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In this paper we prove an analogue of Mertens’ theorem for primes of each of the forms
a2+27b2 and 4a2+2ab+7b2 and then use this result to determine an asymptotic formula
for the number of positive integers n ≤ x which are discriminants of cyclic cubic fields
with each such field having field index 2.
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1. Introduction

Let n be a positive integer. It is known that n is the discriminant of a cyclic cubic
field if and only if

n = 81, (q1 · · · qr)2 or 81(q1 · · · qr)2,

where r ∈ N and q1, . . . , qr are distinct primes ≡ 1 (mod 3), see for example [3] and
[4]. We showed in [8] that the number of n ≤ x which are discriminants of cyclic
cubic fields is

31/4

π

10
9

x1/2

√
log x

∏
p≡1 (mod 3)

(
1 − 1

p2

)1/2

(1 + o(1)),

as x → +∞, where in the product p runs through primes.
In this paper we determine the number T (x) of n ≤ x which are discriminants

of cyclic cubic fields with each such field having field index equal to 2. In order to
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do this, we prove in Sec. 2 an analogue of Mertens’ theorem for primes of the form
a2+27b2 and primes of the form 4a2+2ab+7b2, see Theorem 2.12. A prime is repre-
sented by at most one of these two forms, and each form represents infinitely many
primes. We also make use of results of Wirsing [11] and Odoni [6], see Proposition
3.1. We prove the following theorem in Sec. 3.

Theorem 1.1. As x → +∞

T (x) = 22/331/12π−1/6θ−1/3Γ
(

1
6

)−1 ∏
p=a2+27b2

(
1 − 1

p2

)5/6

×
∏

p=4a2+2ab+7b2

(
1 − 1

p2

)−1/6
x1/2

(log x)5/6

(
1 + O

(
1

(log x)1−ε

))

for any ε with 0 < ε < 1, where the constant θ is defined in (2.12).

2. Mertens’ Theorem for Primes p = a2 + 27b2 and
p = 4a2 + 2ab + 7b2

For x ∈ R with x ≥ 2 we define

π1(x) =
∑
p≤x

p=a2+27b2

1, π2(x) =
∑
p≤x

p=4a2+2ab+7b2

1, (2.1)

θ1(x) =
∑
p≤x

p=a2+27b2

log p, θ2(x) =
∑
p≤x

p=4a2+2ab+7b2

log p, (2.2)

κ1(x) =
∑
p≤x

p=a2+27b2

log p

p
, κ2(x) =

∑
p≤x

p=4a2+2ab+7b2

log p

p
, (2.3)

λ1(x) =
∑
p≤x

p=a2+27b2

1
p
, λ2(x) =

∑
p≤x

p=4a2+2ab+7b2

1
p
. (2.4)

Lemma 2.1. As x → +∞

π1(x) =
1
6

x

log x
+ O

(
x

log2 x

)

and

π2(x) =
1
3

x

log x
+ O

(
x

log2 x

)
.

Proof. Let f = f(x, y) = ax2 + bxy + cy2 be a primitive integral binary quadratic
form with a nonsquare discriminant D. Set f−1 = ax2 − bxy + cy2. Let [f ] denote
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the class of f under the action of the modular group. Let h(D) denote the number
of classes of forms of discriminant D. Let

ε(f) =

{
2, if [f ] = [f−1],

1, if [f ] �= [f−1].

Landau [5] has shown that
∑

p ≤ x

p rep. by f

1 =
1

ε(f)h(D)
li x + Of,α

“
xe−(log x)1/α ”

,

as x → +∞, for some positive constant α. We choose D = −108. Here h(−108) = 3
and representatives of the three classes of positive-definite, primitive, integral, bi-
nary quadratic forms of discriminant −108 are

x2 + 27y2, 4x2 + 2xy + 7y2, 4x2 − 2xy + 7y2.

By Landau’s theorem, as

li x =
∫ x

2

dt

log t
=

x

log x
+ O

(
x

log2 x

)
(2.5)

and

xe−(log x)1/α

= O

(
x

log2 x

)
,

we have

π1(x) =
1
6

x

log x
+ O

(
x

log2 x

)

and

π2(x) =
1
3

x

log x
+ O

(
x

log2 x

)

as asserted.

Lemma 2.2. As x → +∞

θ1(x) =
1
6
x + O

(
x

log x

)
,

θ2(x) =
1
3
x + O

(
x

log x

)
.

Proof. By partial summation [2, Theorem 421, p. 346] we have

θ1(x) = π1(x) log x −
∫ x

2

π1(t)
t

dt, x ≥ 2.
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Appealing to Lemma 2.1 we obtain

θ1(x) =
(

1
6

x

log x
+ O

(
x

log2 x

))
log x + O

(∫ x

2

dt

log t

)
=

1
6
x + O

(
x

log x

)

by (2.5). We can treat θ2(x) similarly.

Lemma 2.3. As x → +∞
κ1(x) =

1
6

log x + O(log log x),

κ2(x) =
1
3

log x + O(log log x).

Proof. By partial summation we have

κ1(x) =
θ1(x)

x
+
∫ x

2

θ1(t)
t2

dt, x ≥ 2.

By Lemma 2.2 we obtain∫ x

2

θ1(t)
t2

dt =
∫ x

2

1
6 t + O

(
t

log t

)
t2

dt =
1
6

log x − 1
6

log 2 + O

(∫ x

2

dt

t log t

)

=
1
6

log x + O(1) + O(log log x),

which gives the asserted result. Similarly for κ2(x).

Lemma 2.4. As x → +∞
λ1(x) =

1
6

log log x + c1 + O

(
1

log log x

)
,

λ2(x) =
1
3

log log x + c2 + O

(
1

log log x

)
,

where

c1 =
1
6
− 1

6
log log 2 +

∫ ∞

2

κ1(x) − 1
6 log x

x log2 x
dx,

c2 =
1
3
− 1

3
log log 2 +

∫ ∞

2

κ2(x) − 1
3 log x

x log2 x
dx.

Proof. Define

τ1(x) = κ1(x) − 1
6

log x

so that by Lemma 2.3 we have

κ1(x) =
1
6

log x + τ1(x), τ1(x) = O(log log x). (2.6)

By partial summation we have

λ1(x) =
κ1(x)
log x

+
∫ x

2

κ1(t)
t log2 t

dt.
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By (2.6) we obtain

λ1(x) =
1
6

+ O

(
log log x

log x

)
+

1
6

log log x − 1
6

log log 2 +
∫ x

2

τ1(t)
t log2 t

dt.

Now ∫ ∞

x

τ1(t)
t log2 t

= O

(∫ ∞

x

log log t

t log2 t
dt

)

= O

(∫ ∞

x

dt

t log t(log log t)2

)

= O

(
1

log log x

)
,

so that

λ1(x) =
1
6

log log x +
1
6
− 1

6
log log 2 +

∫ ∞

2

τ1(t)
t log2 t

dt + O

(
1

log log x

)
,

as asserted. Similarly for λ2(x).

Lemma 2.5. For each prime p set

χ(p) =




2, if p = a2 + 27b2,

−1, if p = 4a2 + 2ab + 27b2,

0, otherwise.

Then

(i)
∑
p≤x

χ(p)
p

= 2c1 − c2 + O

(
1

log log x

)
, as x → +∞.

(ii)
∑

p

χ(p)
p

(converges) = 2c1 − c2.

(iii) 2c1 − c2 =
∫ ∞

2

2κ1(x) − κ2(x)
x log2 x

dx.

Proof. (i) As x → +∞ we have∑
p≤x

χ(p)
p

= 2
∑

p ≤ x

p = a2+27b2

1
p
−

∑
p ≤ x

p = 4a2+2ab+27b2

1
p

= 2λ1(x) − λ2(x)

= 2
(

1
6

log log x + c1 + O

(
1

log log x

))

−
(

1
3

log log x + c2 + O

(
1

log log x

))

= 2c1 − c2 + O

(
1

log log x

)
,

by Lemma 2.4.
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(ii) Letting x → +∞ in part (i) we obtain the asserted result.
(iii) This follows immediately from Lemma 2.4.

Lemma 2.6. The infinite product

∏
p

(
1 − 1

p

)χ(p)

converges.

Proof. Set

γ(p) =




−2 + 1
p , if p = a2 + 27b2,

1 + 1
p + 1

p2 + · · · , if p = 4a2 + 2ab + 7b2,

0, otherwise.

Then

1 +
γ(p)

p
=




(
1 − 1

p

)2

, if p = a2 + 27b2,

1
1− 1

p

, if p = 4a2 + 2ab + 7b2,

1, otherwise.

Hence

1 +
γ(p)

p
=
(

1 − 1
p

)χ(p)

. (2.7)

Further

γ(p) = −χ(p) + s(p), (2.8)

where

s(p) =




1
p , if p = a2 + 27b2,

1
p + 1

p2 + · · · , if p = 4a2 + 2ab + 7b2,

0, otherwise.

Clearly

0 ≤ s(p) ≤ 1
p

+
1
p2

+ · · · =
1

p − 1
≤ 2

p

so that the infinite series ∑
p

s(p)
p

(2.9)

converges. Hence, by Lemma 2.5(ii), (2.8) and (2.9), we see that∑
p

γ(p)
p

= −
∑

p

χ(p)
p

+
∑

p

s(p)
p

(2.10)
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converges. Further

|γ(p)| ≤ |χ(p)| + |s(p)| ≤ 2 +
2
p
≤ 3

so that the infinite series ∑
p

γ(p)2

p2
(2.11)

converges. From the convergence of the infinite series (2.10) and (2.11), we deduce
from [1, Sec. 41, p. 109] that the infinite product∏

p

(
1 +

γ(p)
p

)

converges. Then, from (2.7), we see that the infinite product

∏
p

(
1 − 1

p

)χ(p)

converges as asserted.

We set

θ :=
∏
p

(
1 − 1

p

)χ(p)

. (2.12)

Lemma 2.7. The infinite series

(i)
∑

p=a2+27b2

(
log
(

1 − 1
p

)
+

1
p

)

and

(ii)
∑

p=4a2+2ab+7b2

(
log
(

1 − 1
p

)
+

1
p

)

converge.

Proof. We have

log
(

1 − 1
p

)
+

1
p

= − 1
2p2

− 1
3p3

− · · ·

so that ∣∣∣∣log
(

1 − 1
p

)
+

1
p

∣∣∣∣ ≤ 1
2p2

+
1

2p3
+ · · · =

1
2p(p − 1)

≤ 1
p2

,

proving the assertions.

In view of Lemma 2.7 we may define constants d1 and d2 by

d1 =
∑

p=a2+27b2

(
log
(

1 − 1
p

)
+

1
p

)
, d2 =

∑
p=4a2+2ab+7b2

(
log
(

1 − 1
p

)
+

1
p

)
.
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We also set

P1(x) =
∏

p ≤ x

p=a2+27b2

(
1 − 1

p

)
, P2(x) =

∏
p ≤ x

p = 4a2+2ab+7b2

(
1 − 1

p

)
.

Lemma 2.8. As x → +∞

P1(x) = f1(log x)−1/6

(
1 + O

(
1

log log x

))

and

P2(x) = f2(log x)−1/3

(
1 + O

(
1

log log x

))
,

where

f1 = e−c1+d1 , f2 = e−c2+d2 .

Proof. Appealing to (2.4) and Lemma 2.4, we obtain

log P1(x) =
∑

p ≤ x

p=a2+27b2

log
(

1 − 1
p

)

= −
∑

p ≤ x

p=a2+27b2

1
p

+
∑

p ≤ x

p=a2+27b2

(
log
(

1 − 1
p

)
+

1
p

)

= −λ1(x) + d1 −
∑

p > x

p=a2+27b2

(
log
(

1 − 1
p

)
+

1
p

)

= −1
6

log log x − c1 + O

(
1

log log x

)
+ d1 + O

(∑
n>x

1
n2

)

= −1
6

log log x − c1 + d1 + O

(
1

log log x

)
+ O

(
1
x

)

= −1
6

log log x − c1 + d1 + O

(
1

log log x

)
,

so

P1(x) = e−
1
6 log log x−c1+d1+O( 1

log log x)

= (log x)−1/6e−c1+d1

(
1 + O

(
1

log log x

))

= f1(log x)−1/6

(
1 + O

(
1

log log x

))

with f1 = e−c1+d1 . P2(x) can be treated similarly.
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Lemma 2.9.

f1f2 = e−γ/221/23−1/4π1/2
∏

p≡1 (mod 3)

(
1 − 1

p2

)1/2

.

Proof. Since

p = a2 + 27b2 or p = 4a2 + 2ab + 7b2 ⇔ p ≡ 1 (mod3),

we have by Mertens’ theorem for arithmetic progressions, see [8] or [10],

P1(x)P2(x) =
∏

p ≤ x

p≡1 (mod3)

(
1 − 1

p

)

= e−γ/221/23−1/4π1/2
∏

p≡1 (mod3)

(
1 − 1

p2

)1/2

(log x)−1/2+O((log x)−3/2),

as x → +∞. By Lemma 2.8 we have

P1(x)P2(x) = f1f2(log x)−1/2

(
1 + O

(
1

log log x

))
.

Hence

f1f2 = e−γ/221/23−1/4π1/2
∏

p≡1 (mod 3)

(
1 − 1

p2

)1/2

,

as asserted.

Lemma 2.10.

f2
1 f−1

2 = θ.

Proof. By Lemma 2.8 and (2.12) we have

f2
1 f−1

2 = lim
x→+∞P 2

1 (x)P−1
2 (x)

= lim
x→+∞

∏
p ≤ x

p=a2+27b2

(
1 − 1

p

)2 ∏
p ≤ x

p=4a2 + 2ab + 7b2

(
1 − 1

p

)−1

= lim
x→+∞

∏
p≤x

(
1 − 1

p

)χ(p)

=
∏
p

(
1 − 1

p

)χ(p)

= θ,

as asserted.
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Lemma 2.11.

f1 = e−γ/621/63−1/12π1/6θ1/3
∏

p≡1 (mod 3)

(
1 − 1

p2

)1/6

,

f2 = e−γ/321/33−1/6π1/3θ−1/3
∏

p≡1 (mod3)

(
1 − 1

p2

)1/3

.

Proof. This follows immediately from Lemmas 2.9 and 2.10.

Finally, from Lemmas 2.8 and 2.11, we obtain

Theorem 2.12. As x → +∞
∏
p≤x

p=a2+27b2

(
1 − 1

p

)
= e−γ/621/63−1/12π1/6θ1/3

∏
p≡1(mod 3)

(
1 − 1

p2

)1/6

× (log x)−1/6

(
1 + O

(
1

log log x

))
,

∏
p≤x

p=4a2+2ab+7b2

(
1 − 1

p

)
= e−γ/321/33−1/6π1/3θ−1/3

∏
p≡1 (mod 3)

(
1 − 1

p2

)1/3

× (log x)−1/3

(
1 + O

(
1

log log x

))
.

3. Proof of Theorem 1.1

It follows from [7] that the only positive integers n which are discriminants of
cyclic cubic fields with each such field having field index 2 are those of the form
(q1q2 · · · qr)2, where r ∈ N and q1, q2, . . . , qr are distinct primes of the form a2+27b2

for some integers a and b. Let A denote the set of positive integers each of which is
a product (possibly empty) of distinct primes of the form a2 +27b2. Then for x ≥ 1
we have

T (x) = Q(x1/2) − 1,

where

Q(x) =
∑

n ≤ x

n ∈ A

1.

From the work of Wirsing [11] and Odoni [6], we have (see [9]).
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Proposition 3.1. Let f : N → R be multiplicative with 0 ≤ f(n) ≤ 1 for all n ∈ N.

Suppose that there are constants τ and β with τ > 0 and 0 < β < 1 such that

∑
p≤x

f(p) = τ
x

log x
+ O

(
x

(log x)1+β

)
.

Then

lim
x→+∞

1
(log x)τ

∏
p≤x

(
1 +

f(p)
p

+
f(p2)

p2
+ · · ·

)

exists, and ∑
n≤x

f(n) = Ex(log x)τ−1 + O
(
x(log x)τ−1−β

)

with

E =
e−γτ

Γ(τ)
lim

x→+∞
1

(log x)τ

∏
p≤x

(
1 +

f(p)
p

+
f(p2)

p2
+ · · ·

)
.

We choose in Proposition 3.1

f(n) =

{
1, n ∈ A,

0, n /∈ A.

Clearly f is multiplicative and 0 ≤ f(n) ≤ 1 for all n ∈ N. Further, by Lemma 2.1,
we have

∑
p≤x

f(p) =
∑
p≤x

p=a2 + 27b2

1 = π1(x) =
1
6

x

log x
+ O

(
x

log2 x

)
,

so that we can take

τ =
1
6
, β = 1 − ε (0 < ε < 1).

By Proposition 3.1 we see that

lim
x→+∞

1
(log x)τ

∏
p≤x

(
1 +

f(p)
p

+
f(p2)

p2
+ · · ·

)

= lim
x→+∞(log x)−1/6

∏
p ≤ x

p = a2 + 27b2

(
1 +

1
p

)
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exists, and equals F , say. Hence

Q(x) =
∑
n≤x

n∈A

1

=
∑
n≤x

f(n)

= Ex(log x)τ−1 + O(x(log x)τ−1−β)

=
e−γ/6

Γ
(

1
6

)Fx(log x)−5/6 + O(x(log x)−11/6+ε),

as x → +∞. Next, by Theorem 2.12, we obtain

(log x)−1/6
∏
p≤x

p=a2+27b2

(
1 +

1
p

)

=

∏
p≤x

p=a2+27b2

(
1 − 1

p2

)
(log x)1/6

∏
p≤x

p=a2+27b2

(
1 − 1

p

)

=

∏
p=a2+27b2

(
1 − 1

p2

) (
1 + O

(
1
x

))
e−γ/621/63−1/12π1/6θ1/3

∏
p≡1 (mod3)

(
1 − 1

p2

)1/6(1 + O
(

1
log log x

))
so that

F = eγ/62−1/631/12π−1/6θ−1/3
∏

p=a2+27b2

(
1 − 1

p2

)5/6 ∏
p=4a2+2ab+7b2

(
1 − 1

p2

)−1/6

.

Hence

Q(x) = 2−1/631/12π−1/6θ−1/3Γ
(

1
6

)−1 ∏
p=a2+27b2

(
1 − 1

p2

)5/6

×
∏

p=4a2+2ab+7b2

(
1 − 1

p2

)−1/6

x(log x)−5/6 + O
(
x(log x)−11/6+ε

)
.

Finally

T (x) = 22/331/12π−1/6θ−1/3Γ
(

1
6

)−1 ∏
p=a2+27b2

(
1 − 1

p2

)5/6

×
∏

p=4a2+2ab+7b2

(
1 − 1

p2

)−1/6

x1/2(log x)−5/6 + O
(
x1/2(log x)−11/6+ε

)
,

which is the assertion of Theorem 1.1.
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