ON THE DISTRIBUTION OF CYCLIC CUBIC FIELDS WITH INDEX 2

BLAIR K. SPEARMAN
Department of Mathematics and Statistics University of British Columbia Okanagan
Kelowna, B.C., Canada V1V 1V7
blair.spearman@ubc.ca
KENNETH S. WILLIAMS
School of Mathematics and Statistics, Carleton University
Ottawa, Ontario, Canada K1S 5B6
kwilliam@connect.carleton.ca

Received 5 January 2005
Accepted 11 January 2006

Abstract

In this paper we prove an analogue of Mertens' theorem for primes of each of the forms $a^{2}+27 b^{2}$ and $4 a^{2}+2 a b+7 b^{2}$ and then use this result to determine an asymptotic formula for the number of positive integers $n \leq x$ which are discriminants of cyclic cubic fields with each such field having field index 2 .

Keywords: Discriminant; field index; cyclic cubic field.
Mathematics Subject Classification 2000: 11R16, 11R29

1. Introduction

Let n be a positive integer. It is known that n is the discriminant of a cyclic cubic field if and only if

$$
n=81, \quad\left(q_{1} \cdots q_{r}\right)^{2} \quad \text { or } \quad 81\left(q_{1} \cdots q_{r}\right)^{2}
$$

where $r \in \mathbb{N}$ and q_{1}, \ldots, q_{r} are distinct primes $\equiv 1(\bmod 3)$, see for example [3] and [4]. We showed in [8] that the number of $n \leq x$ which are discriminants of cyclic cubic fields is

$$
\frac{3^{1 / 4}}{\pi} \frac{10}{9} \frac{x^{1 / 2}}{\sqrt{\log x}} \prod_{p \equiv 1(\bmod 3)}\left(1-\frac{1}{p^{2}}\right)^{1 / 2}(1+o(1))
$$

as $x \rightarrow+\infty$, where in the product p runs through primes.
In this paper we determine the number $T(x)$ of $n \leq x$ which are discriminants of cyclic cubic fields with each such field having field index equal to 2 . In order to
do this, we prove in Sec. 2 an analogue of Mertens' theorem for primes of the form $a^{2}+27 b^{2}$ and primes of the form $4 a^{2}+2 a b+7 b^{2}$, see Theorem 2.12. A prime is represented by at most one of these two forms, and each form represents infinitely many primes. We also make use of results of Wirsing [11] and Odoni [6], see Proposition 3.1. We prove the following theorem in Sec. 3.

Theorem 1.1. As $x \rightarrow+\infty$

$$
\begin{aligned}
T(x)= & 2^{2 / 3} 3^{1 / 12} \pi^{-1 / 6} \theta^{-1 / 3} \Gamma\left(\frac{1}{6}\right)^{-1} \prod_{p=a^{2}+27 b^{2}}\left(1-\frac{1}{p^{2}}\right)^{5 / 6} \\
& \times \prod_{p=4 a^{2}+2 a b+7 b^{2}}\left(1-\frac{1}{p^{2}}\right)^{-1 / 6} \frac{x^{1 / 2}}{(\log x)^{5 / 6}}\left(1+O\left(\frac{1}{(\log x)^{1-\epsilon}}\right)\right)
\end{aligned}
$$

for any ϵ with $0<\epsilon<1$, where the constant θ is defined in (2.12).

2. Mertens' Theorem for Primes $p=a^{2}+27 b^{2}$ and

$$
p=4 a^{2}+2 a b+7 b^{2}
$$

For $x \in \mathbb{R}$ with $x \geq 2$ we define

$$
\begin{array}{ll}
\pi_{1}(x)=\sum_{\substack{p \leq x \\
p=a^{2}+27 b^{2}}} 1, & \pi_{2}(x)= \\
\theta_{1}(x)=\sum_{\substack{p \leq x \\
p=a^{2}+27 b^{2}}} \log p, & \theta_{2}(x)=\sum_{\substack{p \leq x \\
p=4 a^{2}+2 a b+7 b^{2}}} \log p, \\
\kappa_{1}(x)=\sum_{\substack{p \leq x \\
p=4 a^{2}+2 a b+7 b^{2}}} \frac{\log p}{p}, & \kappa_{2}(x)=\sum_{\substack{p \leq x \\
p=4 a^{2}+27 b^{2}}} \frac{\log p}{p}, \\
\lambda_{1}(x)=\sum_{\substack{p \leq x \\
p=a^{2}+27 b^{2}}} \frac{1}{p}, & \lambda_{2}(x)=\sum_{\substack{p \leq x}} \frac{1}{p} . \tag{2.4}\\
p=4 a^{2}+2 a b+7 b^{2}
\end{array}
$$

Lemma 2.1. As $x \rightarrow+\infty$

$$
\pi_{1}(x)=\frac{1}{6} \frac{x}{\log x}+O\left(\frac{x}{\log ^{2} x}\right)
$$

and

$$
\pi_{2}(x)=\frac{1}{3} \frac{x}{\log x}+O\left(\frac{x}{\log ^{2} x}\right) .
$$

Proof. Let $f=f(x, y)=a x^{2}+b x y+c y^{2}$ be a primitive integral binary quadratic form with a nonsquare discriminant D. Set $f^{-1}=a x^{2}-b x y+c y^{2}$. Let $[f]$ denote
the class of f under the action of the modular group. Let $h(D)$ denote the number of classes of forms of discriminant D. Let

$$
\epsilon(f)= \begin{cases}2, & \text { if }[f]=\left[f^{-1}\right] \\ 1, & \text { if }[f] \neq\left[f^{-1}\right] .\end{cases}
$$

Landau [5] has shown that

$$
\sum_{\substack{p \leq x \\ p \text { rep. by } f}} 1=\frac{1}{\varepsilon(f) h(D)} \text { li } x+O_{f, \alpha}\left(x e^{-(\log x)^{1 / \alpha}}\right)
$$

as $x \rightarrow+\infty$, for some positive constant α. We choose $D=-108$. Here $h(-108)=3$ and representatives of the three classes of positive-definite, primitive, integral, binary quadratic forms of discriminant -108 are

$$
x^{2}+27 y^{2}, \quad 4 x^{2}+2 x y+7 y^{2}, \quad 4 x^{2}-2 x y+7 y^{2}
$$

By Landau's theorem, as

$$
\begin{equation*}
\text { li } x=\int_{2}^{x} \frac{d t}{\log t}=\frac{x}{\log x}+O\left(\frac{x}{\log ^{2} x}\right) \tag{2.5}
\end{equation*}
$$

and

$$
x e^{-(\log x)^{1 / \alpha}}=O\left(\frac{x}{\log ^{2} x}\right)
$$

we have

$$
\pi_{1}(x)=\frac{1}{6} \frac{x}{\log x}+O\left(\frac{x}{\log ^{2} x}\right)
$$

and

$$
\pi_{2}(x)=\frac{1}{3} \frac{x}{\log x}+O\left(\frac{x}{\log ^{2} x}\right)
$$

as asserted.

Lemma 2.2. As $x \rightarrow+\infty$

$$
\begin{aligned}
& \theta_{1}(x)=\frac{1}{6} x+O\left(\frac{x}{\log x}\right), \\
& \theta_{2}(x)=\frac{1}{3} x+O\left(\frac{x}{\log x}\right) .
\end{aligned}
$$

Proof. By partial summation [2, Theorem 421, p. 346] we have

$$
\theta_{1}(x)=\pi_{1}(x) \log x-\int_{2}^{x} \frac{\pi_{1}(t)}{t} d t, \quad x \geq 2 .
$$

Appealing to Lemma 2.1 we obtain

$$
\theta_{1}(x)=\left(\frac{1}{6} \frac{x}{\log x}+O\left(\frac{x}{\log ^{2} x}\right)\right) \log x+O\left(\int_{2}^{x} \frac{d t}{\log t}\right)=\frac{1}{6} x+O\left(\frac{x}{\log x}\right)
$$

by (2.5). We can treat $\theta_{2}(x)$ similarly.
Lemma 2.3. As $x \rightarrow+\infty$

$$
\begin{aligned}
& \kappa_{1}(x)=\frac{1}{6} \log x+O(\log \log x), \\
& \kappa_{2}(x)=\frac{1}{3} \log x+O(\log \log x) .
\end{aligned}
$$

Proof. By partial summation we have

$$
\kappa_{1}(x)=\frac{\theta_{1}(x)}{x}+\int_{2}^{x} \frac{\theta_{1}(t)}{t^{2}} d t, \quad x \geq 2 .
$$

By Lemma 2.2 we obtain

$$
\begin{aligned}
\int_{2}^{x} \frac{\theta_{1}(t)}{t^{2}} d t & =\int_{2}^{x} \frac{\frac{1}{6} t+O\left(\frac{t}{\log t}\right)}{t^{2}} d t=\frac{1}{6} \log x-\frac{1}{6} \log 2+O\left(\int_{2}^{x} \frac{d t}{t \log t}\right) \\
& =\frac{1}{6} \log x+O(1)+O(\log \log x)
\end{aligned}
$$

which gives the asserted result. Similarly for $\kappa_{2}(x)$.
Lemma 2.4. As $x \rightarrow+\infty$

$$
\begin{aligned}
& \lambda_{1}(x)=\frac{1}{6} \log \log x+c_{1}+O\left(\frac{1}{\log \log x}\right), \\
& \lambda_{2}(x)=\frac{1}{3} \log \log x+c_{2}+O\left(\frac{1}{\log \log x}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
& c_{1}=\frac{1}{6}-\frac{1}{6} \log \log 2+\int_{2}^{\infty} \frac{\kappa_{1}(x)-\frac{1}{6} \log x}{x \log ^{2} x} d x \\
& c_{2}=\frac{1}{3}-\frac{1}{3} \log \log 2+\int_{2}^{\infty} \frac{\kappa_{2}(x)-\frac{1}{3} \log x}{x \log ^{2} x} d x
\end{aligned}
$$

Proof. Define

$$
\tau_{1}(x)=\kappa_{1}(x)-\frac{1}{6} \log x
$$

so that by Lemma 2.3 we have

$$
\begin{equation*}
\kappa_{1}(x)=\frac{1}{6} \log x+\tau_{1}(x), \quad \tau_{1}(x)=O(\log \log x) . \tag{2.6}
\end{equation*}
$$

By partial summation we have

$$
\lambda_{1}(x)=\frac{\kappa_{1}(x)}{\log x}+\int_{2}^{x} \frac{\kappa_{1}(t)}{t \log ^{2} t} d t .
$$

By (2.6) we obtain

$$
\lambda_{1}(x)=\frac{1}{6}+O\left(\frac{\log \log x}{\log x}\right)+\frac{1}{6} \log \log x-\frac{1}{6} \log \log 2+\int_{2}^{x} \frac{\tau_{1}(t)}{t \log ^{2} t} d t
$$

Now

$$
\begin{aligned}
\int_{x}^{\infty} \frac{\tau_{1}(t)}{t \log ^{2} t} & =O\left(\int_{x}^{\infty} \frac{\log \log t}{t \log ^{2} t} d t\right) \\
& =O\left(\int_{x}^{\infty} \frac{d t}{t \log t(\log \log t)^{2}}\right) \\
& =O\left(\frac{1}{\log \log x}\right)
\end{aligned}
$$

so that

$$
\lambda_{1}(x)=\frac{1}{6} \log \log x+\frac{1}{6}-\frac{1}{6} \log \log 2+\int_{2}^{\infty} \frac{\tau_{1}(t)}{t \log ^{2} t} d t+O\left(\frac{1}{\log \log x}\right)
$$

as asserted. Similarly for $\lambda_{2}(x)$.
Lemma 2.5. For each prime p set

$$
\chi(p)= \begin{cases}2, & \text { if } p=a^{2}+27 b^{2} \\ -1, & \text { if } p=4 a^{2}+2 a b+27 b^{2} \\ 0, & \text { otherwise }\end{cases}
$$

Then

$$
\begin{equation*}
\sum_{p \leq x} \frac{\chi(p)}{p}=2 c_{1}-c_{2}+O\left(\frac{1}{\log \log x}\right), \quad \text { as } x \rightarrow+\infty \tag{i}
\end{equation*}
$$

(ii)

$$
\sum_{p} \frac{\chi(p)}{p}(\text { converges })=2 c_{1}-c_{2}
$$

(iii)

$$
2 c_{1}-c_{2}=\int_{2}^{\infty} \frac{2 \kappa_{1}(x)-\kappa_{2}(x)}{x \log ^{2} x} d x
$$

Proof. (i) As $x \rightarrow+\infty$ we have

$$
\begin{aligned}
\sum_{p \leq x} \frac{\chi(p)}{p}= & 2 \sum_{\substack{p \leq x \\
p=a^{2}+27 b^{2}}} \frac{1}{p}-\sum_{\substack{p \leq x \\
p=4 a^{2}+2 a b+27 b^{2}}} \frac{1}{p} \\
= & 2 \lambda_{1}(x)-\lambda_{2}(x) \\
= & 2\left(\frac{1}{6} \log \log x+c_{1}+O\left(\frac{1}{\log \log x}\right)\right) \\
& -\left(\frac{1}{3} \log \log x+c_{2}+O\left(\frac{1}{\log \log x}\right)\right) \\
= & 2 c_{1}-c_{2}+O\left(\frac{1}{\log \log x}\right)
\end{aligned}
$$

by Lemma 2.4.
(ii) Letting $x \rightarrow+\infty$ in part (i) we obtain the asserted result.
(iii) This follows immediately from Lemma 2.4.

Lemma 2.6. The infinite product

$$
\prod_{p}\left(1-\frac{1}{p}\right)^{\chi(p)}
$$

converges.
Proof. Set

$$
\gamma(p)= \begin{cases}-2+\frac{1}{p}, & \text { if } p=a^{2}+27 b^{2}, \\ 1+\frac{1}{p}+\frac{1}{p^{2}}+\cdots, & \text { if } p=4 a^{2}+2 a b+7 b^{2}, \\ 0, & \text { otherwise }\end{cases}
$$

Then

$$
1+\frac{\gamma(p)}{p}= \begin{cases}\left(1-\frac{1}{p}\right)^{2}, & \text { if } p=a^{2}+27 b^{2} \\ \frac{1}{1-\frac{1}{p}}, & \text { if } p=4 a^{2}+2 a b+7 b^{2} \\ 1, & \text { otherwise }\end{cases}
$$

Hence

$$
\begin{equation*}
1+\frac{\gamma(p)}{p}=\left(1-\frac{1}{p}\right)^{\chi(p)} \tag{2.7}
\end{equation*}
$$

Further

$$
\begin{equation*}
\gamma(p)=-\chi(p)+s(p) \tag{2.8}
\end{equation*}
$$

where

$$
s(p)= \begin{cases}\frac{1}{p}, & \text { if } p=a^{2}+27 b^{2} \\ \frac{1}{p}+\frac{1}{p^{2}}+\cdots, & \text { if } p=4 a^{2}+2 a b+7 b^{2} \\ 0, & \text { otherwise }\end{cases}
$$

Clearly

$$
0 \leq s(p) \leq \frac{1}{p}+\frac{1}{p^{2}}+\cdots=\frac{1}{p-1} \leq \frac{2}{p}
$$

so that the infinite series

$$
\begin{equation*}
\sum_{p} \frac{s(p)}{p} \tag{2.9}
\end{equation*}
$$

converges. Hence, by Lemma 2.5(ii), (2.8) and (2.9), we see that

$$
\begin{equation*}
\sum_{p} \frac{\gamma(p)}{p}=-\sum_{p} \frac{\chi(p)}{p}+\sum_{p} \frac{s(p)}{p} \tag{2.10}
\end{equation*}
$$

converges. Further

$$
|\gamma(p)| \leq|\chi(p)|+|s(p)| \leq 2+\frac{2}{p} \leq 3
$$

so that the infinite series

$$
\begin{equation*}
\sum_{p} \frac{\gamma(p)^{2}}{p^{2}} \tag{2.11}
\end{equation*}
$$

converges. From the convergence of the infinite series (2.10) and (2.11), we deduce from [1, Sec. 41, p. 109] that the infinite product

$$
\prod_{p}\left(1+\frac{\gamma(p)}{p}\right)
$$

converges. Then, from (2.7), we see that the infinite product

$$
\prod_{p}\left(1-\frac{1}{p}\right)^{\chi(p)}
$$

converges as asserted.
We set

$$
\begin{equation*}
\theta:=\prod_{p}\left(1-\frac{1}{p}\right)^{\chi(p)} \tag{2.12}
\end{equation*}
$$

Lemma 2.7. The infinite series

$$
\begin{equation*}
\sum_{p=a^{2}+27 b^{2}}\left(\log \left(1-\frac{1}{p}\right)+\frac{1}{p}\right) \tag{i}
\end{equation*}
$$

and
(ii)

$$
\sum_{p=4 a^{2}+2 a b+7 b^{2}}\left(\log \left(1-\frac{1}{p}\right)+\frac{1}{p}\right)
$$

converge.
Proof. We have

$$
\log \left(1-\frac{1}{p}\right)+\frac{1}{p}=-\frac{1}{2 p^{2}}-\frac{1}{3 p^{3}}-\cdots
$$

so that

$$
\left|\log \left(1-\frac{1}{p}\right)+\frac{1}{p}\right| \leq \frac{1}{2 p^{2}}+\frac{1}{2 p^{3}}+\cdots=\frac{1}{2 p(p-1)} \leq \frac{1}{p^{2}}
$$

proving the assertions.
In view of Lemma 2.7 we may define constants d_{1} and d_{2} by

$$
d_{1}=\sum_{p=a^{2}+27 b^{2}}\left(\log \left(1-\frac{1}{p}\right)+\frac{1}{p}\right), \quad d_{2}=\sum_{p=4 a^{2}+2 a b+7 b^{2}}\left(\log \left(1-\frac{1}{p}\right)+\frac{1}{p}\right) .
$$

We also set

$$
P_{1}(x)=\prod_{\substack{p \leq x \\ p=a^{2}+27 b^{2}}}\left(1-\frac{1}{p}\right), \quad P_{2}(x)=\prod_{\substack{p \leq x \\ p=4 a^{2}+2 a b+7 b^{2}}}\left(1-\frac{1}{p}\right) .
$$

Lemma 2.8. As $x \rightarrow+\infty$

$$
P_{1}(x)=f_{1}(\log x)^{-1 / 6}\left(1+O\left(\frac{1}{\log \log x}\right)\right)
$$

and

$$
P_{2}(x)=f_{2}(\log x)^{-1 / 3}\left(1+O\left(\frac{1}{\log \log x}\right)\right)
$$

where

$$
f_{1}=e^{-c_{1}+d_{1}}, \quad f_{2}=e^{-c_{2}+d_{2}}
$$

Proof. Appealing to (2.4) and Lemma 2.4, we obtain

$$
\begin{aligned}
\log P_{1}(x) & =\sum_{\substack{p \leq x \\
p=a^{2}+27 b^{2}}} \log \left(1-\frac{1}{p}\right) \\
& =-\sum_{\substack{p \leq x \\
p=a^{2}+27 b^{2}}} \frac{1}{p}+\sum_{\substack{p \leq x \\
p=a^{2}+27 b^{2}}}\left(\log \left(1-\frac{1}{p}\right)+\frac{1}{p}\right) \\
& =-\lambda_{1}(x)+d_{1}-\sum_{\substack{p>x \\
p=a^{2}+27 b^{2}}}\left(\log \left(1-\frac{1}{p}\right)+\frac{1}{p}\right) \\
& =-\frac{1}{6} \log \log x-c_{1}+O\left(\frac{1}{\log \log x}\right)+d_{1}+O\left(\sum_{n>x} \frac{1}{n^{2}}\right) \\
& =-\frac{1}{6} \log \log x-c_{1}+d_{1}+O\left(\frac{1}{\log \log x}\right)+O\left(\frac{1}{x}\right) \\
& =-\frac{1}{6} \log \log x-c_{1}+d_{1}+O\left(\frac{1}{\log \log x}\right)
\end{aligned}
$$

so

$$
\begin{aligned}
P_{1}(x) & \left.=e^{-\frac{1}{6} \log \log x-c_{1}+d_{1}+O\left(\frac{1}{\log \log x}\right.}\right) \\
& =(\log x)^{-1 / 6} e^{-c_{1}+d_{1}}\left(1+O\left(\frac{1}{\log \log x}\right)\right) \\
& =f_{1}(\log x)^{-1 / 6}\left(1+O\left(\frac{1}{\log \log x}\right)\right)
\end{aligned}
$$

with $f_{1}=e^{-c_{1}+d_{1}} . P_{2}(x)$ can be treated similarly.

Lemma 2.9.

$$
f_{1} f_{2}=e^{-\gamma / 2} 2^{1 / 2} 3^{-1 / 4} \pi^{1 / 2} \prod_{p \equiv 1(\bmod 3)}\left(1-\frac{1}{p^{2}}\right)^{1 / 2}
$$

Proof. Since

$$
p=a^{2}+27 b^{2} \text { or } p=4 a^{2}+2 a b+7 b^{2} \Leftrightarrow p \equiv 1(\bmod 3),
$$

we have by Mertens' theorem for arithmetic progressions, see [8] or [10],

$$
\begin{aligned}
P_{1}(x) P_{2}(x) & =\prod_{\substack{p \leq x \\
p \equiv 1(\bmod 3)}}\left(1-\frac{1}{p}\right) \\
& =e^{-\gamma / 2} 2^{1 / 2} 3^{-1 / 4} \pi^{1 / 2} \prod_{p \equiv 1(\bmod 3)}\left(1-\frac{1}{p^{2}}\right)^{1 / 2}(\log x)^{-1 / 2}+O\left((\log x)^{-3 / 2}\right),
\end{aligned}
$$

as $x \rightarrow+\infty$. By Lemma 2.8 we have

$$
P_{1}(x) P_{2}(x)=f_{1} f_{2}(\log x)^{-1 / 2}\left(1+O\left(\frac{1}{\log \log x}\right)\right)
$$

Hence

$$
f_{1} f_{2}=e^{-\gamma / 2} 2^{1 / 2} 3^{-1 / 4} \pi^{1 / 2} \prod_{p \equiv 1(\bmod 3)}\left(1-\frac{1}{p^{2}}\right)^{1 / 2}
$$

as asserted.

Lemma 2.10.

$$
f_{1}^{2} f_{2}^{-1}=\theta
$$

Proof. By Lemma 2.8 and (2.12) we have

$$
\begin{aligned}
f_{1}^{2} f_{2}^{-1} & =\lim _{x \rightarrow+\infty} P_{1}^{2}(x) P_{2}^{-1}(x) \\
& =\lim _{x \rightarrow+\infty} \prod_{\substack{p \leq x \\
p=a^{2}+27 b^{2}}}\left(1-\frac{1}{p}\right)^{2} \prod_{\substack{p \leq x \\
p=4 a^{2}+2 a b+7 b^{2}}}\left(1-\frac{1}{p}\right)^{-1} \\
& =\lim _{x \rightarrow+\infty} \prod_{p \leq x}\left(1-\frac{1}{p}\right)^{\chi(p)} \\
& =\prod_{p}\left(1-\frac{1}{p}\right)^{\chi(p)} \\
& =\theta
\end{aligned}
$$

as asserted.

Lemma 2.11.

$$
\begin{aligned}
& f_{1}=e^{-\gamma / 6} 2^{1 / 6} 3^{-1 / 12} \pi^{1 / 6} \theta^{1 / 3} \prod_{p \equiv 1(\bmod 3)}\left(1-\frac{1}{p^{2}}\right)^{1 / 6} \\
& f_{2}=e^{-\gamma / 3} 2^{1 / 3} 3^{-1 / 6} \pi^{1 / 3} \theta^{-1 / 3} \prod_{p \equiv 1(\bmod 3)}\left(1-\frac{1}{p^{2}}\right)^{1 / 3} .
\end{aligned}
$$

Proof. This follows immediately from Lemmas 2.9 and 2.10.

Finally, from Lemmas 2.8 and 2.11, we obtain
Theorem 2.12. As $x \rightarrow+\infty$

$$
\begin{aligned}
\prod_{\substack{p \leq x \\
p=a^{2}+27 b^{2}}}\left(1-\frac{1}{p}\right)= & e^{-\gamma / 6} 2^{1 / 6} 3^{-1 / 12} \pi^{1 / 6} \theta^{1 / 3} \prod_{p \equiv 1(\bmod 3)}\left(1-\frac{1}{p^{2}}\right)^{1 / 6} \\
& \times(\log x)^{-1 / 6}\left(1+O\left(\frac{1}{\log \log x}\right)\right) \\
\prod_{\substack{p \leq x \\
p=4 a^{2}+2 a b+7 b^{2}}}\left(1-\frac{1}{p}\right)= & e^{-\gamma / 3} 2^{1 / 3} 3^{-1 / 6} \pi^{1 / 3} \theta^{-1 / 3} \prod_{p \equiv 1(\bmod 3)}\left(1-\frac{1}{p^{2}}\right)^{1 / 3} \\
& \times(\log x)^{-1 / 3}\left(1+O\left(\frac{1}{\log \log x}\right)\right)
\end{aligned}
$$

3. Proof of Theorem 1.1

It follows from [7] that the only positive integers n which are discriminants of cyclic cubic fields with each such field having field index 2 are those of the form $\left(q_{1} q_{2} \cdots q_{r}\right)^{2}$, where $r \in \mathbb{N}$ and $q_{1}, q_{2}, \ldots, q_{r}$ are distinct primes of the form $a^{2}+27 b^{2}$ for some integers a and b. Let A denote the set of positive integers each of which is a product (possibly empty) of distinct primes of the form $a^{2}+27 b^{2}$. Then for $x \geq 1$ we have

$$
T(x)=Q\left(x^{1 / 2}\right)-1,
$$

where

$$
Q(x)=\sum_{\substack{n \leq x \\ n \in A}} 1 .
$$

From the work of Wirsing [11] and Odoni [6], we have (see [9]).

Proposition 3.1. Let $f: \mathbb{N} \rightarrow \mathbb{R}$ be multiplicative with $0 \leq f(n) \leq 1$ for all $n \in \mathbb{N}$. Suppose that there are constants τ and β with $\tau>0$ and $0<\beta<1$ such that

$$
\sum_{p \leq x} f(p)=\tau \frac{x}{\log x}+O\left(\frac{x}{(\log x)^{1+\beta}}\right) .
$$

Then

$$
\lim _{x \rightarrow+\infty} \frac{1}{(\log x)^{\tau}} \prod_{p \leq x}\left(1+\frac{f(p)}{p}+\frac{f\left(p^{2}\right)}{p^{2}}+\cdots\right)
$$

exists, and

$$
\sum_{n \leq x} f(n)=E x(\log x)^{\tau-1}+O\left(x(\log x)^{\tau-1-\beta}\right)
$$

with

$$
E=\frac{e^{-\gamma \tau}}{\Gamma(\tau)} \lim _{x \rightarrow+\infty} \frac{1}{(\log x)^{\tau}} \prod_{p \leq x}\left(1+\frac{f(p)}{p}+\frac{f\left(p^{2}\right)}{p^{2}}+\cdots\right) .
$$

We choose in Proposition 3.1

$$
f(n)= \begin{cases}1, & n \in A \\ 0, & n \notin A\end{cases}
$$

Clearly f is multiplicative and $0 \leq f(n) \leq 1$ for all $n \in \mathbb{N}$. Further, by Lemma 2.1, we have

$$
\sum_{p \leq x} f(p)=\sum_{\substack{p \leq x \\ p=a^{2}+27 b^{2}}} 1=\pi_{1}(x)=\frac{1}{6} \frac{x}{\log x}+O\left(\frac{x}{\log ^{2} x}\right),
$$

so that we can take

$$
\tau=\frac{1}{6}, \quad \beta=1-\epsilon \quad(0<\epsilon<1) .
$$

By Proposition 3.1 we see that

$$
\begin{gathered}
\lim _{x \rightarrow+\infty} \frac{1}{(\log x)^{\tau}} \prod_{p \leq x}\left(1+\frac{f(p)}{p}+\frac{f\left(p^{2}\right)}{p^{2}}+\cdots\right) \\
=\lim _{x \rightarrow+\infty}(\log x)^{-1 / 6} \prod_{\substack{p \leq x \\
p=a^{2}+27 b^{2}}}\left(1+\frac{1}{p}\right)
\end{gathered}
$$

exists, and equals F, say. Hence

$$
\begin{aligned}
Q(x) & =\sum_{\substack{n \leq x \\
n \in A}} 1 \\
& =\sum_{n \leq x} f(n) \\
& =E x(\log x)^{\tau-1}+O\left(x(\log x)^{\tau-1-\beta}\right) \\
& =\frac{e^{-\gamma / 6}}{\Gamma\left(\frac{1}{6}\right)} F x(\log x)^{-5 / 6}+O\left(x(\log x)^{-11 / 6+\epsilon}\right),
\end{aligned}
$$

as $x \rightarrow+\infty$. Next, by Theorem 2.12, we obtain

$$
\begin{aligned}
& (\log x)^{-1 / 6} \prod_{\substack{p \leq x \\
p=a^{2}+27 b^{2}}}\left(1+\frac{1}{p}\right) \\
& =\frac{\prod_{\substack{p \leq x \\
p=a^{2}+27 b^{2}}}\left(1-\frac{1}{p^{2}}\right)}{(\log x)^{1 / 6} \prod_{\substack{p \leq x \\
p=a^{2}+27 b^{2}}}\left(1-\frac{1}{p}\right)} \\
& =\frac{\prod_{p=a^{2}+27 b^{2}}\left(1-\frac{1}{p^{2}}\right)\left(1+O\left(\frac{1}{x}\right)\right)}{e^{-\gamma / 6} 2^{1 / 6} 3^{-1 / 12} \pi^{1 / 6} \theta^{1 / 3} \prod_{p \equiv 1(\bmod 3)}\left(1-\frac{1}{p^{2}}\right)^{1 / 6}\left(1+O\left(\frac{1}{\log \log x}\right)\right)}
\end{aligned}
$$

so that

$$
F=e^{\gamma / 6} 2^{-1 / 6} 3^{1 / 12} \pi^{-1 / 6} \theta^{-1 / 3} \prod_{p=a^{2}+27 b^{2}}\left(1-\frac{1}{p^{2}}\right)^{5 / 6} \prod_{p=4 a^{2}+2 a b+7 b^{2}}\left(1-\frac{1}{p^{2}}\right)^{-1 / 6} .
$$

Hence

$$
\begin{aligned}
Q(x)= & 2^{-1 / 6} 3^{1 / 12} \pi^{-1 / 6} \theta^{-1 / 3} \Gamma\left(\frac{1}{6}\right)^{-1} \prod_{p=a^{2}+27 b^{2}}\left(1-\frac{1}{p^{2}}\right)^{5 / 6} \\
& \times \prod_{p=4 a^{2}+2 a b+7 b^{2}}\left(1-\frac{1}{p^{2}}\right)^{-1 / 6} x(\log x)^{-5 / 6}+O\left(x(\log x)^{-11 / 6+\epsilon}\right) .
\end{aligned}
$$

Finally

$$
\begin{aligned}
T(x)= & 2^{2 / 3} 3^{1 / 12} \pi^{-1 / 6} \theta^{-1 / 3} \Gamma\left(\frac{1}{6}\right)^{-1} \prod_{p=a^{2}+27 b^{2}}\left(1-\frac{1}{p^{2}}\right)^{5 / 6} \\
& \times \prod_{p=4 a^{2}+2 a b+7 b^{2}}\left(1-\frac{1}{p^{2}}\right)^{-1 / 6} x^{1 / 2}(\log x)^{-5 / 6}+O\left(x^{1 / 2}(\log x)^{-11 / 6+\epsilon}\right)
\end{aligned}
$$

which is the assertion of Theorem 1.1.

Acknowledgment

Both authors were supported by grants from the Natural Sciences and Engineering Research Council of Canada.

References

[1] T. J. I'A. Bromwich, An Introduction to the Theory of Infinite Series (Chelsea Publ. Co., New York, N.Y., 1991).
[2] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers (Oxford University Press, 1960).
[3] H. Hasse, Arithmetische Bestimmung von Grundeinheit und Klassenzahl in zyklischen kubischen und biquadratischen Zahlkörpern (Berlin, 1950).
[4] J. G. Huard, B. K. Spearman and K. S. Williams, A short proof of the formula for the conductior of an abelian cubic field, Norske Vid. Selsk. Skr. (Trondheim) 2 (1994) 8 pp .
[5] E. Landau, Verteilung der Primideale in idealklassen, Math. Annalen 63 (1907) 145-204.
[6] R. W. K. Odoni, A problem of Rankin on sums of powers of cusp-form coefficients, J. London Math. Soc. 44 (1991) 203-217.
[7] A. K. Silvester, B. K. Spearman and K. S. Williams, Cyclic cubic fields of given conductor and given index, Canad. Math. Bull., to appear.
[8] B. K. Spearman and K. S. Williams, Density of integers which are discriminants of cyclic cubic fields, Far East J. Math. Sci. (FJMS) 8 (2003) 83-87.
[9] B. K. Spearman and K. S. Williams, Values of the Euler phi function not divisible by a given odd prime, Ark. Mat., to appear.
[10] K. S. Williams, Mertens' theorem for arithmetic progressions, J. Number Theory 6 (1974) 353-359.
[11] E. Wirsing, Das asymptotische Verhalten von Summen über multiplikative Funktionen, Math. Annalen 143 (1961) 75-102.

