Math. J. Okayama Univ. 48 (2006), 43-46

# THE PRIME IDEAL FACTORIZATION OF 2 IN PURE QUARTIC FIELDS WITH INDEX 2 

Blair K. SPEARMAN and Kenneth S. WILLiAMS


#### Abstract

The prime ideal decomposition of 2 in a pure quartic field with field index 2 is determined explicitly.


## 1. Introduction

Let $K$ be an algebraic number field and $O_{K}$ its ring of integers. When determining generators of the ideals in the prime ideal factorization of a (rational) prime $p$ in $O_{K}$, the most difficult case occurs when $p$ divides the field index $i(K)$ of $K$. In this paper we examine the case when $K$ is a pure quartic field. Here $i(K)=1$ or 2 , and we determine explicit generators of the prime ideals in the decomposition of 2 when $i(K)=2$.

Let $K$ be a pure quartic field. Then there exists a fourth power free integer $m$ such that $K=\mathbb{Q}\left(m^{1 / 4}\right)$. It follows from the work of Funakura [1, p. 36] that the field index $i(K)$ of $K$ is given by

$$
i(K)= \begin{cases}2, & \text { if } m \equiv 1(\bmod 16) \\ 1, & \text { if } m \not \equiv 1(\bmod 16)\end{cases}
$$

From now on we assume that $i(K)=2$ so that $m \equiv 1(\bmod 16)$, say $m=$ $16 k+1$. In this case the prime ideal factorization of $<2>$ in $O_{K}$ is

$$
<2>=P_{1}^{2} P_{2} P_{3}
$$

where $P_{1}, P_{2}, P_{3}$ are distinct prime ideals, see $[1, \mathrm{p} .36]$. In this paper we determine explicit generators of $P_{1}, P_{2}$ and $P_{3}$.

Theorem. Let $m$ be a fourth power free integer such that $K=\mathbb{Q}\left(m^{1 / 4}\right)$ is a pure quartic field with $i(K)=2$. Then $<2>=P_{1}^{2} P_{2} P_{3}$, where the

[^0]distinct prime ideals $P_{1}, P_{2}, P_{3}$ of $O_{K}$ are given by
\[

$$
\begin{aligned}
& P_{1}=<2, \frac{3}{2}+m^{1 / 4}+\frac{1}{2} m^{1 / 2}>, \\
& P_{2}=\left\{\begin{array}{ll}
<2, \frac{5}{4}+\frac{1}{4} m^{1 / 4}+\frac{1}{4} m^{1 / 2}+\frac{1}{4} m^{3 / 4}>, & \text { if } m \equiv 1(\bmod 32), \\
<2, \frac{3}{4}+\frac{5}{4} m^{1 / 4}+\frac{3}{4} m^{1 / 2}+\frac{1}{4} m^{3 / 4}>, & \text { if } m \equiv 17(\bmod 32), \\
P_{3}= \begin{cases}<2, \frac{5}{4}-\frac{1}{4} m^{1 / 4}+\frac{1}{4} m^{1 / 2}-\frac{1}{4} m^{3 / 4}>, & \text { if } m \equiv 1(\bmod 32), \\
<2, \frac{3}{4}-\frac{5}{4} m^{1 / 4}+\frac{3}{4} m^{1 / 2}-\frac{1}{4} m^{3 / 4}>, & \text { if } m \equiv 17(\bmod 32)\end{cases}
\end{array} \begin{array}{l}
<,
\end{array}\right.
\end{aligned}
$$
\]

## 2. Proof of Theorem

Let $L=\mathbb{Q}\left(m^{1 / 2}\right)$ so that $\mathbb{Q} \subset L \subset K$ and $[L: \mathbb{Q}]=2$. Set

$$
Q_{1}=<2, \frac{1+m^{1 / 2}}{2}>, \quad Q_{2}=<2, \frac{1-m^{1 / 2}}{2}>
$$

$Q_{1}$ and $Q_{2}$ are distinct prime ideals of $O_{L}$ such that $<2>=Q_{1} Q_{2}$. Let $m_{2}$ be the largest integer such that $m_{2}^{2} \mid m$. Set $m_{1}=m / m_{2}^{2}$ so that $m_{1}$ is a squarefree integer having the same sign as $m$. Clearly $m^{1 / 2}=m_{2} m_{1}^{1 / 2}$. Then

$$
Q_{1}= \begin{cases}<2, \frac{1+m_{1}^{1 / 2}}{2}>, & \text { if } m_{2} \equiv 1(\bmod 4) \\ <2, \frac{1-m_{1}^{1 / 2}}{2}>, & \text { if } m_{2} \equiv 3(\bmod 4)\end{cases}
$$

Next, by [2, Table D, cases D1, D2, p. 92], we see that

$$
Q_{1}=P_{1}^{2}
$$

for some prime ideal $P_{1}$ of $O_{K}$. We claim that

$$
P_{1}=<2, \frac{3}{2}+m^{1 / 4}+\frac{1}{2} m^{1 / 2}>
$$

First we show that $P_{1}$ is a prime ideal of $O_{K}$. The minimal polynomial of $\theta=\frac{3}{2}+m^{1 / 4}+\frac{1}{2} m^{1 / 2}$ over $\mathbb{Q}$ is

$$
g(x)=x^{4}-6 x^{3}+(13-8 k) x^{2}+(-14-8 k) x+\left(6+16 k+16 k^{2}\right)
$$

Hence $N(\theta)= \pm\left(6+16 k+16 k^{2}\right) \equiv 2(\bmod 4)$. Let $<\theta>=S_{1} S_{2} \cdots S_{r}$ be the prime ideal factorization of $<\theta>$ in $O_{K}$. Hence $N(<\theta>)=$
$N\left(S_{1}\right) N\left(S_{2}\right) \cdots N\left(S_{r}\right)$. As $2 \| N(<\theta>)$ there exists a unique $S=S_{i}$ such that $2 \| N(S)$, that is $N(S)=2$. Thus $<\theta>$ has exactly one prime ideal to exponent 1 in its prime factorization lying above 2 . As $P_{1}=<2, \theta>$ we deduce that $P_{1}=S$ so that $P_{1}$ is a prime ideal of $O_{K}$. Next we show that $P_{1} \mid Q_{1}$. We set $\phi=\frac{3}{2}-m^{1 / 4}+\frac{1}{2} m^{1 / 2}$. An easy calculation shows that

$$
\frac{1+m^{1 / 2}}{2}=\theta \phi-(2 k+1) 2
$$

Hence, as $2 \in P_{1}$ and $\theta \in P_{1}$, we deduce that $\frac{1+m^{1 / 2}}{2} \in P_{1}$. Thus we have $Q_{1}=<2, \frac{1+m^{1 / 2}}{2}>\subseteq P_{1}$, and so $P_{1} \mid Q_{1}$. As $Q_{1}$ is the square of a prime ideal in $O_{K}$, we deduce that $Q_{1}=P_{1}^{2}$ as asserted.

Let

$$
k= \begin{cases}2 g, & \text { if } m \equiv 1(\bmod 32) \\ 2 g+1, & \text { if } m \equiv 17(\bmod 32)\end{cases}
$$

For $\epsilon= \pm 1$, the minimal polynomial of

$$
\alpha(\epsilon)= \begin{cases}\frac{5}{4}+\frac{\epsilon}{4} m^{1 / 4}+\frac{1}{4} m^{1 / 2}+\frac{\epsilon}{4} m^{3 / 4}, & \text { if } m \equiv 1(\bmod 32) \\ \frac{3}{4}+\frac{5 \epsilon}{4} m^{1 / 4}+\frac{3}{4} m^{1 / 2}+\frac{\epsilon}{4} m^{3 / 4}, & \text { if } m \equiv 17(\bmod 32)\end{cases}
$$

is

$$
x^{4}-5 x^{3}+(9-12 g) x^{2}+\left(-7+24 g-64 g^{2}\right) x+\left(2-12 g+64 g^{2}-128 g^{3}\right)
$$

if $m \equiv 1(\bmod 32)$, and

$$
\begin{gathered}
x^{4}-3 x^{3}+(-37-76 g) x^{2}+\left(-75-240 g-192 g^{2}\right) x \\
+\left(-38-172 g-256 g^{2}-128 g^{3}\right),
\end{gathered}
$$

if $m \equiv 17(\bmod 32)$. Clearly $N(\alpha(\epsilon)) \equiv 2(\bmod 4)$ in both cases, and similarly to the argument above, we deduce that $I_{+}=<2, \alpha(1)>$ and $I_{-}=<2, \alpha(-1)>$ are conjugate prime ideals of $O_{K}$ lying above 2. If $m \equiv 1$ $(\bmod 32)$ we have

$$
\frac{1-m^{1 / 2}}{2}=2\left(1-g-g m^{1 / 2}\right)-\alpha(1) \alpha(-1) \in I_{+} \cap I_{-}
$$

and if $m \equiv 17(\bmod 32)$

$$
\frac{1-m^{1 / 2}}{2}=2\left(-g-(1+g) m^{1 / 2}\right)-\alpha(1) \alpha(-1) \in I_{+} \cap I_{-} .
$$

Hence $\frac{1-m^{1 / 2}}{2} \in I_{+} \cap I_{-}$. Thus $I_{+}$and $I_{-}$are conjugate prime ideals of $O_{K}$ lying above the prime ideal $Q_{2}$ of $O_{L}$. As $<2>=P_{1}^{2} P_{2} P_{3}=Q_{1} Q_{2}$ and $Q_{1}=P_{1}^{2}$, we see that $Q_{2}=P_{2} P_{3}$ and that we can take

$$
P_{2}=I_{+}=<2, \alpha(1)>
$$

and

$$
P_{3}=I_{-}=<2, \alpha(-1)>
$$

This completes the proof.

## References

[1] T. FUNAKURA, On integral bases of pure quartic fields, Math. J. Okayama Univ. 26 (1984), 27-41.
[2] J. G. HUARD, B. K. SPEARMAN and K. S. WILLIAMS, Integral bases for quartic fields with quadratic subfields, J. Number Theory 51 (1995), 87-102.

Blair K. Spearman
Department of Mathematics and Statistics
University of British Columbia Okanagan
Kelowna, B.C. Canada V1V 1V7
e-mail address: blair.spearman@ubc.ca
Kenneth S. Williams
School of Mathematics and Statistics
Carleton University
Ottawa, Ontario, Canada K1S 5B6
e-mail address: kwilliam@connect.carleton.ca
(Received May 20, 2005)


[^0]:    Mathematics Subject Classification. 11R16.
    Key words and phrases. pure quartic field, discriminant, prime decomposition.
    Both authors were supported by research grants from the Natural Sciences and Engineering Research Council of Canada.

