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Infinitely Many Insolvable
Diophantine Equations

Noriaki Kimura and Kenneth S. Williams

Let f (x1, . . . , xn) be a quadratic form in n variables x1, . . . , xn with integral coeffi-
cients, let p be a prime, and let k be a positive integer. The congruence f (x1, . . . , xn) ≡
0 (mod pk) is said to be solvable nontrivially if there exist integers x1, . . . , xn such that
f (x1, . . . , xn) ≡ 0 (mod pk) with at least one of x1, . . . , xn not divisible by p. Thus the
congruence x2

1 + x2
2 ≡ 0 (mod 3k) is solvable (with x1 = x2 = 0) but is not solvable

nontrivially as any solution x1, x2 satisfies x1 ≡ x2 ≡ 0 (mod 3). Let m be a positive
integer larger than 1. The congruence f (x1, . . . , xn) ≡ 0 (mod m) is said to be solv-
able nontrivially if f (x1, . . . , xn) ≡ 0 (mod pk) is solvable nontrivially for each prime
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divisor p of m and each positive integer k such that pk is the largest power of p di-
viding m (written pk ‖ m). We note that the components xi of the solution that are not
divisible by p are not necessarily the same for different prime divisors p of m.

The Hasse-Minkowski theorem [1, p. 61] asserts that, if (a) there exist real numbers
r1, . . . , rn not all zero such that

f (r1, . . . , rn) = 0

and (b) the congruence f (x1, . . . , xn) ≡ 0 (mod m) is solvable nontrivially for every
positive integer m greater than 1, then the equation f (x1, . . . , xn) = 0 is solvable in
integers x1, . . . , xn not all zero. However, if f (x1, . . . , xn) is a quadratic polynomial
that is not a quadratic form (i.e., is not homogeneous), then (a) and (b) do not ensure
that f (x1, . . . , xn) = 0 is solvable in integers x1, . . . , xn . An example is given in [5,
p. 195]. We give infinitely many quadratic polynomials f in two variables such that
(a) and (b) hold but f (x1, x2) = 0 is not solvable in integers x1 and x2.

We make use of a number of elementary arithmetic facts. In (i)–(vi) to follow, p is
an odd prime, a, b, and c are integers, α is a positive integer, and ( ∗

p ) is the Legendre
symbol defined by

(
a

p

)
=




1 if p � a and x2 ≡ a (mod p) is solvable,
−1 if p � a and x2 ≡ a (mod p) is not solvable,

0 if p | a.

(i) If a ≡ 1 (mod 8), then the congruence x2 ≡ a (mod 2α) is solvable [2, p. 13].
(ii) If ( a

p ) = 1, then the congruence x2 ≡ a (mod pα) is solvable [2, p. 13], [4,
p. 137].

(iii) If p � a, then the number of solutions of the congruence ax2 + bx + c ≡ 0
(mod p) is

1 +
(

b2 − 4ac

p

)

[3, pp. 68–69].
(iv) If p � a and p � b2 − 4ac, then

p−1∑
x=0

(
ax2 + bx + c

p

)
= −

(
a

p

)

[3, p. 82].
(v) If D is a positive integer that is not a perfect square and E is an integer

such that 0 < |E | <
√

D, then the equation x2 − Dy2 = E is solvable in co-
prime positive integers x and y if and only if E = h2

n − Dk2
n for some conver-

gent hn/kn of the continued fraction expansion of
√

D with n in {0, 1, 2, . . . ,

l − 1}, where l is the length of the period of the continued fraction expansion
of

√
D [4, p. 352].

If p � a and p � b2 − 4ac we infer from (iii) and (iv) that the number of x in
{0, 1, 2, . . . , p − 1} such that

(
ax2 + bx + c

p

)
= 1

910 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 111



is

1

2

p−1∑
x=0

p�ax2+bx+c

(
1 +

(
ax2 + bx + c

p

))
= 1

2

(
p − 1 −

(
b2 − 4ac

p

)
−

(
a

p

))
.

When p ≥ 5 we have

1

2

(
p − 1 −

(
b2 − 4ac

p

)
−

(
a

p

))
≥ 1

2
(p − 3) ≥ 1.

Thus we conclude:

(vi) If p ≥ 5, p � a, and p � b2 − 4ac, then there exists an integer x such that

(
ax2 + bx + c

p

)
= 1.

Theorem. If a is an integer greater than 1 each of whose prime divisors is congruent
to either 1 or 3 modulo 8, then the equation

2x2 − (2a4 + a2)y2 + 1 = 0 (1)

is not solvable in integers x and y, but the congruence

2x2 − (2a4 + a2)y2 + 1 ≡ 0 (mod m) (2)

is solvable nontrivially for every positive integer m greater than 1.

Proof. As

(2a2)2 < 4a4 + 2a2 < (2a2 + 1)2,

the positive integer 4a4 + 2a2 is not a perfect square. The continued fraction expansion
of

√
4a4 + 2a2 is of period two and is given by

√
4a4 + 2a2 = [2a2, 2, 4a2].

The convergents [4, p. 332] of this continued fraction expansion are

h0

k0
= 2a2

1
,

h1

k1
= 4a2 + 1

2
, . . . .

Let

gn = h2
n − (4a4 + 2a2)k2

n (n = 0, 1, 2, . . .),

so that

g0 = −2a2, g1 = 1, . . . .
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Since | − 2| <
√

4a4 + 2a2, g0 �= −2, and g1 �= −2, statement (v) implies that the
equation x2

1 − (4a4 + 2a2)y2
1 = −2 is not solvable in integers x1 and y1. Thus the

equation (1) is not solvable in integers x and y.
Now let m be a positive integer larger than 1. We show that the congruence (2) is

solvable nontrivially. Let p be a prime with p | m, say pα ‖ m, where α is a positive
integer. We consider three cases according as (A) p = 2, (B) p �= 2 and p | 2a4 + a2,
or (C) p �= 2 and p � 2a4 + a2.

Case A: p = 2. As a is odd, a2 ≡ 1 (mod 8), so 2a4 + a2 − 2 ≡ 1 (mod 8). Thus, by
(i), the congruence

z2 ≡ 2a4 + a2 − 2 (mod 2α)

is solvable. Then the congruence 2x2
2 − (2a4 + a2)y2

2 + 1 ≡ 0 (mod 2α) is solvable
nontrivially with x2 = y2 = t , where t is the inverse of z modulo 2α.

Case B: p �= 2, p | 2a4 + a2. As p | 2a4 + a2 we have either p | a or p | 2a2 + 1.
In the former case p ≡ 1 or 3 (mod 8) by assumption, so (−2

p ) = 1. In the latter case

(2a)2 ≡ −2 (mod p), so (−2
p ) = 1. According to (ii) there exists in each case an integer

w such that w2 ≡ −2 (mod pα). Then the congruence 2x2
p − (2a4 + a2)y2

p + 1 ≡ 0
(mod pα) is solvable nontrivially with xp = lw and yp = 0, where l is the inverse of 2
modulo pα.

Case C: p �= 2, p � 2a4 + a2. Because 3 | 2a4 + a2, we have p �= 3, implying that
p ≥ 5. Set b = 2a4 + a2, so that p � b. By (vi) there exists an integer y such that

(
2by2 − 2

p

)
= 1.

In view of (ii) there exists an integer z such that

z2 ≡ 2by2 − 2 (mod pα).

Then the congruence 2x2
p − (2a4 + a2)y2

p + 1 ≡ 0 (mod pα) is solvable nontrivially
with xp = lz and yp = y, where l is the inverse of 2 modulo pα.

Finally, appealing to the Chinese remainder theorem, we choose integers x and y
such that

x ≡ xp (mod pα), y ≡ yp (mod pα)

for every prime divisor p of m and each positive integer α such that pα ‖ m. Then
2x2 − (2a4 + a2)y2 + 1 ≡ 0 (mod m).

Let

fm(x1, x2) = 2x2
1 − (2 · 34m + 32m)x2

2 + 1 (m = 1, 2, . . .).

Clearly each equation fm(x1, x2) = 0 has a nontrivial real solution

(x1, x2) = (
0, (1/

√
2 · 34m + 32m)

)
,
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so condition (a) of the Hasse-Minkowski theorem is satisfied. By the theorem condi-
tion (b) is also satisfied. On the other hand, none of these polynomials has a solution
(x1, x2) in Z2.
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Forward Shifts and Backward Shifts
in a Rearrangement of a

Conditionally Convergent Series

Jón R. Stefánsson

In [2, p. 57] it is proved that a rearrangement of a conditionally convergent series
remains convergent (with unaltered sum), provided the series is rearranged in such a
way that the forward shifts are bounded. It is remarked that there is a clear difference
between forward shifts and backward shifts.

The purpose of this note is to show that in the context under consideration there is,
in fact, no difference. The result stated in [2] holds as well with the assumption that
the backward shifts are bounded.

Let
∑

xn be a series, and let
∑

xπ(n) be a rearrangement determined by a permu-
tation π of the natural numbers. The nth term, xn = xπ(π−1(n)), of the original series
is shifted to the kth term of the rearranged series, where k = π−1(n). The forward
(respectively, backward) shifts are bounded if and only if the differences π−1(n) − n
(respectively, n − π−1(n)) are bounded above.

We state the following theorem, where we do not a priori assume convergence of
the series:

Theorem. Let
∑

xn be a series in a normed linear space with lim xn = 0, and let∑
xπ(n) be a rearrangement of the series. Assume that either the forward shifts are

bounded or the backward shifts are bounded. If sn (respectively, tn) denotes the nth
partial sum of the series

∑
xn (respectively,

∑
xπ(n)), then the following statements

hold:
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