THE PROPORTION OF CYCLIC QUARTIC FIELD DISCRIMINANTS DIVISIBLE BY A GIVEN PRIME

Blair K. Spearman aud Kemeth S. Whlifanis

(Received June 1, 2005)
(Revised November 25. 2005)

Abstract

Let $x \in \mathbb{R}$ and q a fixed prime. Let $S(x ; q)$ be the set of positive integers $n \leq x$ with n equal to the discriminant of some cyclic quartic field and n divisible by q. An asymptotic formula is given for card $S(x ; q)$ as $x \rightarrow+\infty$.

1. Introduction

Let $x \in \mathbb{R}$. Let $S(x)$ denote the set of positive integers $n \leq x$ with n equal to the discriminant of some cyclic quartic field. Let $C(x)=\operatorname{card} S(x)$. It was shown in [2] that

$$
\begin{equation*}
C(x)=\frac{11}{2 \pi^{2}}\left(\frac{88+\sqrt{2}}{88} C-1\right) x^{1 / 2}+O\left(x^{1 / 3} \log x\right) \tag{1.1}
\end{equation*}
$$

as $x \rightarrow+\infty$, where

$$
\begin{equation*}
C=\prod_{p=1}\left(1+\frac{1}{(p+1) \sqrt{p}}\right) . \tag{1.2}
\end{equation*}
$$

Here and throughout this paper p denotes a prime.
Let q be a fixed prime. Let $S(x ; q)$ be the set of positive integers $n \leq x$ with n equal to the discriminant of some cyclic quartic field and n divisible by q. We determine an asymptotic formula for the number $C_{q}(x)=\operatorname{card} S(x ; q)$ of cyclic quartic field discriminants which are $\leq x$ and divisible by the prime q. as $x \rightarrow+\infty$. We prove

[^0]Theorem. Let q be a prime. Then

$$
\begin{equation*}
C_{q}(x)=E_{q} x^{1 / 2}+O\left(x^{1 / 3} \log x\right) \tag{1.3}
\end{equation*}
$$

as $x \rightarrow+\infty$, where

$$
\begin{aligned}
& E_{2}=\frac{3}{2 \pi^{2}}\left(\frac{24+\sqrt{2}}{24} C-1\right), \\
& E_{q}=\frac{11}{2 \pi^{2}(q+1)}\left(\frac{88+\sqrt{2}}{88} C-1\right), \quad \text { if } q \equiv 3(\bmod 4),
\end{aligned}
$$

and

$$
E_{q}=\frac{11}{2 \pi^{2}(q+1)}\left(\frac{88+\sqrt{2}}{88} \lambda(q) C-1\right), \quad \text { if } \quad q \equiv 1 \quad(\bmod 4)
$$

where

$$
\lambda(q):=\frac{1+\frac{1}{\sqrt{\bar{q}}}}{1+\frac{1}{(q+1) \sqrt{q}}} .
$$

The proportion of cyclic quartic field discriminants divisible by the fixed prime q is

$$
d_{q}=\lim _{x \rightarrow+\infty} \frac{C_{q}(x)}{C(x)}=\frac{E_{q}}{\frac{11}{2 \pi^{2}}\left\{\frac{8 x+\sqrt{2}}{88} C-1\right\}} .
$$

Appealing to the values of E_{q} given in the theorem, the proportion d_{q} is given by

$$
\begin{array}{ll}
d_{q}=\frac{(24+\sqrt{2}) C-24}{(88+\sqrt{2}) C-88}, & \text { if } q=2, \\
d_{q}=\frac{1}{q+1}, & \text { if } q \equiv 3 \quad(\bmod 4), \\
d_{q}=\frac{(88+\sqrt{2}) \lambda(q) C-88}{(q+1)((88+\sqrt{2}) C-88)}, & \text { if } q \equiv 1 \quad(\bmod 4) .
\end{array}
$$

2. Notation and Lemmas

We make considerable use of the notation and results in [1], [2] and [3]. As in $[1$, eqn. (3.7), p. 100 $]$ we set

$$
\begin{aligned}
\wp=\{n \in \mathbb{N} \mid & n=p_{1} p_{2} \cdots p_{m} \quad(m \geq 1) \\
& \left.p_{1}, \ldots, p_{m}(\text { distinct prines }) \equiv 1 \quad(\bmod 4)\right\} .
\end{aligned}
$$

Analogous to the sums $S_{1}(x)$ and $S_{2}(x)$ defined in [3, p. 142]. we define the sums $T_{1}(x)$ and $T_{2}(x)$ as follows.

Definition 2.1. For a prime q we set

$$
T_{1}(x)=\sum_{\substack{D \leq x^{1 / 3} \\ D \in \infty \\ q \nmid D}} \sum_{\substack{1 \leq A \leq \sqrt{x D^{-3}} \\(A .2 D)=1 \\ A \operatorname{sqf} \\ q \mid A}} 1
$$

and for a prime $q \equiv 1(\bmod 4)$ we set

$$
T_{2}(x)=\sum_{\substack{D \leq x^{1 / 3} \\ D \in D \\ q \mid D}} \sum_{\substack{1 \leq A \leq \sqrt{x D^{-3}} \\(A, 2 D)=1 \\ \text { s.s.af } \\ q \nmid A}} 1 .
$$

Here and throughout this paper "sqf" indicates squarefree. It is also convenient to define a constant C^{\prime}, which is closely related to C.

Definition 2.2. Let q be a prime. Set
$C^{\prime}=\prod_{\substack{p \equiv 1 \\(\bmod 4) \\ p \neq q}}\left(1+\frac{1}{(p+1) \sqrt{p}}\right)=\left\{\begin{array}{lll}C, & \text { if } q \not \equiv 1(\bmod 4), \\ \frac{C}{1+\frac{1}{(\alpha+1) / \sqrt{\bar{q}}},}, & \text { if } q \equiv 1 \quad(\bmod 4) .\end{array}\right.$
We begin by proving an asymptotic formula for $T_{1}(x)$ as $x \rightarrow+\infty$.
Lemma 2.1. Let q be a prime. Then

$$
T_{1}(x)=\frac{4}{\pi^{2}} \frac{x^{1 / 2}}{q+1}\left(C^{\prime}-1\right)+O\left(x^{1 / 3} \log x\right)
$$

as $x \rightarrow+\infty$, where the constant implied by the O-symbol is absolute.
Proof. In [3, Lemma 2.2] an asymptotic formula is given for the sum

$$
\sum_{\substack{1 \leq n \leq x \\(n . k)=1 \\ n \text { sqf } \\ q \mid n}} 1
$$

Appealing to this formula, we obtain

$$
\begin{aligned}
T_{1}(x)= & \sum_{\substack{D \leq x^{1 / 3} \\
D \in, j \\
q \nmid D}} \frac{x^{1 / 2}}{D^{3 / 2}} \frac{1}{q+1} \frac{6}{\pi^{2}} \frac{\phi(2 D)}{2 D} \prod_{p \mid 2 D}\left(1-\frac{1}{p^{2}}\right)^{-1} \\
& +O\left(x^{1 / 4} q^{-1 / 2} \sum_{D \leq x^{1 / 3}} d(D) D^{-3 / 4}\right) \\
= & \frac{4}{\pi^{2}} \frac{x^{1 / 2}}{q+1} \sum_{\substack{D \leq x^{1 / 3} \\
D \in \varphi \\
q \nmid D}} D^{-5 / 2} \phi(D) \prod_{p \mid D}\left(1-\frac{1}{p^{2}}\right)^{-1} \\
& +O\left(x^{1 / 4} q^{-1 / 2} \sum_{D \leq x^{1 / 3}} d(D) D^{-3 / 4}\right)
\end{aligned}
$$

In [2. Lemma 6] it is shown that

$$
\sum_{1 \leq n \leq x} \frac{d(n)}{n^{3 / 4}}=O\left(x^{1 / 4} \log x\right)
$$

Appealing to this result, we see that

$$
\begin{equation*}
\sum_{D \leq x^{1 / 3}} d(D) D^{-3 / 4}=O\left(x^{1 / 12} \log x\right) \tag{2.1}
\end{equation*}
$$

Also

$$
\begin{aligned}
\sum_{\substack{D \leq x^{1 / 3} \\
\bar{D} \in \mathscr{\infty} \\
q \nmid D}} D^{-5 / 2} \phi(D) \prod_{p \mid D}\left(1-\frac{1}{p^{2}}\right)^{-1}= & \sum_{\substack{D=1 \\
D \notin, \infty \\
q \nmid D}}^{\infty} D^{-5 / 2} \phi(D) \prod_{p \mid D}\left(1-\frac{1}{p^{2}}\right)^{-1} \\
& +O\left(\sum_{D>x^{1 / 3}} D^{-5 / 2} \phi(D)\right)
\end{aligned}
$$

as

$$
1<\prod_{p \mid D}\left(1-\frac{1}{p^{2}}\right)^{-1}<\frac{\pi^{2}}{6}
$$

Clearly

$$
\sum_{\substack{D=1 \\ D \in \& \\ q \nmid D}}^{\infty} D^{-5 / 2} \phi(D) \prod_{p \mid D}\left(1-\frac{1}{p^{2}}\right)^{-1}=\prod_{\substack{p \equiv 1 \\(\text { mod } 4) \\ p \neq q}}\left(1+\frac{1}{(p+1) \sqrt{p}}\right)-1=C^{\prime}-1
$$

Also

$$
\sum_{D>x^{1 / 3}} D^{-5 / 2} \phi(D)=O\left(\sum_{D>x^{1 / 3}} D^{-3 / 2}\right)=O\left(x^{-1 / 6}\right) .
$$

Putting these results together. we obtain

$$
T_{1}(x)=\frac{4}{\pi^{2}} \frac{x^{1 / 2}}{q+1}\left(C^{\prime}-1\right)+O\left(x^{1 / 3} \log x\right)
$$

as $x \rightarrow+\infty$. as asserted.
Lemma 2.2. Let q be a prime $\equiv 1(\bmod 4)$. Then

$$
T_{2}(x)=\frac{4}{\pi^{2}} \frac{x^{1 / 2}}{(q+1) \sqrt{q}} C^{\prime}+O\left(x^{1 / 3} \log x\right),
$$

as $x \rightarrow+\infty$, where the constant implied by the 0 -symbol is absolute.
Proof. In [3, Lemma 2.1, p. 142] an asymptotic formula for

$$
\sum_{\substack{1 \leq n \leq x \\ n \\ n, s q \\(n, k)=1}} 1
$$

is given. Using this formula we obtain

$$
\begin{aligned}
T_{2}(x) & =\sum_{\substack{D \leq x^{1 / 3} \\
D \in \neq p \\
q \mid D}}\left(\frac{x^{1 / 2}}{D^{3 / 2}} \frac{6}{\pi^{2}} \frac{\phi(2 D)}{2 D} \prod_{p \mid 2 D}\left(1-\frac{1}{p^{2}}\right)^{-1}+O\left(\left(\frac{x}{D^{3}}\right)^{1 / 4} d(D)\right)\right) \\
& =\frac{4}{\pi^{2}} x^{1 / 2} \sum_{\substack{D \leq x^{1 / 3} \\
D \in \varnothing \\
q \mid D}} D^{-5 / 2} \phi(D) \prod_{p \mid D}\left(1-\frac{1}{p^{2}}\right)^{-1}+O\left(x^{1 / 4} \sum_{D \leq x^{1 / 3}} d(D) D^{-3 / 4}\right) .
\end{aligned}
$$

From (2.1) we see that

$$
x^{1 / 4} \sum_{D \leq x^{1 / 3}} d(D) D^{-3 / 4}=O\left(x^{1 / 4} x^{1 / 12} \log x\right)=O\left(x^{1 / 3} \log x\right) .
$$

Also

$$
\begin{aligned}
& \sum_{\substack{D \leq x^{1 / 3} \\
D \in k \\
q \mid D}} D^{-5 / 2} \phi(D) \prod_{p \mid D}\left(1-\frac{1}{p^{2}}\right)^{-1} \\
& =\sum_{\substack{D=1 \\
D \in \times, q \mid D}}^{\infty} D^{-5 / 2} \phi(D) \prod_{p \mid D}\left(1-\frac{1}{p^{2}}\right)^{-1}+O\left(\sum_{D>x^{1 / 3}} D^{-5 / 2} \phi(D)\right) \\
& =q^{-5 / 2} \phi(q)\left(1-\frac{1}{q^{2}}\right)^{-1} \prod_{\substack{p \equiv 1 \\
(\bmod 4) \\
p \neq q}}\left(1+\frac{1}{(p+1) \sqrt{p}}\right)+O\left(x^{-1 / 6}\right) \\
& =\frac{1}{(q+1) \sqrt{4}} C^{\prime}+O\left(x^{-1 / 6}\right) .
\end{aligned}
$$

as

$$
\sum_{D>x^{1 / 3}} D^{-\tilde{j} / 2} \phi(D)=O\left(\sum_{I>x^{1 / 3}} D^{-3 / 2}\right)=O\left(x^{-1 / 6}\right)
$$

Thus

$$
\begin{aligned}
T_{2}(x) & =\frac{4}{\pi^{2}} \frac{x^{1 / 2}}{(q+1) \sqrt{q}} C^{\prime}+O\left(x^{1 / 2-1 / 6}\right)+O\left(x^{1 / 3} \log x\right) \\
& =\frac{4}{\pi^{2}} \frac{x^{1 / 2}}{(q+1) \sqrt{q}} C^{\prime}+O\left(x^{1 / 3} \log x\right),
\end{aligned}
$$

as asserted.

3. Proof of Theorem

We recall from [2, Theorem 4, p. 191] the following result.
Proposition. Let $n \in \mathbb{N}$. Then

$$
n=d\left(K^{\prime}\right) \text { for some cyclic quartic field } K
$$

if and only if

$$
\begin{aligned}
& n=A^{2} D^{3} \cdot 2^{4} A^{2} D^{3} \cdot 2^{6} A^{2} D^{3} \text { or } 2^{11} A^{2} D^{3} \\
& \text { for some } D \in \wp \quad \text { and some odd positive squarefree integer } \quad A \\
& \text { coprime with } D
\end{aligned}
$$

or

$$
n=2^{11} A^{2} \text { for some odd positive squarefree integer } A
$$

First we consider the case $q=2$. From the proposition just quoted we see that

$$
C_{2}(x)=\sum_{\alpha \in\{2,3,11 / 2\}} \sum_{\substack{\left.D \leq x^{1 / 3} \\ D \in \psi\right)}} \sum_{\substack{1 \leq A \leq\left(x / 2^{20} D^{3}\right)^{1 / 2} \\(A \cdot 2 D)=1 \\ A \mathrm{sqf}^{2}}} 1+\sum_{\substack{1 \leq A \leq\left(x / 2^{11}\right)^{1 / 2} \\ A \text { odd } \\ 4 \mathrm{sqf}^{2}}} 1
$$

so that

$$
C_{2}(x)=\sum_{\alpha \in\{2,3,11 / 2\}} \sum_{\substack{D \leq x^{1 / 3} \\ D \in \wp}} T\left(x^{1 / 2} D^{-3 / 2} 2^{-\alpha}\right)+E\left(x^{1 / 2} 2^{-11 / 2}\right),
$$

where

$$
T(x)=\sum_{\substack{1 \leq A \leq x \\(A, 2 D)=1 \\ A \mathrm{sqf}}} 1, \quad E(x)=\sum_{\substack{1 \leq A \leq x \\ A \text { odd } \\ A \approx q f}} 1 .
$$

From [2, eqn. (5.8), p. 192] we have

$$
E\left(x^{1 / 2} 2^{-11 / 2}\right)=\frac{1}{2^{7 / 2} \pi^{2}} x^{1 / 2}+O\left(x^{1 / 4}\right)
$$

By exactly the same argument as in [2, pp. 192-193] with $\alpha=0$ omitted, we obtain

$$
\sum_{\alpha \in\{2,3,11 / 2\}} \sum_{\substack{ \\D \leq x^{1 / 3} \\ D \in \wp}} T\left(x^{1 / 2} D^{-3 / 2} 2^{-\alpha}\right)=\sum_{\alpha \in\{2,3,11 / 2\}} \frac{4 x^{1 / 2}}{2^{\alpha} \pi^{2}}(C-1)+O\left(x^{1 / 3} \log x\right) .
$$

Hence

$$
\begin{aligned}
C_{2}(x) & =\left(\frac{x^{1 / 2}}{\pi^{2}}+\frac{x^{1 / 2}}{2 \pi^{2}}+\frac{x^{1 / 2}}{2^{7 / 2} \pi^{2}}\right)(C-1)+O\left(x^{1 / 3} \log x\right)+\frac{x^{1 / 2}}{2^{7 / 2} \pi^{2}} \\
& =\frac{3}{2 \pi^{2}}\left(\frac{24+\sqrt{2}}{24} C-1\right) x^{1 / 2}+O\left(x^{1 / 3} \log x\right)
\end{aligned}
$$

as asserted.

Next we find an asymptotic formula for $C_{q}(x)$ when q is a prime with $q \equiv 3$ (mod 4). From the proposition (remembering that $D \in \wp$ cannot be divisible by $q)$. we see that for $q \equiv 3(\bmod 4)$ we have

$$
C_{q}(x)=\sum_{\alpha \in\{0.4,6.11\}} \sum_{\substack{D \leq x^{1 / 3}}} \sum_{\substack{1 \leq A \leq\left(x / 2^{\alpha} D^{3}\right)^{1 / 2} \\\left(A \in \wp \\\left(A \operatorname{sqf}^{1 / 2}\right)=1 \\ q \mid A\right.}} 1+\sum_{\substack{1 \leq A \leq\left(x / 2^{11}\right)^{1 / 2} \\ A \\ A \text { odd } \\ \text { sqf } \\ q \mid A}} 1
$$

so that

$$
\begin{equation*}
C_{q}(x)=\sum_{\alpha \in\{0,4,6,11\}} T_{1}\left(2^{-\alpha} x\right)+\sum_{\substack{1 \leq A \leq\left(x / /^{11}\right)^{1 / 2} \\ A \\ A \text { odd } \\ q \mid A}} 1 . \tag{3.1}
\end{equation*}
$$

Appealing to [3, Lemma 2.2, p. 142] the second sum on the right hand side of (3.1) is

$$
\left(\frac{x}{2^{11}}\right)^{1 / 2} \frac{1}{q+1} \frac{6}{\pi^{2}} \frac{\phi(2)}{2} \prod_{p \mid 2}\left(1-\frac{1}{p^{2}}\right)^{-1}+O\left(x^{1 / 4}\right)=\frac{x^{1 / 2}}{(q+1) \pi^{2}} 2^{-7 / 2}+O\left(x^{1 / 4}\right)
$$

Then, appealing to Lemma 2.1, we obtain

$$
\begin{aligned}
C_{q}(x)= & \sum_{\alpha \in\{0.4,6.11\}} T_{1}\left(2^{-\alpha} x\right)+\frac{2^{-7 / 2}}{(q+1) \pi^{2}} x^{1 / 2}+O\left(x^{1 / 4}\right) \\
= & \frac{\left(C^{\prime}-1\right)}{(q+1) \pi^{2}} x^{1 / 2}\left(\frac{4}{2^{11 / 2}}+\frac{4}{2^{3}}+\frac{4}{2^{2}}+4\right)+O\left(x^{1 / 3} \log x\right) \\
& +\frac{2^{-7 / 2}}{(q+1) \pi^{2}} x^{1 / 2}+O\left(x^{1 / 4}\right) \\
= & \frac{11}{2 \pi^{2}(q+1)}\left(\frac{88+\sqrt{2}}{88} C-1\right) x^{1 / 2}+O\left(x^{1 / 3} \log x\right),
\end{aligned}
$$

as $C^{\prime}=C$ when $q \equiv 3(\bmod 4)$.
Finally we determine an asymptotic formula for $C_{q}(x)$ when q is a prime with $q \equiv 1(\bmod 4)$. From the proposition we obtain for $q \equiv 1(\bmod 4)$

$$
\begin{aligned}
& +\sum_{\alpha \in\{0.4 .6 .11\}} \sum_{\substack{D \leq x^{1 / 3} \\
D E_{w}, q \nmid D}} \sum_{\substack{ \\
(A .2 D)=1 \\
A \text { sqf } \\
q \mid A}} 1 \\
& +\sum_{\substack{1 \leq A \leq\left(x / 2^{11}\right)^{1 / 2} \\
A \operatorname{odd} \\
A \operatorname{sqf} \\
q \mid A}} 1
\end{aligned}
$$

so that
(3.2) $C_{q}(x)=\sum_{\alpha \in\{0,4.6 .11\}} T_{1}\left(2^{-\alpha} x\right)+\sum_{\alpha \in\{0.4,6.11\}} T_{2}\left(2^{-\alpha} x\right)+\sum_{\substack{1 \leq A \leq\left(x / 2^{11}\right)^{1 / 2} \\ A \\ A \\ \text { odd } \\ \text { s. } \\ q \mid A}} 1$.

Exactly as in the determination of $C_{q}(x)$ when $q \equiv 3(\bmod 4)$, we obtain

$$
\begin{align*}
& \sum_{\alpha \in\{0.4 .6,11\}} T_{1}\left(2^{-\alpha} x\right)+\sum_{\substack{A \leq\left(x / 2^{11}\right)^{1 / 2} \\
A \text { odd } \\
A \text { sqf } \\
q \mid A}} 1 \tag{3.3}\\
& =\frac{11}{2 \pi^{2}(q+1)}\left(\frac{88+\sqrt{2}}{88} C^{\prime}-1\right) x^{1 / 2}+O\left(x^{1 / 3} \log x\right)
\end{align*}
$$

From (3.2) and (3.3), and appealing to Lemma 2.2, we obtain

$$
\begin{aligned}
C_{q}(x)= & \frac{11}{2 \pi^{2}(q+1)}\left(\frac{88+\sqrt{2}}{88} C^{\prime}-1\right) x^{1 / 2} \\
& +\frac{4}{\pi^{2}} \frac{x^{1 / 2}}{(q+1) \sqrt{q}} C^{\prime}\left(1+2^{-11 / 2}+2^{-2}+2^{-3}\right)+O\left(x^{1 / 3} \log x\right) \\
= & \frac{11}{2 \pi^{2}(q+1)}\left(\frac{88+\sqrt{2}}{88}\left(1+\frac{1}{\sqrt{q}}\right) C^{\prime}-1\right) x^{1 / 2}+O\left(x^{1 / 3} \log x\right) \\
= & \frac{11}{2 \pi^{2}(q+1)}\left(\frac{88+\sqrt{2}}{88} \lambda(q) C-1\right) x^{1 / 2}+O\left(x^{1 / 3} \log x\right)
\end{aligned}
$$

as

$$
\left(1+\frac{1}{\sqrt{q}}\right) C^{\prime}=\lambda(q) C
$$

when $q \equiv 1(\bmod 4)$. This completes the proof.

References

[1] Z.M. Ou and K.S. Williams, On the density of cyclic quartic fields, Canad. Math. Bull. 44 (2001), 97-104.
[2] B.K. Spearman and K.S. Williams. Integers which are discriminants of bicyclic or cyclic quartic fields, JP J. Algebra Number Theory Appl. 1 (2001), 179-194
[3] B.K. Spearman and K.S. Williams. The proportion of cyclic quartic fields with discriminant divisible by a given prime. Proc. Japan Acad. Ser. A. 80 (2004), 141-145.

Blair K. Spearman
Department of Mathematics, Statistics and Physics
University of British Columbia Okanagan
Kelowna. B.C.
Canada V1V 1V7
E-mail: blair.spearman@ubc.ca
Kemneth S. Williams
School of Mathematics and Statistics
Carleton University
Ottawa, Ontario
Canada K1S 5B6
E-mail: kwilliamiconnect.carleton.ca

[^0]: Both authors were supported by research grants from the Natural Sciences and Engineering Research Council of Canada.

