 \pmod{4}$$
 (so that $\lambda \equiv -\Delta \pmod{8}$ and $f \equiv 2 \pmod{4}$). Set
$$M_0 = \left[1, 1, \frac{\lambda + 1}{4}\right] \in H\left(\frac{d}{4}\right),$$
$$M_1 = \left[4, 0, \lambda\right] \in H(4d),$$
$$M_2 = \left[1, 0, 4\lambda\right] \in H(4d).$$

Then, for $\lambda \equiv 3 \pmod{8}$, we have

$$f_0(\sqrt{-\lambda}) = 2^{1/3} e^{E(K,d) - E(M_0,d/4)},$$

$$f_1(\sqrt{-\lambda}) = 2^{1/12} e^{E(K,d) - E(M_1,4d)},$$

$$f_2(\sqrt{-\lambda}) = 2^{1/12} e^{E(K,d) - E(M_2,4d)},$$

and, for $\lambda \equiv 7 \pmod{8}$, we have

$$f_0(\sqrt{-\lambda}) = \sqrt{2}e^{E(K,d)-E(M_0,d/4)},$$

 $f_1(\sqrt{-\lambda}) = e^{E(K,d)-E(M_1,4d)},$
 $f_2(\sqrt{-\lambda}) = e^{E(K,d)-E(M_2,4d)}.$

4. Formulae for $k(\lambda)$ and $K[\sqrt{\lambda}]$

From (2.25), (2.26), Proposition 1 and Proposition 2, we obtain the main result of this paper, namely, the formulae for the singular modulus $k(\lambda)$ and the complete elliptic integral of the first kind $K[\sqrt{\lambda}]$ at the singular modulus valid for every $\lambda \in \mathbb{N}$.

Theorem 1. Let $\lambda \in \mathbb{N}$. Let $d = -4\lambda$. Let $K = [1, 0, \lambda] \in H(d)$. (a) $\lambda \equiv 0 \pmod{4}$. Set

$$M_0 = [4, 4, \lambda + 1] \in H(4d), \quad M_2 = [1, 0, 4\lambda] \in H(4d).$$

Then

$$k(\lambda) = e^{4(E(M_0,4d)-E(M_2,4d))}$$
.

Let $\lambda = 4^{\alpha}\mu$, where α is a positive integer and $\mu \equiv 1, 2$ or $3 \pmod{4}$. Then

$$K[\sqrt{\lambda}] = 2^{\beta} \pi^{1/2} \lambda^{-1/2} \prod_{p|f} p^{\alpha_p(\Delta,f)/2} \left(\prod_{m=1}^{|\Delta|} \Gamma\left(\frac{m}{|\Delta|}\right)^{\left(\frac{\Delta}{m}\right)} \right)^{\frac{w(\Delta)}{4h(\Delta)}} e^{2E(K,d) - 4E(M_0,4d)},$$

where

$$\beta = \left\{ \begin{array}{l} \frac{1}{2^{\alpha+1}} - \frac{5}{2}, & \text{if } \mu \equiv 1 \text{ or } 2 \text{ (mod 4),} \\ \\ \frac{1}{3 \cdot 2^{\alpha}} - \frac{5}{2}, & \text{if } \mu \equiv 3 \text{ (mod 8),} \\ \\ -\frac{5}{2}, & \text{if } \mu \equiv 7 \text{ (mod 8),} \end{array} \right.$$

(b) $\lambda \equiv 1 \pmod{4}$. Set

$$M_0 = \left[2, 2, \frac{\lambda+1}{2}\right] \in H(d), \quad M_2 = [1, 0, 4\lambda] \in H(4d).$$

Then

$$k(\lambda) = 2^{-1/2}e^{4(E(M_0,d)-E(M_2,4d))}$$

and

$$K[\sqrt{\lambda}] = 2^{-3/2} \pi^{1/2} \lambda^{-1/2} \prod_{p|f} p^{\alpha_p(\Delta,f)/2} \left(\prod_{m=1}^{|\Delta|} \Gamma\left(\frac{m}{|\Delta|}\right)^{\left(\frac{\Delta}{m}\right)} \right)^{\frac{w(\Delta)}{4h(\Delta)}} e^{2E(K,d)-4E(M_0,d)}.$$

(c) $\lambda \equiv 2 \pmod{4}$. Set

$$M_0 = [4, 4, \lambda + 1] \in H(4d), \quad M_2 = [1, 0, 4\lambda] \in H(4d).$$

Then

$$k(\lambda) = e^{4(E(M_0,4d) - E(M_2,4d))}$$

and

$$K[\sqrt{\lambda}] = 2^{-2} \pi^{1/2} \lambda^{-1/2} \prod_{p|f} p^{\alpha_p(\Delta,f)/2} \left(\prod_{m=1}^{|\Delta|} \Gamma\left(\frac{m}{|\Delta|}\right)^{\left(\frac{\Delta}{m}\right)} \right)^{\frac{\omega(\Delta)}{4\kappa(\Delta)}} e^{2E(K,d)-4E(M_0,4d)}.$$

(d) $\lambda \equiv 3 \pmod{4}$. Set

$$M_0 = \left[1, 1, \frac{\lambda + 1}{4}\right] \in H\left(\frac{d}{4}\right), \quad M_2 = [1, 0, 4\lambda] \in H(4d).$$

Then, for $\lambda \equiv 3 \pmod{8}$, we have

$$k(\lambda) = 2^{-1}e^{4(E(M_0,d/4)-E(M_2,4d))}$$

and

$$K[\sqrt{\lambda}] = 2^{-7/6} \pi^{1/2} \lambda^{-1/2} \prod_{p|f} p^{\alpha_p(\Delta,f)/2} \left(\prod_{m=1}^{|\Delta|} \Gamma\left(\frac{m}{|\Delta|}\right)^{\left(\frac{\Delta}{m}\right)} \right)^{\frac{w(\Delta)}{4h(\Delta)}} e^{2E(K,d) - 4E(M_0,d/4)},$$

and, for $\lambda \equiv 7 \pmod{8}$, we have

$$k(\lambda) = 2^{-2}e^{4(E(M_0,d/4)-E(M_2,4d))}$$

and

$$K[\sqrt{\lambda}] = 2^{-1/2} \pi^{1/2} \lambda^{-1/2} \prod_{p|f} p^{\alpha_p(\Delta,f)/2} \left(\prod_{m=1}^{|\Delta|} \Gamma\left(\frac{m}{|\Delta|}\right)^{\left(\frac{\Delta}{m}\right)} \right)^{\frac{w(\Delta)}{4h(\Delta)}} e^{2E(K,d)-4E(M_0,d/4)}.$$

5. Evaluation of
$$K[\sqrt{17}]$$

In this section we use Theorem 1 to evaluate the complete elliptic integral of the first kind $K[\sqrt{17}]$. Thus $\lambda=17$, $d=-4\lambda=-68$, $\Delta=-68$ and f=1 in the notation of Sections 3 and 4. The group H(-68) of classes of positive-definite, primitive, integral binary quadratic forms of discriminant -68 under composition is

$$H(-68) = \{I, A, A^2, A^3\}, A^4 = I,$$

where

$$I = [1, 0, 17], A = [3, -2, 6], A^2 = [2, 2, 9], A^3 = [3, 2, 6].$$

In order to determine $K[\sqrt{17}]$ explicitly using Theorem 1, we must determine E(I,-68) and $E(A^2,-68)$ (see Lemma 14). This requires finding $j(A^m,-68)$ (m=1,2,3) (see Lemma 13). To compute $j(A^m,-68)$ (m=1,2,3) from (3.7) we must determine those primes p satisfying $\left(\frac{-1}{p}\right)=\left(\frac{p}{17}\right)=1$ for which $K_p=I$ and those for which $K_p=A^2$. This depends upon whether p is of the form x^2+17y^2 for integers x and y or of the form $2x^2+2xy+9y^2$ for integers x and y. By class field theory the former occurs if and only if the quartic polynomial x^4+x^2+2x+1 is the product of four linear factors (mod p). This leads us to consider the arithmetic of the field $K=\mathbb{Q}(\theta)$, where θ is a root of x^4+x^2+2x+1 .

Let f(x) be the irreducible quartic polynomial given by

(5.1)
$$f(x) = x^4 + x^2 + 2x + 1 \in \mathbb{Z}[x].$$

The discriminant of f(x) is $272 = 2^4 \cdot 17$ and its Galois group is D_8 (the dihedral group of order 8) [8, p. 441]. The four roots of f(x) are

$$\frac{1}{2}(i + (-1 + 4i)^{\frac{1}{2}}), \quad \frac{1}{2}(i - (-1 + 4i)^{\frac{1}{2}}).$$

$$\frac{1}{2}(-i + (-1 - 4i)^{\frac{1}{2}}), \quad \frac{1}{2}(-i - (-1 - 4i)^{\frac{1}{2}}),$$

where $z^{\frac{1}{2}}$ denotes the principal value of the square root of the complex number z. Let

$$\theta = \frac{1}{2}(i + (-1 + 4i)^{\frac{1}{2}})$$

and set

$$(5.2) K = Q(\theta)$$

so that K is the totally complex quartic field $Q((-1+4i)^{\frac{1}{2}})$. Thus the number of real embeddings of K is $r_1=0$ and the number of imaginary embeddings is $2r_2=4$. The ring of integers of K is

$$(5.3) O_K = \mathbb{Z} + \mathbb{Z}\theta + \mathbb{Z}\theta^2 + \mathbb{Z}\theta^3,$$

see [8, p. 441]. As K is monogenic, its discriminant $d(K) = \operatorname{disc}(f(x)) = 272$. It is known that O_K has classnumber $h_K = 1$ [8, p. 435] so that it is a principal ideal domain. As $r_1 + r_2 - 1 = 0 + 2 - 1 = 1$ we know by Dirichlet's unit theorem that O_K has a single fundamental unit. This unit can be taken to be θ [8, p. 441]. The regulator

$$R(K) = 2\log|\theta| = \log\left|\frac{i + (-1 + 4i)^{\frac{1}{2}}}{2}\right|^2 = \log\left(\frac{1 + \sqrt{2 + 2\sqrt{17}} + \sqrt{17}}{4}\right) \approx 0.732,$$

see [8, p. 441]. The quartic field K contains a unique subfield $(\neq \mathbb{Q}, K)$, namely, Q(i). The only roots of unity in O_K are ± 1 and $\pm i$. Thus the number of roots of unity in O_K is w(K) = 4.

We now give the factorization of f(x) modulo a prime p. We use the notation (m) to denote a monic irreducible polynomial of degree m with integer coefficients. Thus $g(x) \equiv (2)(2) \pmod{p}$ means that g(x) is the product of two distinct monic irreducible quadratic polynomials modulo p and $h(x) \equiv (2)^2$ means that h(x) is the square of a monic irreducible quadratic polynomial modulo p. From class field theory or indeed by elementary arguments one can show that the factorization of $f(x) \pmod{p}$, where p is a prime $\neq 2, 17$, is given as follows:

If

$$\left(\frac{-1}{p}\right) = \left(\frac{p}{17}\right) = 1$$
 and $p = u^2 + 17v^2$ for some integers u and v

then

$$f(x) \equiv (1)(1)(1)(1) \pmod{p}$$
.

If

$$\left(\frac{-1}{p}\right) = \left(\frac{p}{17}\right) = 1$$
 and $p = 2u^2 + 2uv + 9v^2$ for some integers u and v

then

$$f(x) \equiv (2)(2) \pmod{p}.$$

If

$$\left(\frac{-1}{p}\right) = -1, \left(\frac{p}{17}\right) = 1$$

then

$$f(x) \equiv (2)(2) \pmod{p}.$$

If

$$\left(\frac{-1}{p}\right) = 1, \left(\frac{p}{17}\right) = -1$$

then

$$f(x) \equiv (1)(1)(2) \pmod{p}.$$

If

$$\left(\frac{-1}{p}\right) = \left(\frac{p}{17}\right) = -1$$

then

$$f(x) \equiv (4) \pmod{p}$$
.

For p=2

$$f(x) \equiv (2)^2 \pmod{2}$$

and for p = 17

$$f(x) \equiv (1)(1)(1)^2 \pmod{17}$$
.

Using these results, a standard algebraic number theoretic argument gives the factorization of the principal ideal pO_K into prime ideals in O_K , where p is a prime.

Lemma 1. Let p be a prime $\neq 2, 17$.

(i) *If*

$$\left(\frac{-1}{p}\right) = \left(\frac{17}{p}\right) = 1$$
 and $p = x^2 + 17y^2$ for some integers x and y

then

$$pO_K = PQRS, \quad N(P) = N(Q) = N(R) = N(S) = p.$$

where P, Q, R, S are distinct prime ideals of O_K .

(ii) If

$$\left(\frac{-1}{p}\right) = \left(\frac{17}{p}\right) = 1$$
 and $p = 2x^2 + 2xy + 9y^2$ for some integers x and y

then

$$pO_K = PQ$$
, $N(P) = N(Q) = p^2$,

where P and Q are distinct prime ideals of O_K .

(iii) If

$$\left(\frac{-1}{p}\right) = -1, \left(\frac{17}{p}\right) = 1$$

then

$$pO_K = PQ$$
, $N(P) = N(Q) = p^2$,

where P and Q are distinct prime ideals of O_K .

(iv) If

$$\left(\frac{-1}{p}\right) = 1, \left(\frac{17}{p}\right) = -1$$

then

$$pO_K = PQR, \quad N(P) = N(Q) = p, \quad N(R) = p^2,$$

where P, Q and R are distinct prime ideals of O_K .

(v) If

$$\left(\frac{-1}{p}\right) = \left(\frac{17}{p}\right) = -1$$

then

$$pO_K = P$$
, $N(P) = p^4$,

where P is a prime ideal.

- (vi) $2O_K = P^2$, $N(P) = 2^2$, where P is a prime ideal.
- (vii) $17O_K = PQR^2$, N(P) = N(Q) = N(R) = 17, where P, Q and R are distinct prime ideals.

The next lemma determines the class K_p of H(-68) when p is a prime such that $\left(\frac{-68}{p}\right)=1$.

Lemma 2. Let p be a prime such that $\left(\frac{-68}{p}\right) = 1$. Then

$$K_p = I \iff p = x^2 + 17y^2$$
 for some integers x and y , $K_p = A^2 \iff p = 2x^2 + 2xy + 9y^2$ for some integers x and y , $K_p = A$ or $A^3 \iff p = 3x^2 \pm 2xy + 6y^2$ for some integers x and y .

Proof. As $\left(\frac{-68}{p}\right) = 1$ there exist integers x and y such that

$$p = x^2 + 17y^2$$
 or $2x^2 + 2xy + 9y^2$, if $\left(\frac{-1}{p}\right) = \left(\frac{17}{p}\right) = 1$,

and such that

$$p = 3x^2 \pm 2xy + 6y^2$$
, if $\left(\frac{-1}{p}\right) = \left(\frac{17}{p}\right) = -1$.

We recall that as p is a prime the only classes representing p are K_p and K_p^{-1} . Hence

$$\begin{split} p = & x^2 + 17y^2 \Longrightarrow [1,0,17] \text{ represents } p \Longrightarrow I = K_p \text{ or } K_p^{-1} \Longrightarrow K_p = I, \\ p = & 2x^2 + 2xy + 9y^2 \Longrightarrow [2,2,9] \text{ represents } p \Longrightarrow A^2 = K_p \text{ or } K_p^{-1} \Longrightarrow K_p = A^2, \\ p = & 3x^2 \pm 2xy + 6y^2 \Longrightarrow [3,2,6] \text{ represents } p \Longrightarrow A^3 = K_p \text{ or } K_p^{-1} \Longrightarrow K_p = A \text{ or } A^3. \end{split}$$

This completes the proof of Lemma 2.

Definition 1. For s > 1 and $\epsilon, \eta \in \{-1, +1\}$ we define

$$A_{\epsilon,\eta}(s) := \prod_{\substack{p \neq 2, 17\\ \left(\frac{-1}{p}\right) = \epsilon, \left(\frac{17}{p}\right) = \eta}} \left(1 + \frac{1}{p^s}\right)^{-1}$$

and

$$B_{\epsilon,\eta}(s) := \prod_{\substack{p \neq 2,17\\ \left(\frac{-1}{p}\right) = \epsilon, \left(\frac{17}{p}\right) = \eta}} \left(1 - \frac{1}{p^s}\right)^{-1}.$$

For brevity we just write $A_{+1,+1}(s), A_{+1,-1}(s), \ldots$ as $A_{++}(s), A_{+-}(s), \ldots$ respectively. In view of Lemmas 1 and 2 we can split each of $A_{++}(s)$ and $B_{++}(s)$ into two products as

$$A_{++}(s) = A'_{++}(s)A''_{++}(s), \quad B_{++} = B'_{++}(s)B''_{++}(s),$$

where

$$A'_{++}(s) := \prod_{\substack{p \neq 2, 17 \\ K_p = I}} \left(1 + \frac{1}{p^s} \right)^{-1}, \quad A''_{++}(s) := \prod_{\substack{p \neq 2, 17 \\ K_p = A^2}} \left(1 + \frac{1}{p^s} \right)^{-1}$$

and

$$B'_{++}(s) := \prod_{\substack{p \neq 2,17 \\ K_p = I}} \left(1 - \frac{1}{p^s} \right)^{-1}, \quad B''_{++}(s) := \prod_{\substack{p \neq 2,17 \\ K_p = A^2}} \left(1 - \frac{1}{p^s} \right)^{-1}.$$

Lemma 3. For s > 1 we have

$$A_{\epsilon,\eta}(s) = rac{B_{\epsilon,\eta}(2s)}{B_{\epsilon,\eta}(s)}, \quad ext{where } \epsilon, \eta \in \{-1,+1\},$$

and

$$A'_{++}(s) = \frac{B'_{++}(2s)}{B'_{++}(s)}, \quad A''_{++}(s) = \frac{B''_{++}(2s)}{B''_{++}(s)}.$$

Proof. We just prove the first equality as the other two equalities can be proved similarly. We have

$$A_{\epsilon,\eta}(s)B_{\epsilon,\eta}(s) = \prod_{\substack{p \neq 2,17\\ \left(\frac{-1}{p}\right) = \epsilon, \ \left(\frac{17}{p}\right) = \eta}} \left(1 + \frac{1}{p^s}\right)^{-1} \prod_{\substack{p \neq 2,17\\ \left(\frac{-1}{p}\right) = \epsilon, \ \left(\frac{17}{p}\right) = \eta}} \left(1 - \frac{1}{p^s}\right)^{-1}$$

$$= \prod_{\substack{p \neq 2,17\\ \left(\frac{-1}{p}\right) = \epsilon, \ \left(\frac{17}{p}\right) = \eta}} \left(1 - \frac{1}{p^{2s}}\right)^{-1}$$

$$= B_{\epsilon,\eta}(2s),$$

from which the asserted result follows.

For s > 1 the Riemann zeta function is given by

$$\zeta(s) = \prod_{p} \left(1 - \frac{1}{p^s} \right)^{-1},$$

where the product is taken over all primes p. If D is an integer with $D \equiv 0$ or $1 \pmod{4}$ the Dirichlet L-series L(s,D) (s>1) is given by

$$L(s,D) = \prod_{p} \left(1 - \frac{\left(\frac{D}{p}\right)}{p^s} \right)^{-1}.$$

We prove

Lemma 4. For s > 1 we have

(i)
$$\zeta(s) = \left(1 - \frac{1}{2^s}\right)^{-1} \left(1 - \frac{1}{17^s}\right)^{-1} B_{--}(s) B_{-+}(s) B_{+-}(s) B_{++}(s),$$

(ii)
$$L(s, -4) = \left(1 - \frac{1}{17^s}\right)^{-1} \frac{B_{--}(2s)}{B_{--}(s)} \frac{B_{-+}(2s)}{B_{-+}(s)} B_{+-}(s) B_{++}(s),$$

(iii)
$$L(s, 17) = \left(1 - \frac{1}{2^s}\right)^{-1} \frac{B_{--}(2s)}{B_{--}(s)} B_{-+}(s) \frac{B_{+-}(2s)}{B_{+-}(s)} B_{++}(s),$$

$$(iv) \ L(s, -68) = B_{--}(s) \frac{B_{-+}(2s)}{B_{-+}(s)} \frac{B_{+-}(2s)}{B_{+-}(s)} B_{++}(s).$$

Proof. We just give the proofs of (i) and (ii). Equations (iii) and (iv) can be proved similarly. Let

$$X = \{(-1, -1), (-1, +1), (+1, -1), (+1, +1)\}.$$

First we prove (i). We have

$$\left(1 - \frac{1}{2^s}\right) \left(1 - \frac{1}{17^s}\right) \zeta(s) = \prod_{p \neq 2, 17} \left(1 - \frac{1}{p^s}\right)^{-1}$$

$$= \prod_{(\epsilon, \eta) \in X} \prod_{\substack{p \neq 2, 17 \\ \left(\frac{-1}{p}\right) = \epsilon, \left(\frac{17}{p}\right) = \eta}} \left(1 - \frac{1}{p^s}\right)^{-1},$$

from which (i) now follows by Definition 1.

Next we prove (ii). We have

$$L(s, -4) = \prod_{p} \left(1 - \frac{\left(\frac{-4}{p} \right)}{p^{s}} \right)^{-1}$$

$$= \left(1 - \frac{1}{17^{s}} \right)^{-1} \prod_{p \neq 2, 17} \left(1 - \frac{\left(\frac{-4}{p} \right)}{p^{s}} \right)^{-1}$$

$$= \left(1 - \frac{1}{17^{s}} \right)^{-1} \prod_{\substack{(\epsilon, \eta) \in X \\ \left(\frac{-1}{p} \right) = \epsilon, \left(\frac{17}{p} \right) = \eta}} \left(1 - \frac{\epsilon}{p^{s}} \right)^{-1}$$

$$= \left(1 - \frac{1}{17^{s}} \right)^{-1} A_{--}(s) A_{-+}(s) B_{+-}(s) B_{++}(s),$$

and (ii) follows using Lemma 3.

Lemma 5. For s > 1 we have

$$B_{--}(s)^{4} = L(s, -4)^{-1}L(s, 17)^{-1}L(s, -68)B_{--}(2s)^{2}\zeta(s),$$

$$B_{-+}(s)^{4} = \left(1 - \frac{1}{2^{s}}\right)^{2}L(s, -4)^{-1}L(s, 17)L(s, -68)^{-1}B_{-+}(2s)^{2}\zeta(s),$$

$$B_{+-}(s)^{4} = \left(1 - \frac{1}{17^{s}}\right)^{2}L(s, -4)L(s, 17)^{-1}L(s, -68)^{-1}B_{+-}(2s)^{2}\zeta(s),$$

$$B_{++}(s)^{4} = \left(1 - \frac{1}{2^{s}}\right)^{2}\left(1 - \frac{1}{17^{s}}\right)^{2}L(s, -4)L(s, 17)L(s, -68)$$

$$\times B_{--}(2s)^{-2}B_{-+}(2s)^{-2}B_{+-}(2s)^{-2}\zeta(s),$$

Proof. We obtain the asserted equalities by solving the equations (i)-(iv) in Lemma 4 for $B_{--}(s)$, $B_{-+}(s)$, $B_{+-}(s)$ and $B_{++}(s)$.

The Dedekind zeta function for the field K is given by

$$\zeta_K(s) = \prod_P \left(1 - \frac{1}{N(P)^s}\right)^{-1},$$

where the product is taken over all prime ideals of O_K .

Lemma 6. For s > 1 we have

$$\zeta_K(s) = \left(1 - \frac{1}{2^{2s}}\right)^{-1} \left(1 - \frac{1}{17^s}\right)^{-3}$$

$$B_{--}(4s)B_{-+}(2s)^2 B_{+-}(2s)B''_{++}(2s)^2 B_{+-}(s)^2 B'_{++}(s)^4.$$

Proof. We split $\zeta_K(s)$ into seven products and make use of Lemma 1 to recognize each of these products in terms of the $B_{\epsilon,\eta}$. We have

$$\zeta_K(s) = \Pi_1 \Pi_2 \Pi_3 \Pi_4 \Pi_5 \Pi_6 \Pi_7,$$

where

$$\begin{split} \Pi_{1} &:= \prod_{P|2O_{K}} \left(1 - \frac{1}{N(P)^{s}}\right)^{-1} = \left(1 - \frac{1}{4^{s}}\right)^{-1} = \left(1 - \frac{1}{2^{2s}}\right)^{-1}, \\ \Pi_{2} &:= \prod_{P|17O_{K}} \left(1 - \frac{1}{N(P)^{s}}\right)^{-1} = \left(1 - \frac{1}{17^{s}}\right)^{-3}, \\ \Pi_{3} &:= \prod_{p \neq 2, 17} \prod_{P|pO_{K}} \left(1 - \frac{1}{N(P)^{s}}\right)^{-1} \\ &= \prod_{p \neq 2, 17} \left(\frac{-1}{p}\right) = \left(\frac{1}{p^{s}}\right) = -1 \\ &= \prod_{p \neq 2, 17} \left(1 - \frac{1}{p^{4s}}\right)^{-1} = B_{--}(4s), \\ \left(\frac{-1}{p}\right) &= \left(\frac{1}{p^{s}}\right) = -1 \\ &= \prod_{p \neq 2, 17} \left(1 - \frac{1}{p^{2s}}\right)^{-1} \\ &= \prod_{p \neq 2, 17} \left(1 - \frac{1}{p^{2s}}\right)^{-2} = B_{-+}(2s)^{2}, \\ \left(\frac{-1}{p}\right) &= -1, \left(\frac{17}{p}\right) = 1 \\ &= \prod_{p \neq 2, 17} \left(\frac{1}{p^{s}}\right) = -1 \\ &=$$

$$\Pi_{7} := \prod_{\substack{p \neq 2, 17 \\ \left(\frac{-1}{p}\right) = \left(\frac{17}{p}\right) = 1 \\ p = 2x^{2} + 2xy + 9y^{2}}} \prod_{\substack{P \mid pO_{K} \\ p = 2x^{2} + 2xy + 9y^{2} \\ \left(\frac{-1}{p}\right) = \left(\frac{17}{p}\right) = 1 \\ K_{p} = A^{2}}} \left(1 - \frac{1}{p^{2s}}\right)^{-2} = B''_{++}(2s)^{2}.$$

Multipying $\Pi_1, \Pi_2, ..., \Pi_7$ together, we obtain the asserted equality.

Lemma 7. For s > 1 we have

$$B'_{++}(s)^{8} = \left(1 - \frac{1}{2^{s}}\right)^{2} \left(1 + \frac{1}{2^{s}}\right)^{2} \left(1 - \frac{1}{17^{s}}\right)^{4} L(s, -4)^{-1} L(s, 17) L(s, -68)$$

$$\times B_{--}(4s)^{-2} B_{-+}(2s)^{-4} B_{+-}(2s)^{-4} B''_{++}(2s)^{-4} \zeta_{K}(s)^{2} \zeta(s)^{-1},$$

$$B''_{++}(s)^{8} = \left(1 - \frac{1}{2^{s}}\right)^{2} \left(1 + \frac{1}{2^{s}}\right)^{-2} L(s, -4)^{3} L(s, 17) L(s, -68)$$

$$\times B_{--}(4s)^{2} B_{--}(2s)^{-4} B''_{++}(2s)^{4} \zeta_{K}(s)^{-2} \zeta(s)^{3}.$$

Proof. The first equality follows by replacing $B_{+-}(s)^4$ in the square of the equality in Lemma 6 by its value given in Lemma 5. The second equality then follows from $B'_{++}(s)^8 B''_{++}(s)^8 = B_{++}(s)^8$ and the value of $B_{++}(s)^8$ given by Lemma 5.

Lemma 8.

(i)
$$B_{--}(2)B_{-+}(2)B_{+-}(2)B_{++}(2) = \frac{36\pi^2}{289}$$
,

(ii)
$$t_1(-68) = \frac{289}{36\pi^2}B_{-+}(2)B_{+-}(2)$$
.

Proof. By Lemma 4(i) we have (as $\zeta(2) = \pi^2/6$)

$$B_{--}(2)B_{-+}(2)B_{+-}(2)B_{++}(2) = \left(1 - \frac{1}{2^2}\right)\left(1 - \frac{1}{17^2}\right)\zeta(2) = \frac{36}{289}\pi^2,$$

which is (i). Then

$$t_1(-68) = \frac{1}{B_{--}(2)B_{++}(2)} = \frac{289}{36\pi^2}B_{-+}(2)B_{+-}(2).$$

by (3.12), Definition 1 and (i).

Lemma 9.

$$\lim_{s \to 1^+} \left(\frac{\zeta_K(s)}{\zeta(s)} \right) = \frac{\pi^2}{4\sqrt{17}} \log \left(\frac{1 + \sqrt{2 + 2\sqrt{17}} + \sqrt{17}}{4} \right).$$

Proof. By [7, Theorem 7.1, p. 326] we have

$$\lim_{s \to 1^+} (s-1)\zeta_K(s) = \frac{2^{r_1 + r_2} \pi^{r_2} R(K) h(K)}{w(K) |d(K)|^{1/2}} = \frac{\pi^2}{4\sqrt{17}} \log \left(\frac{1 + \sqrt{2 + 2\sqrt{17}} + \sqrt{17}}{4} \right).$$

As

$$\lim_{s \to 1^+} (s-1)\zeta(s) = 1$$

the asserted result follows.

Lemma 10.

$$L(1, -4) = \frac{\pi}{4}, \quad L(1, 17) = \frac{2}{\sqrt{17}}\log(4 + \sqrt{17}), \quad L(1, -68) = \frac{2\pi}{\sqrt{17}}.$$

Proof. Dirichlet's class number formula [7, Theorem 7.1, p. 326] for the quadratic field $\mathbb{Q}(\sqrt{d})$ of discriminant d asserts that

$$L(1,d) = \frac{2h(d)\log \eta(d)}{\sqrt{d}}, \text{ if } d > 0,$$

and

$$L(1,d) = \frac{2\pi h(d)}{w(d)\sqrt{|d|}}, \text{ if } d < 0,$$

where h(d) is the class number of $\mathbb{Q}(\sqrt{d})$, $\eta(d)$ is the fundamental unit > 1 of $\mathbb{Q}(\sqrt{d})$ when d > 0, and w(d) = 2, 4 or 6 according as d < -4, d = -4 or d = -3 when d < 0. As

$$h(-4) = 1$$
, $h(17) = 1$, $h(-68) = 4$, $\eta(17) = 4 + \sqrt{17}$

the asserted result follows.

Lemma 11.

$$\lim_{s \to 1^+} \left(\frac{B_{--}(s)}{B_{++}(s)} \right)^2 = \frac{17\sqrt{17}B_{--}(2)^2 B_{-+}(2) B_{+-}(2)}{4\pi \log(4 + \sqrt{17})}.$$

Proof. By Lemma 5 we have

$$\left(\frac{B_{--}(s)}{B_{++}(s)}\right)^2 = \left(1 - \frac{1}{2^s}\right)^{-1} \left(1 - \frac{1}{17^s}\right)^{-1} L(s, -4)^{-1} L(s, 17)^{-1} \times B_{--}(2s)^2 B_{-+}(2s) B_{+-}(2s).$$

Letting $s \to 1^+$ and appealing to Lemma 10, we obtain the asserted limit.

Lemma 12.

$$\lim_{s \to 1^{+}} \left(\frac{B'_{++}(s)}{B''_{++}(s)} \right)^{2} = \frac{24\pi}{17\sqrt{17}} \log \left(\frac{1 + \sqrt{2 + 2\sqrt{17}} + \sqrt{17}}{4} \right)$$

$$\times B_{--}(4)^{-1} B_{--}(2) B_{-+}(2)^{-1} B_{+-}(2)^{-1} B''_{++}(2)^{-2}.$$

Proof. By Lemma 7 we have

$$\left(\frac{B'_{++}(s)}{B''_{++}(s)}\right)^{2} = \left(1 + \frac{1}{2^{s}}\right) \left(1 - \frac{1}{17^{s}}\right) L(s, -4)^{-1} B_{--}(4s)^{-1} B_{--}(2s) B_{-+}(2s)^{-1} \times B_{+-}(2s)^{-1} B''_{++}(2s)^{-2} \left(\frac{\zeta_{K}(s)}{\zeta(s)}\right).$$

Letting $s \to 1+$ and appealing to Lemmas 9 and 10, we obtain the asserted limit.

We note (in the notation of Section 3) that

$$K_{2} = [2, 2, 9] = A^{2},$$

$$K_{17} = [17, 0, 1] = [1, 0, 17] = I,$$

$$\chi(A^{j}, A^{k}) = i^{jk},$$

$$l(A^{j}, -68) = \left(1 + \frac{\chi(A^{j}, A^{2})}{2}\right) \left(1 + \frac{\chi(A^{j}, I)}{17}\right) = \left(1 + \frac{(-1)^{j}}{2}\right) \left(1 + \frac{1}{17}\right)$$

$$= \begin{cases} \frac{9}{17}, & \text{if } j = 1, 3, \\ \frac{27}{17}, & \text{if } j = 2. \end{cases}$$

Lemma 13.

$$j(A, -68) = j(A^{3}, -68) = \frac{17\sqrt{17}B_{-+}(2)B_{+-}(2)}{24\pi \log \left(\frac{1+\sqrt{2+2\sqrt{17}}+\sqrt{17}}{4}\right)},$$

$$j(A^2, -68) = \frac{17\sqrt{17}B_{-+}(2)B_{+-}(2)}{4\pi\log(4+\sqrt{17})}.$$

Proof. For r = 1, 2, 3 we have by (3.7)

$$j(A^{r}, -68) = \lim_{s \to 1^{+}} \prod_{\substack{p \neq 2, 17 \\ \left(\frac{-1}{p}\right) = \left(\frac{17}{p}\right)}} \left(1 - \frac{\chi(A^{r}, K_{p})}{p^{s}}\right) \left(1 - \frac{\chi(A^{-r}, K_{p})}{p^{s}}\right).$$

Thus, by Lemmas 1 and 2, we have

$$j(A^{r}, -68) = \lim_{s \to 1^{+}} \prod_{\left(\frac{-1}{p}\right) = \left(\frac{17}{p}\right) = 1} \left(1 - \frac{1}{p^{s}}\right)^{2} \prod_{\left(\frac{-1}{p}\right) = \left(\frac{17}{p}\right) = 1} \left(1 - \frac{(-1)^{r}}{p^{s}}\right)^{2} \times \prod_{\substack{K_{p} = A^{2} \\ \left(\frac{-1}{p}\right) = \left(\frac{17}{p}\right) = -1}} \left(1 - \frac{i^{r}}{p^{s}}\right) \left(1 - \frac{i^{-r}}{p^{s}}\right).$$

Hence

$$j(A^{2}, -68) = \lim_{s \to 1^{+}} B_{++}(s)^{-2} A_{--}(s)^{-2}$$

$$= \lim_{s \to 1^{+}} \frac{1}{B_{--}(2s)^{2}} \left(\frac{B_{--}(s)}{B_{++}(s)}\right)^{2} \text{ (by Lemma 3)}$$

$$= \frac{1}{B_{--}(2)^{2}} \lim_{s \to 1^{+}} \left(\frac{B_{--}(s)}{B_{++}(s)}\right)^{2}.$$

The determination of $j(A^2, -68)$ now follows by Lemma 11. Finally

$$j(A, -68) = j(A^{3}, -68) = \lim_{s \to 1^{+}} B'_{++}(s)^{-2} A''_{++}(s)^{-2} A_{--}(2s)^{-1}$$

$$= \lim_{s \to 1^{+}} \frac{B_{--}(2s)}{B''_{++}(2s)^{2} B_{--}(4s)} \left(\frac{B'_{++}(s)}{B''_{++}(s)}\right)^{-2} \text{ (by Lemma 3)}$$

$$= \frac{B_{--}(2)}{B''_{++}(2)^{2} B_{--}(4)} \lim_{s \to 1^{+}} \left(\frac{B'_{++}(s)}{B''_{++}(s)}\right)^{-2}.$$

The determination of j(A, -68) now follows by Lemma 12.

Lemma 14.

$$E(I, -68) = \frac{1}{4} \log \left(\frac{1 + \sqrt{2 + 2\sqrt{17}} + \sqrt{17}}{4} \right) + \frac{1}{16} \log(4 + \sqrt{17}),$$

$$E(A^{2}, -68) = -\frac{1}{4}\log\left(\frac{1+\sqrt{2+2\sqrt{17}}+\sqrt{17}}{4}\right) + \frac{1}{16}\log(4+\sqrt{17}).$$

Proof. From (3.10) we have for r = 0, 1, 2, 3

$$\begin{split} E(A^r, -68) &= \frac{\pi\sqrt{68}w(-68)}{48h(-68)} \sum_{m=1}^{3} \chi(A^m, A^r)^{-1} \frac{t_1(-68)}{j(A^m, -68)} l(A^m, -68) \\ &= \frac{289\sqrt{17}}{1728\pi} B_{-+}(2) B_{+-}(2) \sum_{m=1}^{3} i^{-mr} \frac{l(A^m, -68)}{j(A^m, -68)} \quad \text{(by Lemma 8(ii))} \\ &= \frac{17\sqrt{17}}{192\pi} B_{-+}(2) B_{+-}(2) \left(\frac{i^{-r}}{j(A, -68)} + 3 \frac{i^{-2r}}{j(A^2, -68)} + \frac{i^{-3r}}{j(A^3, -68)} \right). \end{split}$$

The asserted results now follow by taking r = 0 and r = 2 and appealing to Lemma 13.

From Proposition 2(b) and Lemma 14 we obtain

$$f_0(\sqrt{-17}) = 2^{1/4} \left(\frac{1 + \sqrt{2 + 2\sqrt{17}} + \sqrt{17}}{4} \right)^{1/2}$$

in agreement with [9, p. 721].

Theorem 2.

$$K[\sqrt{17}] = 2^{-9/2} 17^{-1/2} \pi^{1/2} (\sqrt{17} - 4)^{1/8}$$
$$\times (1 + \sqrt{2 + 2\sqrt{17}} + \sqrt{17})^{3/2} \left\{ \prod_{m=1}^{68} \Gamma\left(\frac{m}{68}\right)^{\left(\frac{-68}{m}\right)} \right\}^{1/8}.$$

Proof. We apply Theorem 1(b) with $\lambda = 17$ so that K = [1, 0, 17] = I and $M_0 = [2, 2, 9] = A^2$. We obtain

$$K[\sqrt{17}] = 2^{-3/2} \pi^{1/2} 17^{-1/2} \left\{ \prod_{m=1}^{68} \Gamma\left(\frac{m}{68}\right)^{\left(\frac{-68}{m}\right)} \right\}^{1/8} e^{2E(I,-68) - 4E(A^2,-68)}.$$

By Lemma 14 we have

$$2E(I, -68) - 4E(A^2, -68) = \frac{3}{2}\log\left(\frac{1 + \sqrt{2 + 2\sqrt{17}} + \sqrt{17}}{4}\right) - \frac{1}{8}\log(4 + \sqrt{17}),$$

so that

$$e^{2E(I,-68)-4E(A^2,-68)} = \frac{\left(\frac{1+\sqrt{2+2\sqrt{17}}+\sqrt{17}}{4}\right)^{3/2}}{(4+\sqrt{17})^{1/8}}$$

$$= 2^{-3}(\sqrt{17}-4)^{1/8}\left(1+\sqrt{2+2\sqrt{17}}+\sqrt{17}\right)^{3/2},$$

and Theorem 2 follows.

In a similar manner it can be shown that the singular modulus k(17) is given by

$$k(17) = \frac{1}{2}(\sqrt{U} - \sqrt{V}) = 0.006156...,$$

where

$$U = 21 + 5\sqrt{17} - 8\sqrt{2 + 2\sqrt{17}} - 6\sqrt{2\sqrt{17} - 2}$$

and

$$V = -19 - 5\sqrt{17} + 8\sqrt{2 + 2\sqrt{17}} + 6\sqrt{2\sqrt{17} - 2}.$$

REFERENCES

- 1. J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, New York, 1987.
- 2. J. G. Huard, P. Kaplan, and K. S. Williams, The Chowla-Selberg formula for genera, *Acta Arith.*, 73 (1995), 271-301.
- C. G. J. Jacobi, Fundamenta Nova Theoriae Functionum Ellipticarum, Regiomonti, 1829.
- 4. C. G. J. Jacobi, Gesammelte Werke, Vol. I, Chelsea, New York, 1969, pp. 49-239.
- 5. G. S. Joyce and I. J. Zucker, Special values of the hypergeometric series, *Math. Proc. Camb. Phil. Soc.*. **109** (1991), 257-261.
- 6. H. Muzaffar and K. S. Williams, Evaluation of Weber's functions at quadratic irrationalities, *JP J. Algebra Number Theory Appl.*, **4** (2004), 209-259.
- 7. W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, Springer-Verlag, Berlin Heidelberg New York, 1990.
- 8. M. Pohst and H. Zassenhaus, *Algorithmic Algebraic Nunber Theory*, Cambridge University Press, 1989.
- 9. H. Weber, Lehrbuch der Algebra, Vol III, Chelsea, New York, 1961.

Habib Muzaffar
Department of Mathematics,
University of Toledo,
Toledo, Ohio 43606, USA
E-mail: hmuzaff@utnet.utoledo.edu

Kenneth S. Williams Centre for Research in Algebra and Number Theory, School of Mathematics and Statistics, Carleton University, Ottawa, Ontario K1S 5B6, Canada

E-mail: kwilliam@connect.carleton.ca