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Abstract

A cubic transformation formula for the hypergeometric function 2F1( 13 ,
2
3 ; 1; z) is

proved. As an application of this formula a number of arithmetic convolution sums
are evaluated. For example, Melfi’s formula,

n−1∑
k=1

k≡1 (mod 3)

σ(k)σ(n − k) =
1
9
σ3(n), n ≡ 2 (mod 3),

is proved without the use of modular forms.

1. Introduction: preliminaries and statement of main results

As usual we let C denote the complex plane and R the real number line in C. We
recall that the function z

1
3 is defined for all z ∈ C by

z
1
3 =

{
|z| 13 e 1

3 iargz, if z � 0,
0, if z = 0,

where the argument arg z of the complex number z is chosen to satisfy

−π < arg z � π, z ∈ C\{0}.

In particular if a ∈ R is such that a < 0 then

a
1
3 = −|a| 13ω2,

where ω is the complex cube root of unity given by

ω = e
2π i
3 = 1

2 (−1 + i
√
3),

† Research supported by Natural Sciences and Engineering Research Council of Canada, grant
A-7233.
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so that for example we have (
− 1
8

) 1
3 = − 1

2ω
2. (1·1)

The function z
1
3 is regular [8, p. 36] in C\(−∞, 0], see [8, p. 49]. Let D denote the

domain [8, p. 15] in the complex plane given by

D = C\[1,∞). (1·2)

Hence, the function (1− z)
1
3 is defined for all z ∈ C and is regular in D. (1·3)

We define the function h by

h(z) = 9z(1− z)
1
3 + ((1− z)

1
3 − ω)4, z ∈ C. (1·4)

We show that

h(z)� 0 for all z ∈ C. (1·5)

To see this we suppose that z ∈ C is such that h(z) = 0. From (1·1) and (1·4) we
have z � 0, 9

8 . Set

z1 = ω2(1− z)
1
3 ∈ C

so that z1� 1, − 1
2 . Then h(z) = 0 gives

9
(
1− z31

)
ωz1 + (ωz1 − ω)4 = 0

so that

(1− z1)(1 + 2z1)3 = 0,

a contradiction.
In view of (1·3), (1·4) and (1·5), we can define functions f and g by

f (z) =
9z(1− z)

1
3

9z(1− z)
1
3 + ((1− z)

1
3 − ω)4

, z ∈ C, (1·6)

and

g(z) =
1 + 2ω2(1− z)

1
3

1 + 2ω2
, z ∈ C. (1·7)

From (1·3), (1·4), (1·5), (1·6) and (1·7), we see that

f (z) and g(z) are defined for all z ∈ C and are regular in D. (1·8)

For r ∈ R
+ we set C(r) = {z ∈ C | |z| < r}. We note that

f (0) = 0, f (1) = 0, f
(
9
8

)
= 9

8 , (1·9)

g(0) = 1, g(1) = 1
3 (1 + 2ω), g

(
9
8

)
= 1 + ω, (1·10)

f (z) = 0⇐⇒ z = 0, 1, (1·11)

g(z)� 0 for z ∈ C, (1·12)
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f (z) ∈ C
(
1
2

)
for z ∈ C

(
1
8

)
, (1·13)

f (x) � R for x ∈
(
0, 18

)
, (1·14)

f ′(0) = lim
z→0

f (z)
z

=
9

(1− ω)4
= ω, (1·15)

g′(0) =
−2ω2

3(1 + 2ω2)
= − 2

9 (1− ω). (1·16)

We just prove (1·13) and (1·14) as the others are clear.

Proof of (1·13). For z ∈ C
(
1
8

)
we have

|1− z| 13 < 2, 9|z||1− z| 13 < 9
4 .

By the generalized binomial theorem, we see that for a = 1
3 ,

2
3 ,

4
3 and z ∈ C

(
1
8

)
we

have

|(1− z)a − 1| �
∞∑

n=1

∣∣∣∣
(

a
n

)∣∣∣∣ |z|n �
∞∑

n=1

a|z|n = a|z|
1− |z| <

a

7
.

Thus

|((1− z)
1
3 − ω)4 − (1− ω)4|

= |((1− z)
4
3 − 1) + 4ωz + 6ω2((1− z)

2
3 − 1)− 4((1− z)

1
3 − 1)|

� |(1− z)
4
3 − 1| + 4|z| + 6|(1− z)

2
3 − 1| + 4|(1− z)

1
3 − 1|

< 4
21 +

1
2 +

4
7 +

4
21

= 61
42

< 3
2 .

Hence

|9z(1− z)
1
3 + ((1− z)

1
3 − ω)4)|

= |(1− ω)4 + 9z(1− z)
1
3 + (((1− z)

1
3 − ω)4 − (1− ω)4)|

� |(1− ω)4| − 9|z||1− z| 13 − |((1− z)
1
3 − ω)4 − (1− ω)4)|

> 9− 9
4 −

3
2

= 21
4 .

Then, for z ∈ C
(
1
8

)
, we have

|f (z)| = 9|z||1− z| 13
|9z(1− z)

1
3 + ((1− z)

1
3 − ω)4|

<
9
4
21
4

= 9
21 < 1

2 .

Proof of (1·14). Suppose that f (x) ∈ R for x ∈
(
0, 18

)
. Then f (x) = f (x). As

1− x > 0 we have (1− x)
1
3 ∈ R so that by (1·6)

((1− x)
1
3 − ω)4 = ((1− x)

1
3 − ω2)4.
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Expanding the fourth powers we obtain, after cancelling the factor ω − ω2,

6(1− x)
2
3 = −3 + 4x.

Cubing both sides, we deduce that

64x3 − 360x2 + 540x − 243 = 0.

Hence

(8x − 9)(8x2 − 36x + 27) = 0

so that

x = 9
8 (≈ 1.1),

9−3
√
3

4 (≈ 0.9) or 9+3
√
3

4 (≈ 3.5).

This is a contradiction as none of these values lies in the interval
(
0, 18

)
.

The integral ∫ 1

0
t−

1
3 (1− t)−

2
3 (1− zt)−

1
3 dt

is uniformly convergent in any closed domain of D and so represents an analytic
function of z, which is regular in D [8, p. 249]. We set

w(z)�

√
3
2π

∫ 1

0
t−

1
3 (1− t)−

2
3 (1− zt)−

1
3 dt, z ∈ D. (1·17)

Hence

w(z) is defined and regular in D. (1·18)

For z ∈ C(1) it is known that [8, p. 249]
√
3
2π

∫ 1

0
t−

1
3 (1− t)−

2
3 (1− zt)−

1
3 dt =

∞∑
n=0

(
1
3

)
n

(
2
3

)
n

(1)n

zn

n!
,

where for a ∈ R
+ and n ∈ {0, 1, 2, . . .} the Pochhammer symbol (a)n is defined by

(a)n = a(a + 1) · · · (a + n − 1), n ∈ N; (a)0 = 1. (1·19)

Thus w(z) is the analytic continuation of the hypergeometric function 2F1
(
1
3 ,

2
3 ; 1; z

)
from C(1) to D, so that

w(z) = 2F1
(
1
3 ,

2
3 ; 1; z

)
, z ∈ C(1).

The function w(z) is the unique solution of the hypergeometric differential equation

z(1− z)w′′ + (1− 2z)w′ − 2
9w = 0, (1·20)

which is regular in D and satisfies

w(0) = 1, w′(0) = 2
9 , (1·21)
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see [8, pp. 246–248]. We now show that

w(z)� 0 for z ∈ C
(
1
2

)
. (1·22)

As (
1
3

)
n
=
1 · 4 · 7 · · · (3n − 2)

3n
,

(
2
3

)
n
=
2 · 5 · 8 · · · (3n − 1)

3n
, (1)n = n!,

by (1·19), we have (
1
3

)
n

(
2
3

)
n

(1)n
=

3n!
n!233n

so that

|w(z)− 1| =
∣∣∣∣∣

∞∑
n=1

3n!
n!333n

zn

∣∣∣∣∣ �
∞∑

n=1

3n!
n!333n

|z|n, |z| < 1.

The multinomial coefficient (
3n

n, n, n

)
=
3n!
n!3

is one of the terms in the multinomial expansion of (1 + 1 + 1)3n so that

3n!
n!3

� 33n.

Hence

|w(z)− 1| �
∞∑

n=1

|z|n = |z|
1− |z| .

If z ∈ C
(
1
2

)
then

|z|
1− |z| < 1, so that |w(z)− 1| < 1, proving (1·22).

For x ∈ R with 0 � x < 1 we have

w(x) = 1 +
∞∑

n=1

3n!
n!333n

xn

so that

w(x) � 1, 0 � x < 1,

and thus in particular

w(x)� 0, 0 � x < 1. (1·23)

It is convenient to define the subset D∗ of D by

D∗ = {z ∈ D | f (z) ∈ D}. (1·24)

By (1·8), (1·18) and (1·24) we see that

w(f (z)) is defined and regular in D∗ (1·25)
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and

g(z)w(z) is defined and regular in D. (1·26)

Let z ∈ C
(
1
8

)
. By (1·2) we have z ∈ D. By (1·13) we have f (z) ∈ C

(
1
2

)
so that

f (z) ∈ D. Hence, by (1·24), we have

C
(
1
8

)
⊆ D∗ ⊆ D. (1·27)

The main result of this paper is the following cubic transformation formula for
w(z).

Theorem 1·1. For z ∈ D∗ we have

w(f (z)) = g(z)w(z). (1·28)

The proof of Theorem 1·1 is given in Section 2. Theorem 1·1 is similar to the cubic
transformation formula of Ramanujan [13, second notebook, p. 258]

w

(
1−

(
1− x

1 + 2x

)3
)
= (1 + 2x)w(x3), (1·29)

which is valid for x ∈ R with |x| sufficiently small, see [4, corollary 2·4, p. 97].
Proofs of (1·29) have been given by Berndt, Bhargava and Garvan [5, corol-
lary 2·4, p. 4170], Borwein and Borwein [6, p. 694] and Chan [7, sections 5 and 6,
pp. 201–203]. We have not been able to deduce Theorem 1·1 from (1·29).
We define the subset D∗∗ of D∗ by

D∗∗ = {z ∈ D∗ | w(z)� 0, w(f (z))� 0, 1− z ∈ D, 1− f (z) ∈ D}. (1·30)

It is clear from (1·30) that
2π√
3

w(1− z)
w(z)

− 2π√
3

w(1− f (z))
w(f (z))

is defined and regular in D∗∗. (1·31)

For x ∈
(
0, 18

)
we have

x ∈ D∗, by (1·27), (1·32)
w(x)� 0, by (1·22), (1·33)

w(f (x))� 0, by (1·13) and (1·22), (1·34)
1− x ∈ D, by (1·2), (1·35)

1− f (x) ∈ D, by (1·2) and (1·14). (1·36)

From (1·30) and (1·32)− (1·36) we see that(
0, 18

)
⊆ D∗∗. (1·37)

We use Theorem 1·1 to prove the following important identity satisfied by w(z).

Theorem 1·2. For z ∈ D∗∗ we have

e−
2π√
3

w (1−f (z ))
w (f (z )) = ωe−

2π√
3

w (1−z )
w (z ) . (1·38)
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The proof of Theorem 1·2 is given in Section 3. Theorem 1·2 is the analogue of
Jacobi’s “change of sign” formula [3, p. 126] for a “change of cube root of unity.”
We now recall the Eisenstein series

L(q) = 1− 24
∞∑

n=1

σ(n)qn, q ∈ C(1), (1·39)

M (q) = 1 + 240
∞∑

n=1

σ3(n)qn, q ∈ C(1), (1·40)

N (q) = 1− 504
∞∑

n=1

σ5(n)qn, q ∈ C(1), (1·41)

treated by Ramanujan in [12], [14, pp. 136–162]. (Ramanujan actually used P , Q,
R in place of L, M , N , see [12, equation (25), p. 140].) Now let q ∈ R be such that
0 < q < 1 so that 0 < − log q < +∞. The derivative of the function

y(x)�
2π√
3
2F1

(
1
3 ,

2
3 ; 1; 1− x

)
2F1

(
1
3 ,

2
3 ; 1;x

) =
2π√
3

w(1− x)
w(x)

, 0 < x < 1,

is, [2, p. 87],

y′(x) =
−1

x(1− x){w(x)}2 , 0 < x < 1. (1·42)

By (1·23), we have w(x)� 0 for 0 < x < 1, so that

y′(x) < 0, 0 < x < 1.

Hence, as x increases from 0 to 1, y(x) decreases from y(0) = +∞ to y(1) = 0, so
that there is a unique real number x with 0 < x < 1 such that

2π√
3

w(1− x)
w(x)

= − log q,

equivalently

q = exp
(
− 2π√

3

w(1− x)
w(x)

)
= e−y(x), (1·43)

see [4, equation (1·7), p. 91]. It is also convenient to set

w � w(x) = 2F1
(
1
3 ,

2
3 ; 1;x

)
.

It is known that

L(q) = (1− 4x)w2 + 12x(1− x)w
dw

dx
, (1·44)

M (q) = (1 + 8x)w4, (1·45)
N (q) = (1− 20x − 8x2)w6, (1·46)

see [4, lemma 4·1, theorem 4·2, theorem 4·3, pp. 105–106]. In Section 4, we apply
Theorem 1·2 to (1·44), (1·45) and (1·46) to obtain L(ωq), M (ωq) and N (ωq).
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Theorem 1·3.
L(ωq) =

(
11− 12x + 8ω2(1− x)

1
3 + 8ω(1− x)

2
3

) w2

3

+ 12x(1− x)w
dw

dx
, (1·47)

M (ωq) =
(
249− 248x − 120(1− x)

1
3 − 120(1− x)

2
3 + 80x(1− x)

1
3

+ (ω − ω2)
(
80x(1− x)

1
3 − 120(1− x)

1
3 + 120(1− x)

2
3

)) w4

9
, (1·48)

N (ωq) =
(
6579− 8604x + 2024x2 − 3276(1− x)

1
3 − 3276(1− x)

2
3

+ 3192x(1− x)
1
3 + 2352x(1− x)

2
3

− (ω − ω2)
(
3276(1− x)

1
3 − 3276(1− x)

2
3

− 3192x(1− x)
1
3 + 2352x(1− x)

2
3

) w6

27
. (1·49)

For j = 1, 2, 3 we introduce the series

Lj(q) =
∞∑

n=1
n≡j (mod 3)

σ(n)qn, (1·50)

Mj(q) =
∞∑

n=1
n≡j (mod 3)

σ3(n)qn, (1·51)

Nj(q) =
∞∑

n=1
n≡j (mod 3)

σ5(n)qn. (1·52)

In Section 5 we use Theorem 1·3 and the method of triplication [4, pp. 101–102] to
evaluate L1(q), L2(q), . . . , N3(q).

Theorem 1·4.
L1(q) =

(
1 + (1− x)

1
3 − 2(1− x)

2
3

) w2

27
, (1·53)

L2(q) =
(
1− 2(1− x)

1
3 + (1− x)

2
3

) w2

27
, (1·54)

L3(q) =
1
24
+

(
−25 + 36x + 8(1− x)

1
3 + 8(1− x)

2
3

) w2

216

− 1
2
x(1− x)w

dw

dx
, (1·55)

M1(q) =
(
−3 + 4x − 3(1− x)

1
3 + 6(1− x)

2
3 + 2x(1− x)

1
3

) w4

81
, (1·56)

M2(q) =
(
−3 + 4x + 6(1− x)

1
3 − 3(1− x)

2
3 − 4x(1− x)

1
3

) w4

81
, (1·57)

M3(q) = − 1
240

+
(
507− 424x − 240(1− x)

1
3 − 240(1− x)

2
3

+ 160x(1− x)
1
3

) w4

6480
, (1·58)
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N1(q) =
(
117− 144x + 40x2 + 117(1− x)

1
3 − 234(1− x)

2
3

− 114x(1− x)
1
3 + 168x(1− x)

2
3

) w6

729
, (1·59)

N2(q) =
(
117− 144x + 40x2 − 234(1− x)

1
3 + 117(1− x)

2
3

+ 228x(1− x)
1
3 − 848x(1− x)

2
3

) w6

729
, (1·60)

N3(q) =
1
504

+
(
−355995 + 479196x − 103464x2 + 176904(1− x)

1
3

+ 176904(1− x)
2
3 − 172368x(1− x)

1
3

− 127008x(1− x)
2
3

) w6

1102248
. (1·61)

The relationships in Theorems 1·5, 1·6 and 1·7 below follow easily from Theorem
1·4, for proofs see Sections 6, 7 and 8.
Theorem 1·5.

L1(q)2 =
1
9
M2(q),

L1(q)L2(q) =
1
80

M (q3)− 1
80

M (q9),

L2(q)L3(q) =
1
24

L2(q) +
11
72

M2(q)−
1
4
q
dL2(q)

dq
,

L3(q)2 = − 1
40

M (q3) +
1
40

M (q9) +
1
12

L3(q) +
5
12

M3(q)−
1
2
q
dL3(q)

dq
.

Theorem 1·6.

L1(q)L(q3) = −M1(q) + 2q
dL1(q)

dq
,

L2(q)L(q3) = −M2(q) + 2q
dL2(q)

dq
,

L3(q)L(q3) =
1
24

L(q3)− 3
80

M (q3)− M3(q)−
3
16

q
dL(q9)

dq
+
7
2
q
dL3(q)

dq
− 1
240

,

L(q)L(q3) =
1
10

M (q) +
9
10

M (q3) + 2q
dL(q)

dq
+
9
2
q
dL(q9)

dq
− 36q dL3(q)

dq
.

Theorem 1·7.

L2(q)L(q9) = −1
9
M2(q) +

2
3
q
dL2(q)

dq
,

L3(q)L(q9) =
1
24

L(q9)− 23
560

M (q9)− 1
7
M3(q)−

1
4
q
dL(q9)

dq
+
2
3
q
dL3(q)

dq
− 1
1680

.

We set (as in [9, p. 255])

S(a, 3) =
n−1∑
m=1

m≡a(mod 3)

σ(m)σ(n − m), a = 0, 1, 2.



528 Kenneth S. Williams

By equating coefficients of qn on both sides of the four identities in Theorem 1·5,
we obtain the following arithmetic convolution identities, see [9, theorem 8, p. 256].

Theorem 1·8.

S(1, 3) =
1
9
σ3(n), if n ≡ 2 (mod 3),

S(1, 3) = S(2, 3) =
1
9
(σ3(n)− σ3(n/3)), if n ≡ 0 (mod 3),

S(0, 3) = S(2, 3) =
1
72
(11σ3(n) + (3− 18n)σ(n)), if n ≡ 2 (mod 3),

S(0, 3) =
1
36
(7σ3(n) + (3− 18n)σ(n) + 8σ3(n/3)), if n ≡ 0 (mod 3).

The first identity in Theorem 1·8 is due to Melfi [10, 11], who proved it using
modular forms. Our proof is the first proof without the use of modular forms, see
Section 9.
Similarly, equating coefficients of qn in the four identities in Theorem 1.6, we

obtain the following result.

Theorem 1·9.∑
m<n/3

σ(m)σ(n − 3m) = 1
24
(σ3(n) + (1− 2n)σ(n) + 9σ3(n/3) + (1− 6n)σ(n/3)).

The first identity in Theorem 1·6 gives the case n ≡ 1 (mod 3) of Theorem 1·9, the
second the case n ≡ 2 (mod 3), and the third n ≡ 0 (mod 3). The fourth identity
gives the result for all n. For n � 0 (mod 3) Theorem 1·9 is due to Melfi [10, 11].
His proof used modular forms. For general n the theorem is due to Huard, Ou,
Spearman and Williams [9]. Their proof is completely elementary. The proof of
Theorem 1·9 is given in Section 10.
Finally, by equating coefficients of qn in the two identities in Theorem 1·7, we

obtain the following result, see Section 11.

Theorem 1·10.∑
k<n/9

σ(k)σ(n − 9k) = 1
216

(σ3(n) + (9− 6n)σ(n)) , if n ≡ 2 (mod 3).

∑
k<n/9

σ(k)σ(n − 9k) = 1
36

(
6σ3(n/3) + (6− 4n)σ(n/3)

+ 9σ3(n/9)− (3 + 6n)σ(n/9)
)
, if n ≡ 0 (mod 3).

The first identity in Theorem 1·10 was proved by Melfi [10, 11] using modular forms.
Our proof makes no use of modular forms. The second identity is due to Huard,
Ou, Spearman and Williams [9]. Their proof is elementary. Melfi has also given an
evaluation of the sum in Theorem 1·10 for certain n ≡ 1 (mod 3). No other proof of
his evaluation is known.
Further arithmetic identities can be obtained by equating coefficients of qn in the

identities resulting from differentiating those in Theorems 1·5, 1·6 and 1·7. We just
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give one example. Differentiating the first identity in Theorem 1·5, we obtain

L1(q)
dL1(q)

dq
=
1
18

dM2(q)
dq

. (1·62)

Equating coefficients of qn (n ≡ 2 (mod 3)) in (1·62), we obtain the following identity,
see Section 12.

Theorem 1·11.
n−1∑
k=1

k≡1 (mod 3)

kσ(k)σ(n − k) =
1
18

nσ3(n), if n ≡ 2 (mod 3).

This identity can also be proved by changing the variable k to n− k in the sum and
appealing to the first identity in Theorem 1·8.

2. Proof of Theorem 1·1
We set

a(z) = w(f (z)), z ∈ D∗, (2·1)
b(z) = g(z)w(z), z ∈ D∗. (2·2)

Let z ∈ C
(
1
8

)
⊆ D∗. By (1·24)− (1·26), we know that a(z) and b(z) are defined and

regular in D∗. Differentiating (2·1) twice, and appealing to (1·20), we find that a(z)
satisfies the differential equation

a′′ + p(z)a′ + q(z)a = 0,

where

p(z) =
(1− 2f (z))f ′(z)
f (z)(1− f (z))

− f ′′(z)
f ′(z)

, q(z) =
−2f ′(z)2

9f (z)(1− f (z))
. (2·3)

Similarly, differentiating (2·2) twice, and appealing to (1·20), we find that b(z)
satisfies the differential equation

b′′ + r(z)b′ + s(z)b = 0,

where

r(z) =
1− 2z

z(1− z)
− 2g′(z)

g(z)
, (2·4)

s(z) =
2g′(z)2

g(z)2
− g′′(z)

g(z)
− 2
9z(1− z)

− (1− 2z)g′(z)
z(1− z)g(z)

. (2·5)

A simple MAPLE calculation shows that

p(z) = r(z), q(z) = s(z), (2·6)
so that a(z) and b(z) satisfy the same second order homogeneous linear differential
equation

y′′ + r(z)y′ + q(z)y = 0. (2·7)
From (1·10), (1·16) and (2·4), we deduce that

lim
z→0

zr(z) = lim
z→0

(
1− 2z
1− z

− 2zg′(z)
g(z)

)
= 1 (2·8)
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and, from (1·9), (1·15) and (2·3), that

lim
z→0

z2q(z) = lim
z→0


 −2zf ′(z)2

9
f (z)
z
(1− f (z))


 =

−2 · 0 · ω2
9 · ω · 1 = 0. (2·9)

We deduce from (2·8) and (2·9) that z = 0 is a regular singular point of (2·7) [8, p.
237]. The indicial equation is α(α− 1) + 1α+ 0 = 0 [8, p. 238], which has the double
root α = 0. Thus the general solution of (2·7) in a neighbourhood of z = 0 is of the
form

y = Ay1(z) +By2(z), A, B ∈ C,

where y1(z) is a solution of (2·7), which is regular in a neighbourhood of z = 0, and
y2(z) is a solution of (2·7) possessing a logarithmic branch point at z = 0 [8, p. 242].
Hence (2·7) has a unique solution y(z) regular in a neighbourhood of z = 0 with a
prescribed value for y(0). Since (by (2·1), (1·9), (1·10) and (2·2))

a(0) = w(f (0)) = w(0) = g(0)w(0) = b(0),

this proves that

w(f (z)) = a(z) = b(z) = g(z)w(z) for z ∈ C
(
1
8

)
.

Thus as w(f (z)) and g(z)w(z) are defined and regular in D∗, and equal in the subset
C

(
1
8

)
of D∗, we have

w(f (z)) = g(z)w(z) for z ∈ D∗,

which is (1·28). This completes the proof of Theorem 1·1.

3. Proof of Theorem 1·2
In this section we use Theorem 1·1 to prove Theorem 1·2. By (1·31) and (1·37) the
function

2π√
3

w(1− z)
w(z)

− 2π√
3

w(1− f (z))
w(f (z))

is defined and regular in D∗∗ ⊇
(
0, 18

)
. For x ∈

(
0, 18

)
we have by [2, p. 87]

d

dx

(
2π√
3

w(1− x)
w(x)

)
=

−1
x(1− x)w(x)2

.

Thus
d

dx

(
2π√
3

w(1− f (x))
w(f (x))

)
=

−f ′(x)
f (x)(1− f (x))w(f (x))2

.

By Theorem 1·1 we have w(f (x)) = g(x)w(x) so that

d

dx

(
2π√
3

w(1− x)
w(x)

− 2π√
3

w(1− f (x))
w(f (x))

)

=
(

f ′(x)
f (x)(1− f (x))g(x)2

− 1
x(1− x)

)
1

w(x)2
.
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A MAPLE calculation shows that

f ′(x)
f (x)(1− f (x))g(x)2

=
1

x(1− x)

so that there is a constant K ∈ C such that

2π√
3

w(1− x)
w(x)

− 2π√
3

w(1− f (x))
w(f (x))

= K, for 0 < x <
1
8
.

Thus
lim
x→0+

(g(x)w(1− x)− w(1− f (x)))

= lim
x→0+

(
g(x)w(x)

(
w(1− x)

w(x)
− w(1− f (x))

w(f (x))

))

= g(0)w(0)

√
3
2π

K

=

√
3
2π

K,

by (1·10) and (1·21). On the other hand by [1, formula (15.3.10), p. 559], we have

w(1− x) = −
√
3
2π

w(x) log x +A(x), |x| < 1,

where

A(x) =

√
3
2π

∞∑
n=0

(
1
3

)
n

(
2
3

)
n

(n!)2
(
2ψ(n + 1)− ψ

(
n + 1

3

)
− ψ

(
n + 2

3

))
xn,

and

ψ(x)�
Γ′(x)
Γ(x)

, x > 0,

is the digamma function. Hence

lim
x→0+

(g(x)w(1− x)− w(1− f (x)))

= lim
x→0+

(g(x)A(x)− A(f (x)) +

√
3
2π
(log f (x)− log x)w(f (x))

= g(0)A(0)− A(0) +

√
3
2π

lim
x→0+

log
f (x)
x

=

√
3
2π

log ω (by (1·15))

=
i√
3
.

Hence

K =
2πi

3
.

Thus
2π√
3

w(1− x)
w(x)

− 2π√
3

w(1− f (x))
w(f (x))

− 2πi

3
= 0 for x ∈

(
0, 18

)
. (3·1)
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As the left–hand side of (3·1) is defined and regular in D∗∗ and D∗∗ ⊇
(
0, 18

)
, we

have
2π√
3

w(1− z)
w(z)

− 2π√
3

w(1− f (z))
w(f (z))

− 2πi

3
= 0 for z ∈ D∗∗,

which is (1·38). This completes the proof of Theorem 1·2.

4. Proof of Theorem 1·3
We just give the details for (1·48) as (1·47) and (1·49) can be proved in a similar
manner. The functionM (q) is analytic in C(1). For 0 < x < 1 we have by (1·43) and
(1·45)

M (e−
2π√
3

w (1−x )
w (x ) ) = (1 + 8x)w(x)4.

By the principle of analytic continuation,M has an analytic continuationM∗ such
that

M∗(e−
2π√
3

w (1−z )
w (z ) ) = (1 + 8z)w(z)4, z ∈ D, w(z)� 0,

and

M∗(q) = M (q), q ∈ C(1).

For z ∈ D∗∗, we have f (z) ∈ D, 1− f (z) ∈ D and w(f (z))� 0, so that

M∗(e−
2π√
3

w (1−f (z ))
w (f (z )) ) = (1 + 8f (z))w(f (z))4.

Then, by Theorems 1·1 and 1·2, we obtain

M∗(ωe−
2π√
3

w (1−z )
w (z ) ) = (1 + 8f (z))(g(z)w(z))4.

Now take z = x ∈
(
0, 18

)
⊆ D∗∗. Then

M∗(ωq) = (1 + 8f (x))(g(x)w(x))4.

As |ωq| = |q| < 1 we have M∗(ωq) = M (ωq) so that

M (ωq) = (1 + 8f (x))(g(x)w(x))4. (4·1)

Replacing f (x) and g(x) in (4·1) by the expressions in (1·6) and (1·7) respectively,
we obtain (1·48).

5. Proof of Theorem 1·4
We begin by applying the principle of triplication to (1·44), (1·45) and (1·46). As
triplication sends

q −→ q3, x −→
(
1− (1− x)

1
3

1 + 2(1− x)
1
3

)3
, w −→ 1

3

(
1 + 2(1− x)

1
3

)
w,
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see [4, theorem 3·1, p. 101], we obtain

L(q3) =
(
1− 4

3
x

)
w2 + 4x(1− x)w

dw

dx
, (5·1)

M (q3) =
(
1− 8

9
x

)
w4, (5·2)

N (q3) =
(
1− 4

3
x +

8
27

x2
)

w6, (5·3)

see [4, equation (13·17), p. 178, theorems 4·4 and 4·5, p. 107]. Applying the principle
of triplication to (5·1), (5·2) and (5·3), we obtain

L(q9) =
(
11− 12x + 8(1− x)

1
3 + 8(1− x)

2
3

) w2

27
+
4
3
x(1− x)w

dw

dx
, (5·4)

M (q9) =
(
249− 248x + 240(1− x)

1
3 + 240(1− x)

2
3 − 160x(1− x)

1
3

) w4

729
, (5·5)

N (q9) =
(
6579− 8604x + 2024x2 + 6552(1− x)

1
3 + 6552(1− x)

2
3

− 6384x(1− x)
1
3 − 4704x(1− x)

2
3

) w6

19683
. (5·6)

Clearly, from (1·50)− (1·52) and (1·39)− (1·41), we obtain

L1(q) + L2(q) + L3(q) =
∞∑

n=1

σ(n)qn =
1− L(q)
24

, (5·7)

M1(q) +M2(q) +M3(q) =
∞∑

n=1

σ3(n)qn =
M (q)− 1
240

, (5·8)

N1(q) +N2(q) +N3(q) =
∞∑

n=1

σ5(n)qn =
1− N (q)
504

. (5·9)

Now for all k ∈ N we have

σ(3k) = 4σ(k)− 3σ(k/3)

so that

L3(q) =
∞∑

k=1

σ(3k)q3k

= 4
∞∑

k=1

σ(k)q3k − 3
∞∑

k=1

σ(k/3)q3k

= 4
∞∑

k=1

σ(k)q3k − 3
∞∑

k=1

σ(k)q9k

= 4
(
1− L(q3)
24

)
− 3

(
1− L(q9)
24

)
,

that is

L3(q) =
1− 4L(q3) + 3L(q9)

24
. (5·10)
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Then, from (5·7) and (5·10), we deduce

L1(q) + L2(q) =
−L(q) + 4L(q3)− 3L(q9)

24
. (5·11)

Similarly, using

σ3(3k) = 28σ3(k)− 27σ3(k/3),

σ5(3k) = 244σ5(k)− 243σ5(k/3),

we obtain

M3(q) =
−1 + 28M (q3)− 27M (q9)

240
, (5·12)

M1(q) +M2(q) =
M (q)− 28M (q3) + 27M (q9)

240
, (5·13)

N3(q) =
1− 244N (q3) + 243N (q9)

504
, (5·14)

N1(q) +N2(q) =
−N (q) + 244N (q3)− 243N (q9)

504
. (5·15)

From (5·1)−(5·6), (5·10), (5·12) and (5·14), we obtain

L3(q) =
1
24
+

(
−25 + 36x + 8(1− x)

1
3 + 8(1− x)

2
3

) w2

216

−1
2
x(1− x)w

dw

dx
, (5·16)

M3(q) = − 1
240

+
(
507− 424x − 240(1− x)

1
3 − 240(1− x)

2
3

+ 160x(1− x)
1
3

) w4

6480
, (5·17)

N3(q) =
1
504

+
(
−355995 + 479196x − 103464x2 + 176904(1− x)

1
3

+ 176904(1− x)
2
3 − 172368x(1− x)

1
3

− 127008x(1− x)
2
3

) w6

1102248
. (5·18)

From (1·44)− (1·46), (5·1)− (5·6), (5·11), (5·13) and (5·15), we obtain

L1(q) + L2(q) =
(
2− (1− x)

1
3 − (1− x)

2
3

) w2

27
, (5·19)

M1(q) +M2(q) =
(
−6 + 8x + 3(1− x)

1
3 + 3(1− x)

2
3

− 2x(1− x)
1
3

) w4

81
, (5·20)

N1(q) +N2(q) =
(
234− 288x + 80x2 − 117(1− x)

1
3 − 117(1− x)

2
3

+ 114x(1− x)
1
3 + 84x(1− x)

2
3

) w6

729
. (5·21)

The formulae (1·39)− (1·41) are valid for all q ∈ C with |q| < 1. Replacing q by ωq
in each of (1·39), (1·40) and (1·41), we obtain respectively

L(ωq) = 1− 24ωL1(q)− 24ω2L2(q)− 24L3(q), (5·22)
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M (ωq) = 1 + 240ωM1(q) + 240ω2M2(q) + 240M3(q), (5·23)
N (ωq) = 1− 504ωN1(q)− 504ω2N2(q)− 504N3(q). (5·24)

From (1·47), (5·16) and (5·22), we obtain

ωL1(q) + ω2L2(q) =
(
−1 + (ω − 2ω2)(1− x)

1
3 + (−2ω + ω2)(1− x)

2
3

) w2

27
. (5·25)

Solving (5·19) and (5·25) for L1(q) and L2(q), we obtain

L1(q) =
(
1 + (1− x)

1
3 − 2(1− x)

2
3

) w2

27
, (5·26)

L2(q) =
(
1− 2(1− x)

1
3 + (1− x)

2
3

) w2

27
. (5·27)

From (1·48), (5·17) and (5·23), we obtain

ωM1(q) + ω2M2(q) =
(
6− 8x − 3(1− x)

1
3 − 3(1− x)

2
3 + 2x(1− x)

1
3

+ (ω − ω2)(−9(1− x)
1
3 + 9(1− x)

2
3

+ 6x(1− x)
1
3 )

) w4

162
. (5·28)

Solving (5·20) and (5·28) for M1(q) and M2(q), we obtain

M1(q) =
(
−3 + 4x − 3(1− x)

1
3 + 6(1− x)

2
3 + 2x(1− x)

1
3

) w4

81
, (5·29)

M2(q) =
(
−3 + 4x + 6(1− x)

1
3 − 3(1− x)

2
3 − 4x(1− x)

1
3

) w4

81
. (5·30)

From (1·49), (5·18) and (5·24), we obtain

ωN1(q) + ω2N2(q) =
(
A + (ω − ω2)B

) z6

1458
, (5·31)

where

A = −234 + 288x − 89x2 + 117(1− x)
1
3 + 117(1− x)

2
3 − 114x(1− x)

1
3 − 84x(1− x)

2
3

and

B = 351(1− x)
1
3 − 351(1− x)

2
3 − 342x(1− x)

1
3 + 252x(1− x)

2
3 .

Solving (5·21) and (5·31) for N1(q) and N2(q), we obtain

N1(q) =
(
117− 144x + 40x2 + 117(1− x)

1
3 − 234(1− x)

2
3

−114x(1− x)
1
3 + 168x(1− x)

2
3

) w6

729
, (5·32)

N2(q) =
(
117− 144x + 40x2 − 234(1− x)

1
3 + 117(1− x)

2
3

+228x(1− x)
1
3 − 848x(1− x)

2
3

) w6

729
. (5·33)

This completes the proof of Theorem 1·4.
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6. Proof of Theorem 1·5
We just give the proof of the first identity in Theorem 1·5 as the remaining three
identities can be proved similarly. From (1·53) and (1·57), we obtain

L1(q)2 =
(
1 + (1− x)

2
3 + 4(1− x)(1− x)

1
3 + 2(1− x)

1
3

− 4(1− x)
2
3 − 4(1− x)

) w4

729

=
(
−3 + 4x + 6(1− x)

1
3 − 3(1− x)

2
3 − 4x(1− x)

1
3

) w4

729

=
1
9
M2(q)

as asserted.

7. Proof of Theorem 1·6
We just give the proof of the second identity in Theorem 1·6 as the remaining three
identities can be proved similarly. By Theorem 1·4 we have

L2(q) =
(
1− 2(1− x)

1
3 + (1− x)

2
3

) w2

27
so that

dL2
dx

=
(
2
3
(1− x)−

2
3 − 2

3
(1− x)−

1
3

)
w2

27
+

(
1− 2(1− x)

1
3 + (1− x)

2
3

) 2w
27

dw

dx
.

By (1·43) and (1·42), we have
dq

dx
= −e−y dy

dx
=

q

x(1− x)w2

so that

q
dL2
dq

= x(1− x)w2 dL2
dx

= x
(
(1− x)

1
3 − (1− x)

2
3
) 2
81

w4

+x(1− x)
(
1− 2(1− x)

1
3 + (1− x)

2
3

) 2w3

27
dw

dx
.

From (1·54) and (5·1), we obtain

L2(q)L(q3) =
(
(3− 4x)− 2(3− 4x)(1− x)

1
3 + (3− 4x)(1− x)

2
3

) w4

81

+ 4
(
1− 2(1− x)

1
3 + (1− x)

2
3

)
x(1− x)

w3

27
dw

dx
.

Hence, appealing to (1·57), we deduce

L2(q)L(q3) +M2(q) = 4x
(
(1− x)

1
3 − (1− x)

2
3

) w4

81

+ 4
(
1− 2(1− x)

1
3 + (1− x)

2
3

)
x(1− x)

w3

27
dw

dx

= 2q
dL2
dq

,

completing the proof of the identity.
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8. Proof of Theorem 1·7

We just give the proof of the first identity in Theorem 1·7. The second identity can
be proved similarly. By (1·54) and (5·4), we obtain

9L2(q)L(q9) =
(
3− 4x − 6(1− x)

1
3 − 9(1− x)

2
3 + 16x(1− x)

1
3

) w4

81

+
4
9

(
1− 2(1− x)

1
3 + (1− x)

2
3

)
x(1− x)w3 dw

dx
.

Hence, appealing to (1·57), we have
9L2(q)L(q9) +M2(q)

= 4x
(
(1− x)

1
3 − (1− x)

2
3

) w4

27
+
4
9

(
1− 2(1− x)

1
3 + (1− x)

2
3

)
x(1− x)w3 dw

dx

= 6q
dL2
dq

,

completing the proof of the identity.

9. Proof of Theorem 1·8
We just give the proof of the first identity. The other identities can be proved
similarly. We have

∞∑
n=1

n≡2 (mod 3)

S(1, 3)qn =
∞∑

n=1
n≡2 (mod 3)

n−1∑
k=1

k≡1 (mod 3)

σ(k)σ(n − k)qn

=
∞∑

N=0

3N+1∑
k=1

k≡1 (mod 3)

σ(k)σ(3N + 2− k)q3N+2

=
∞∑

N=0

N∑
m=0

σ(3m + 1)σ(3(N − m) + 1)q3N+2

=
∞∑

m,n=0

σ(3m + 1)σ(3n + 1)q3(m+n)+2

=

( ∞∑
n=0

σ(3n + 1)q3n+1
)2

= L1(q)2

=
1
9
M2(q)

=
1
9

∞∑
n=1

n≡2 (mod 3)

σ3(n)qn,

by the first identity in Theorem 1·5, and the result follows on equating coefficients
of qn with n ≡ 2 (mod 3).
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10. Proof of Theorem 1·9
Appealing to the fourth identity in Theorem 1·6, we obtain

∞∑
n=1

∑
m<n/3

σ(m)σ(n − 3m)qn

=
∞∑
l=1

σ(l)ql

∞∑
m=1

σ(m)q3m

=
(
1− L(q)
24

) (
1− L(q3)
24

)

=
1
576

(
1− L(q)− L(q3) + L(q)L(q3)

)
=

1
576

(
1−L(q)−L(q3) +

1
10

M (q) +
9
10

M (q3) + 2q
dL(q)

dq
+
9
2
q
dL(q9)

dq
− 36q dL3(q)

dq

)

=
1
576

(
24

∞∑
n=1

σ(n)qn + 24
∞∑

n=1

σ(n/3)qn + 24
∞∑

n=1

σ3(n)qn + 216
∞∑

n=1

σ3(n/3)qn

− 48
∞∑

n=1

nσ(n)qn − 108
∞∑

n=1

nσ(n/9)qn − 36
∑

n�1, 3|n
nσ(n)qn


 .

Equating coefficients of qn, and appealing to the elementary result

4σ(n/3)− 3σ(n/9) =
{

σ(n), if 3 | n,
0, if 3 � n.

we obtain the assertion of Theorem 1·9.

11. Proof of Theorem 1·10
We just give the proof of the first identity. The second identity can be proved
similarly. We have by (1·50) and (1·39)

9L2(q)L(q9) = 9




∞∑
m=1

m≡2 (mod 3)

σ(m)qm




(
1− 24

∞∑
l=1

σ(l)q9l
)

= 9
∞∑

n=1
n≡2 (mod 3)

σ(n)qn − 216
∞∑

n=1

qn
∑

l, m � 1
9l +m=n

m≡2 (mod 3)

σ(l)σ(m)

= 9
∞∑

n=1
n≡2 (mod 3)

σ(n)qn − 216
∞∑

n=1
n≡2 (mod 3)

qn
∑

l<n/9

σ(l)σ(n − 9l).

On the other hand, by the first identity in Theorem 1·7, we have

9L2(q)L(q9) = 6q
dL2
dq

− M2(q) = 6
∞∑

n=1
n≡2 (mod 3)

nσ(n)qn −
∞∑

n=1
n≡2 (mod 3)

σ3(n)qn.



A cubic transformation formula 539
Equating coefficients of qn (n ≡ 2 (mod 3)), we obtain the asserted identity.

12. Proof of Theorem 1·11
We have by (1·62)

∞∑
n=1

n≡2 (mod 3)

n−1∑
k=1

k≡1 (mod 3)

kσ(k)σ(n − k)qn =
∞∑
l=1

l≡1 (mod 3)

σ(l)ql

∞∑
k=1

k≡1 (mod 3)

kσ(k)qk

= L1(q)q
dL1(q)

dq
=

1
18

q
dM2(q)

dq

=
1
18

∞∑
n=1

n≡2 (mod 3)

nσ3(n)qn.

Equating coefficients of qn (n ≡ 2 (mod 3)), we obtain the asserted result.
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