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1. Introduction

Let K be an algebraic number field. Let OK denote the ring of integers of K . Let d(K) de-
note the discriminant of K . Let θ ∈OK be such that K =Q(θ). The minimal polynomial
of θ over Q is denoted by irrQ(θ). The discriminant D(θ) and the index ind(θ) of θ are
related by the equation

D(θ)= ( ind(θ)
)2
d(K). (1.1)

If p is a prime not dividing ind(θ), then it is well known that the following theorem of
Dedekind gives explicitly the factorization of the principal ideal 〈p〉 of OK into prime
ideals in terms of the irreducible factors of irrQ(θ) modulo p; see, for example, [3, Theo-
rem 10.5.1, page 257].

Theorem 1.1. Let K =Q(θ) be an algebraic number field with θ ∈OK . Let p be a rational
prime. Let

f (x)= irrQ(θ)∈ Z[x]. (1.2)

Let ¯ denote the natural map Z[x]→ Zp[x], where Zp = Z/pZ. Let

f̄ (x)= g1(x)e1 ···gr(x)er , (1.3)

where g1(x), . . . ,gr(x) are distinct irreducible polynomials in Zp[x], and e1, . . . ,er are positive
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2 Decomposition of primes in a cubic field

integers. For i= 1,2, . . . ,r, let fi(x) be any polynomial of Z[x] such that f̄i = gi and deg( fi)=
deg(gi). Set

Pi =
〈
p, fi(θ)

〉
, i= 1,2, . . . ,r. (1.4)

If ind(θ) �≡ 0 (mod p), then P1, . . . ,Pr are distinct prime ideals of OK with

〈p〉 = Pe1
1 ···Per

r ,

N
(
Pi
)= pdeg fi , i= 1,2, . . . ,r.

(1.5)

On the other hand if p is a prime dividing ind(θ), no such general theorem is known
which gives the prime ideals explicitly, and all that is available in general is the Buchmann-
Lenstra algorithm [4, page 315] for decomposing a prime in a number field. If p is not a
common index divisor of K , then there exist elements φ ∈OK for which K =Q(φ), and
p � ind(φ), and we can apply Dedekind’s theorem to obtain the prime ideal factorization
of 〈p〉 from the minimal polynomial irrQ(φ). However given θ it is not easy to determine
such an element φ in general. Moreover when p is a common index divisor of K , no such
element φ exists and Dedekind’s theorem cannot be applied.

In this paper we treat the case when K is a cubic field and p is a prime dividing ind(θ).
When p is a common index divisor of K (the only possibility is p = 2), we quote the
results in [2]. When p is not a common index divisor, we construct an element φ ∈ OK

such that K = Q(φ) and p � ind(φ) and then apply Dedekind’s theorem to obtain the
prime ideal factorization of 〈p〉. Our construction of φ was guided by the p-integral bases
of K given by Alaca [1]. We give explicitly the prime ideals in the factorization of 〈p〉
into prime ideals in OK . The form of the prime ideal factorization has been given by
Llorente and Nart [6, Theorem 1, page 580] and we make use of their results. A method
for factoring all primes in a cubic field is given in [5, pages 119–121]. It is well known
that K can be given in the form K =Q(θ), where θ is a root of the irreducible polynomial

f (x)= x3− ax+ b, a,b ∈ Z, (1.6)

so that irrQ(θ)= f (x). Moreover it is further known that a and b can be chosen so that
there are no primes p with p2 | a and p3 | b. We have

D(θ)= 4a3− 27b2. (1.7)

Let νp(k) denote the largest nonnegative integer m such that pm divides the nonzero in-
teger k. From (1.1) we deduce that

νp
(

ind(θ)
)= νp

(
D(θ)

)− νp
(
d(K)

)

2
. (1.8)

We set

Dp(θ)= D(θ)

pνp

(
D(θ)

) . (1.9)
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Table 1.1. p = 2.

Case Conditions ν2(d(K)) ν2(ind(θ)) φ
Factors

of 〈2〉
Prime

ideals
Norms

A1
a≡ 0(4), b ≡ 4(8)

ν2(D(θ))= 4
2 1 φ = θ2

2
P3 P = 〈2,φ〉 N(P)= 2

A2
a≡ 2(4), b ≡ 0(8)

ν2(D(θ))= 5
3 1 φ = 1 + θ +

θ2

2
PQ2

P = 〈2,1 +φ〉
Q= 〈2,φ〉

N(P)= 2

N(Q)= 2

A3
a≡ 2(4), b ≡ 4(8)

ν2(D(θ))= 4
2 1 φ = θ2

2
PQ2

P = 〈2,φ〉
Q= 〈2,1 +φ〉

N(P)= 2

N(Q)= 2

A4

a≡ 1(4), b ≡ 0(4)

D2(θ)≡ 1(8)

ν2(D(θ))= 2

0 1 φ = θ + θ2

2
PQR

P = 〈2,θ〉
Q= 〈2,1 +φ〉
R= 〈2,1 + θ +φ〉

N(P)= 2

N(Q)= 2

N(R)= 2

A5

a≡ 1(4), b ≡ 0(4)

D2(θ)≡ 5(8)

ν2(D(θ))= 2

0 1 φ = θ + θ2

2
PQ

P = 〈2,φ〉
Q= 〈2,1 +φ+φ2

〉
N(P)= 2

N(Q)= 4

A6

a≡ 3(4), b ≡ 2(4)

ν2(D(θ))≡ 1(2)

ν2(D(θ))≥ 5

3
ν2(D(θ))− 3

2

φ = 1 + λ+
λ2

2
λ= α

2m+1

m= ν2(D(θ))− 3
2

PQ2
P = 〈2,1 +φ〉
Q= 〈2,φ〉

N(P)= 2

N(Q)= 2

A7

a≡ 3(4), b ≡ 2(4)

ν2(D(θ))≡ 0(2)

ν2(D(θ))≥ 4

D2(θ)≡ 3(4)

2
ν2(D(θ))− 2

2

φ = α

2m+1

m= ν2(D(θ))− 2
2

PQ2
P = 〈2,φ〉
Q= 〈2,1 +φ〉

N(P)= 2

N(Q)= 2

A8

a≡ 3(4), b ≡ 2(4)

ν2(D(θ))≡ 0(2)

ν2(D(θ))≥ 4

D2(θ)≡ 1(8)

0
ν2(D(θ))

2

φ = α

2m

m= ν2(D(θ))
2

PQR

P = 〈2,φ〉
Q=

〈
2,

2 +φ+φ2

2

�

R=
〈

2,
2 + 3φ+φ2

2

�

N(P)= 2

N(Q)= 2

N(R)= 2

A9

a≡ 3(4), b ≡ 2(4)

ν2(D(θ))≡ 0(2)

ν2(D(θ))≥ 4

D2(θ)≡ 5(8)

0
ν2(D(θ))

2

φ = λ+ λ2

2

λ= α

2m+1

m= ν2(D(θ))− 2
2

PQ
P = 〈2,φ〉
Q= 〈2,1 +φ+φ2

〉
N(P)= 2

N(Q)= 4

The determination of νp(d(K)) was carried out by Llorente and Nart [6, Theorem 2, page
583] in 1983; see also Alaca [1]. The values of νp(D(θ)) and νp(d(K)) are listed in tabular
form in Alaca [1] depending on congruence conditions on a and b. From [1] we deduce
that p | ind(θ) in precisely those cases listed in Tables 1.1, 1.2, 1.3, and no others. We
abbreviate r ≡ s (modm) by r ≡ s(m). In the sixth column of each table we give the form
of the prime ideal factorization from the work of Llorente and Nart [6, Theorem 1, page
580]. However, Llorente and Nart did not give the prime ideals explicitly. We give explicit
formulae for these prime ideals in the seventh column of each of Tables 1.1, 1.2, and 1.3.
It is convenient to set

α=−4a2 + 9bθ + 6aθ2 ∈OK. (1.10)



4 Decomposition of primes in a cubic field

Table 1.2. p = 3.

Case Conditions ν3(d(K)) ν3(ind(θ)) φ
Factors

of 〈3〉
Prime

ideals
Norms

B1

2= ν3(b)

= ν3(a)

ν3(D(θ))= 6

4 1 φ = θ2

3
P3 P = 〈3,φ〉 N(P)= 3

B2

2= ν3(b)

< ν3(a)

ν3(D(θ))= 7

5 1 φ = θ2

3
P3 P = 〈3,φ〉 N(P)= 3

B3

1= ν3(a)

< ν3(b)

ν3(D(θ))= 3

1 1

φ =

⎧
⎪⎪⎨

⎪⎪⎩

θ +
θ2

3
, (†),

−θ +
θ2

3
, (††).

(†) if 3a− b �≡ 0(27)

(††) if 3a+ b �≡ 0(27)

see Note

PQ2
P = 〈3,φ〉
Q =

〈
3,φ− a

3

〉 N(P)= 3

N(Q)= 3

B4

ν3(a)≥ 1,

ν3(b)= 0

a �≡ 3(9),

b2 ≡ a+ 1(9)

ν3(D(θ))= 3

1 1

φ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1− bθ + θ2

3
, (‡),

1 + 2bθ + θ2

3
, (‡‡).

(‡) if 9 ‖ a+ 1− b2

(‡‡) if 27 | a+ 1− b2

PQ2

P =
〈

3,
−(2a+ 3)

3
+φ

�

Q = 〈3,φ〉, (‡)

P =
〈

3,
a

3
+φ

〉

Q = 〈3,1 +φ〉, (‡‡)

N(P)= 3

N(Q)= 3

B5

a≡ 3(9),

ν3(b)= 0

b2 ≡ 4(9),

b2 �≡ a+ 1(27)

ν3(D(θ))= 5

3 1 φ = 1− bθ + θ2

3
P3 P = 〈3,φ〉 N(P)= 3

B6

a≡ 3(9),

ν3(b)= 0

b2 ≡ a+ 1(27)

ν3(D(θ))≡ 1(2)

ν3(D(θ))≥ 7

1
ν3(D(θ))− 1

2

φ =

⎧
⎪⎪⎨

⎪⎪⎩

−λ+
λ2

3
, (∗)

λ+
λ2

3
, (∗∗)

λ= α

3m+2

m= ν3(D(θ))− 3
2

(∗) if a �≡ −3m−1D3(θ)(9)

(∗∗) if a �≡ 3m−1D3(θ)(9)

see Note

PQ2

P = 〈3,φ〉

Q =
〈

3,φ− aD3(θ)
3

〉 N(P)= 3

N(Q)= 3

B7

a≡ 3(9),

ν3(b)= 0

b2 ≡ a+ 1(27)

ν3(D(θ))≡ 0(2)

ν3(D(θ))≥ 6

D3(θ)≡ 2(3)

0
ν3(D(θ))

2

φ = α

3m+2

m= ν3(D(θ))− 2
2

PQ

P = 〈3,2 +φ〉
Q = 〈3,2 +φ+φ2

〉

if m= 2,

P = 〈3,φ〉
Q = 〈3,1 +φ2

〉

if m≥ 3

N(P)= 3

N(Q)= 9

B8

a≡ 3(9),

ν3(b)= 0

b2 ≡ a+ 1(27)

ν3(D(θ))≡ 0(2)

ν3(D(θ))= 6

D3(θ)≡ 1(3)

0 3 P P = 〈3〉 N(P)=27
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Table 1.2. Continued.

Case Conditions ν3(d(K)) ν3(ind(θ)) φ
Factors

of 〈3〉
Prime

ideals
Norms

B9

a≡ 3(9),

ν3(b)= 0

b2 ≡ a+ 1(27)

ν3(D(θ))≡ 0(2)

ν3(D(θ))≥ 8

D3(θ)≡ 1(3)

0
ν3(D(θ))

2

φ= α

3m+2

m= ν3(D(θ))− 2
2

PQR

P = 〈3,φ〉
Q = 〈3,−1 +φ〉
R= 〈3,1 +φ〉

N(P)= 3

N(Q)= 3

N(R)= 3

Note: In case B3 (resp., B6) if b≡ 0(27) (resp., m≥ 3), both choices for φ are valid.

Table 1.3. p > 3.

Case Conditions νp(d(K)) νp(ind(θ)) φ
Factors

of 〈p〉
Prime

ideals
Norms

C1
2= νp(b)≤ νp(a)

νp(D(θ))= 4
2 1 φ= θ2

p
P3 P = 〈p,φ〉 N(P)= p

C2
1= νp(a) < νp(b)

νp(D(θ))= 3
1 1 φ=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

θ2

p
, if p2 ‖ b,

θ +
θ2

p
, if p3 | b.

PQ2

P = 〈p,φ〉
Q =

〈
p,− a

p
+φ

� N(P)= p

N(Q)= p

C3

νp(a)= νp(b)= 0

νp(D(θ))≡ 1(2)

νp(D(θ))≥ 3
1

νp(D(θ))− 1

2

φ= λ+
λ2

p

λ= α

pm

m= νp(D(θ))− 1

2

PQ2
P = 〈p,φ〉
Q = 〈p,−3aDp(θ) +φ

〉
N(P)= p

N(Q)= p

C4

νp(a)= νp(b)= 0

νp(D(θ))≡ 0(2)

νp(D(θ))≥ 2
(
Dp(θ)

p

)

= 1

0
νp(D(θ))

2

φ= α

pm

m= νp(D(θ))

2
t2 ≡ 3aDp(θ)(p)

PQR

P = 〈p,φ〉
Q = 〈p,−t+φ〉
R= 〈p, t+φ〉

N(P)= p

N(Q)= p

N(R)= p

C5

νp(a)= νp(b)= 0

νp(D(θ))≡ 0(2)

νp(D(θ))≥ 2
(
Dp(θ)

p

)

=−1

0
νp(D(θ))

2

φ= α

pm

m= νp(D(θ))

2

PQ
P = 〈p,φ〉
Q = 〈p,−3aDp(θ) +φ2

〉
N(P)= p

N(Q)= p2

It is easy to show that the minimal polynomial of α overQ is

q(x)= x3− 3aD(θ)x+D(θ)2 (1.11)

and that

disc
(
q(x)

)= 36b2D(θ)3. (1.12)



6 Decomposition of primes in a cubic field

2. Case A1

In this case we can define integers A and B by a= 4A and b = 8B + 4. Set φ = θ2/2. The
minimal polynomial of φ overQ is

p(x)= x3− 4Ax2 + 4A2x− (8B2 + 8B+ 2
)

(2.1)

so that φ ∈OK . Further

disc
(
p(x)

)=−4(2B+ 1)2(108B2 + 108B− 16A3 + 27
)
. (2.2)

We have p(x)≡ x3 (mod2). As 22 ‖ disc
(
p(x)

)
, 22 ‖ d(K), we have 2 � ind(φ), so that by

Theorem 1.1,

〈2〉 = 〈2,φ〉3. (2.3)

3. Cases A2, A3, A5, A7, B1, B2, B5, B7, B9, C1, C2

These cases can be treated similarly to case A1.

4. Cases A4, A8

In these cases 2 is a common index divisor and we can appeal to [6, Theorem 4, page 585]
for the results.

5. Case A6

We let λ = α/2m+1, where ν2(D(θ)) = 2m + 3 ≥ 5, and φ = 1 + λ + λ2/2. By (1.11), the
minimal polynomial of α overQ is x3− 3aD(θ)x+D(θ)2 so that the minimal polynomial
of λ overQ is

x3− 3aD(θ)
22m+2

x+
D(θ)2

23m+3
= x3− 6aD2(θ)x+ 2m+3D2(θ)2. (5.1)

Hence λ∈OK . We are now in case A2 with

a′ = 6aD2(θ)≡ 2 (mod4),

b′ = 2m+3D2(θ)2 ≡ 0 (mod8),

D(θ)′ = 36b2D(θ)3

26m+6
,

ν2
(
D(θ)

)′ = 2 + 3(2m+ 3)− (6m+ 6)= 5.

(5.2)

Thus by case A2 we obtain

〈2〉 = 〈2,φ+ 1〉〈2,φ〉2. (5.3)
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6. Case A9

In this case we set ν2(D(θ)) = 2m + 2 (so that m ≥ 1), λ = α/2m+1, and φ = (λ + λ2)/2.
Then proceeding as in case A6 we can reduce this case to case A5.

7. Case B3

In this case we have

1= ν3(a) < ν3(b), ν3
(
D(θ)

)= 3. (7.1)

Clearly 9 | 3a− b and 9 | 3a+ b. However 27 cannot divide both of 3a− b and 3a+ b as
their sum 6a is not divisible by 27. Hence we can define

φ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

θ2

3
+ θ if 3a− b �≡ 0 (mod27),

θ2

3
− θ if 3a+ b �≡ 0 (mod27).

(7.2)

We note that if 27 | b we can choose either value of θ2/3± θ for φ. Set

ε=
⎧
⎪⎨

⎪⎩

+1 if 3a− b �≡ 0 (mod27),

−1 if 3a+ b �≡ 0 (mod27),
(7.3)

subject to the remark above, so that

φ= θ2

3
+ εθ. (7.4)

The minimal polynomial of φ is

p(x)= x3− 2a
3
x2 +

(
− a+

a2

9
+ εb

)
x+ εb− b2

27
− εab

9
(7.5)

so that φ ∈OK . We have

p(x)≡ x3− 2a
3
x2 +

a2

9
x ≡ x

(
x− a

3

)2

(mod3). (7.6)

Further

disc
(
p(x)

)= D(θ)(3a− εb− 27)2

36
. (7.7)

As 3 ‖ disc(p(x)), 3 ‖ d(K), we have 3 � ind(φ), so that by Theorem 1.1, we obtain

〈3〉 = 〈3,φ〉
〈

3,φ− a

3

�2

. (7.8)
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8. Case B4

In this case we have 9 | a+ 1− b2. We set

φ=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
θ2− bθ + 1

)

3
if 9 ‖ a+ 1− b2,

(
θ2 + 2bθ + 1

)

3
if 27 | a+ 1− b2.

(8.1)

First we consider the case 9 ‖ a+ 1− b2. The minimal polynomial of φ is

p(x)= x3− (2a+ 3)
3

x2 +
(a+ 3)

(
a+ 1− b2

)

9
x−

(
a+ 1− b2

)2

27
(8.2)

so that p(x)∈ Z[x] and φ∈OK . We have

p(x)≡ x2
(
x− 2a+ 3

3

)
(mod3). (8.3)

Further

disc
(
p(x)

)= b2D(θ)

(
a+ 1− b2

)2

36
(8.4)

so that 3 ‖ disc(p(x)), 3 ‖ d(K), thus 3 � ind(φ), and by Theorem 1.1 we have

〈3〉 = 〈3,φ〉2
〈

3,φ− 2a+ 3
3

�
. (8.5)

Now we turn to the case 27 | a+ 1− b2. The minimal polynomial of φ is

p(x)= x3 + p2x
2 + p1x+ p0, (8.6)

where

p2 =− (2a+ 3)
3

,

p1 =
(
a2 + 4a− 4ab2 + 6b2 + 3

)

9
,

p0 =
(− a2− 2a+ 2ab2 + 8b4− 7b2− 1

)

27
.

(8.7)

Clearly

p2 ∈ Z,

p1 = (12a− 18)
(
a+ 1− b2

27

)
− 3

(
a

3

)2

+ 2
(
a

3

)
+ 1∈ Z,

p0 = a(a+ 1)
3

+ 9
(
a+ 1− b2

27

)(
24
(
a+ 1− b2

27

)
− (2a+ 1)

)
∈ Z,

(8.8)



Şaban Alaca et al. 9

so that φ ∈OK . Further

p2 ≡ a

3
+ 2 (mod3),

p1 ≡ 2a
3

+ 1 (mod3),

p0 ≡ a

3
(mod3).

(8.9)

Hence

p(x)≡
(
x+

a

3

)
(x+ 1)2 (mod3). (8.10)

Further

disc
(
p(x)

)= b2D(θ)

(
8b2− 2a+ 1

)2

36
. (8.11)

As a≡ 0,6 (mod9), a+ 1− b2 ≡ 0 (mod27), and

8b2− 2a+ 1= 6(a− 3)− 8
(
a+ 1− b2)+ 27; (8.12)

we see that

32 ‖ 8b2− 2a+ 1 (8.13)

so that 3 ‖ disc(p(x)), 3 ‖ d(K), and thus 3 � ind(φ). Hence by Theorem 1.1 we have

〈3〉 =
〈

3,φ+
a

3

�
〈3,φ+ 1〉2. (8.14)

9. Case B6

In this case we set ν3(D(θ))= 2m+ 3 so that m≥ 2. Let

λ= α

3m+2
,

φ=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λ2

3
+ λ if a �≡ 3m−1D3(θ) (mod9),

λ2

3
− λ if a �≡ −3m−1D3(θ) (mod9).

(9.1)

The minimal polynomial of λ is

p(x)= x3− aD3(θ)x+ 3mD3(θ)2,

disc
(
p(x)

)= 33b2D3(θ)3.
(9.2)
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We are now in case B3 with

a′ = aD3(θ), ν3(a′)= 1,

b′ = 3mD3(θ)2 ≡ 0 (mod9),

4a′3− 27b′2 = 33b2D3(θ)3, ν3
(
4a′3− 27b′2

)= 3.

(9.3)

Hence

〈3〉 = 〈3,φ〉
〈

3,φ− aD3(θ)
3

�2

. (9.4)

10. Case B8

Here 〈3〉 is a prime ideal.

11. Case C3

Similarly to case B6 this case can be reduced to case C2.

12. Cases C4, C5

Here

p � a, p � b, νp
(
D(θ)

)≡ 0 (mod2), νp
(
D(θ)

)≥ 2,

(
Dp(θ)

p

)
=
⎧
⎪⎨

⎪⎩

+1, case C4,

−1, case C5.

(12.1)

Set νp(D(θ))= 2m so that m≥ 1. Let φ= α/pm. The minimal polynomial of φ is

p(x)= x3− 3aDp(θ)x+ pmDp(θ)2,

disc
(
p(x)

)= 36b2D(θ)3

p6m
.

(12.2)

Clearly p � disc(p(x)) so that p � ind(φ). Now

p(x)≡ x
(
x2− 3aDp(θ)

)
(mod p). (12.3)

As

4a3− 27b2 ≡ 0 (mod p), p � a, p � b, p > 3, (12.4)

we have

(
3a
p

)

= 1. (12.5)
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Thus

x2− 3aDp(θ)≡
⎧
⎪⎨

⎪⎩

(x− t)(x+ t) (mod p), case C4,

irreducible (mod p), case C5,
(12.6)

where t2 ≡ 3aDp(θ) (mod p). Hence

〈p〉 =
⎧
⎪⎨

⎪⎩

〈p,φ〉〈p,φ− t〉〈p,φ+ t〉, case C4,

〈p,φ〉〈p,φ2− 3aDp(θ)
〉

, case C5,
(12.7)

where N(〈p,φ2− 3aDp(θ)〉)= p2.
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