On Voronoi's method for finding an integral basis of a cubic field

Şaban Alaca and Kenneth S. Williams

ABSTRACT. We give a new proof of Voronoi's determination of an integral basis for a cubic field.

Let K be a cubic field. Without loss of generality we may take the cubic field K in the form $K = Q(\theta)$, where θ is a root of the irreducible polynomial

$$f(x) = x^3 - ax + b, \ a, b \in Z.$$

For each prime p and each nonzero integer m, $\nu_p(m)$ denotes the greatest exponent l such that $p^l | m$. We can also assume that for every prime p

$$\nu_p(a) < 2 \ or \ \nu_p(b) < 3,$$

see [4, p. 579]. The discriminant of θ is $\Delta = 4a^3 - 27b^2$ and $\Delta = i(\theta)^2d(K)$, where $i(\theta)$ denotes the index of θ and $d(K)$ denotes the discriminant of K. For each prime p, set $s_p = \nu_p(\Delta)$ and $\Delta_p = \Delta/p^{s_p}$. The value of $d(K)$ has been given by Llorente and Nart [4, Theorem 2] (also by Alaca [1]).

Theorem 1.

$$d(K) = \text{sgn}(\Delta)2^{\alpha}3^{\beta} \prod_{p \geq 3} p^{s_p} \prod_{1 \leq \nu_p(\Delta) \leq \nu_p(a)} p^2,$$

where α and β are given by

$$\alpha = \begin{cases}
3, & \text{if } s_2 \equiv 1 \pmod{2}, \\
2, & \text{if } 1 \leq \nu_2(b) \leq \nu_2(a), \text{ or } s_2 \text{ even and } \Delta_2 \equiv 3 \pmod{4}, \\
0, & \text{otherwise},
\end{cases}$$

and

\[1 \text{Research supported by Natural Sciences and Engineering Research Council of Canada Grant A-7233.} \\
\text{Date: May 16, 2002} \quad 1991 \text{ Mathematics Subject Classification: 11R16,11R29} \\
\text{Key words and phrases: cubic field, discriminant, integral basis.}

Utilitas Mathematica 65(2004), pp. 163-166
\[
\beta = \begin{cases}
5, & \text{if } 1 \leq \nu_2(b) < \nu_2(a), \\
4, & \text{if } \nu_2(a) = \nu_2(b) = 2, \text{ or } \\
& a \equiv 3 \pmod{9}, 3 \mid b \text{ and } b^2 \not\equiv 4 \pmod{9}, \\
3, & \text{if } \nu_2(a) = \nu_2(b) = 1, \text{ or } \\
& 3 \mid a, 3 \mid b, a \not\equiv 3 \pmod{9} \text{ and } b^2 \not\equiv a + 1 \pmod{9}, \text{ or } \\
& a \equiv 3 \pmod{9}, b^2 \equiv 4 \pmod{9} \text{ and } b^2 \not\equiv a + 1 \pmod{27}, \\
1, & \text{if } 1 = \nu_2(a) < \nu_2(b), \text{ or } \\
& 3 \mid a, a \not\equiv 3 \pmod{9} \text{ and } b^2 \equiv a + 1 \pmod{9}, \text{ or } \\
& a \equiv 3 \pmod{9}, b^2 \equiv a + 1 \pmod{27} \text{ and } s_3 \text{ odd,} \\
0, & \text{if } 3 \mid a, \text{ or } \\
& a \equiv 3 \pmod{9}, b^2 \equiv a + 1 \pmod{27} \text{ and } s_3 \text{ even.}
\end{cases}
\]

Voronoi [5] (see also [3, pp. 108–112]) has shown how an integral basis of \(K \) can be found in terms of \(a \) and \(b \). We show how Voronoi’s determination of an integral basis for \(K \) follows easily from Llorente and Nart’s evaluation of \(d(K) \) (also from the work of Alaca [1]), thereby giving a new proof of Voronoi’s results (Theorems 2 and 3 below).

An integral basis for \(K \) comprises \(1 \), a minimal integer of degree 1 in \(\theta \), and a minimal integer of degree 2 in \(\theta \). A minimal integer of degree 1 in \(\theta \) is either of the form \(u + \theta \) or \((u + \theta)/3 \), where \(u \) is an integer. The latter happens precisely when

\[a \equiv 3 \pmod{9} \text{ and } b^2 \equiv a + 1 \pmod{27}. \quad (1) \]

It is therefore convenient to consider two cases. We first treat those \(a \) and \(b \) for which (1) does not hold. For all primes \(p \), we define the integer \(r_p \) by

\[r_p = (s_p - \nu_p(d(K)))/2. \quad (2) \]

Lemma 1. Suppose (1) does not hold. Then, for each prime \(p \), the pair of congruences

\[
\begin{cases}
\quad t^3 - at + b \equiv 0 \pmod{p^{2k}}, \\
\quad 3t^2 - a \equiv 0 \pmod{p^k},
\end{cases}
\]

is solvable for \(k = r_p \) but not for \(k = r_p + 1 \).

Proof: The proof is straightforward and we give the details only for the case \(p = 3 \) and \(\nu_2(a) = \nu_2(b) = 2 \). In this case \(s_2 = 6 \) and \(\nu_2(d(K)) = 4 \), so that \(r_3 = 1 \). The pair of congruences (3) is solvable for \(k = r_3 = 1 \) with \(t = 0 \), but is not solvable for \(k = r_3 + 1 = 2 \).

The following lemma is an immediate consequence of Lemma 1.
Lemma 2. Suppose (1) does not hold. Then the largest positive integer \(n \) for which the pair of congruences

\[
\begin{align*}
t^3 - at + b &\equiv 0 \pmod{n^2}, \\
3t^2 - a &\equiv 0 \pmod{n},
\end{align*}
\]

(4)

is solvable, is \(n = \prod p^r \).

Numerically \(n \) can be found as the largest integer such that \(n^2 | \Delta \) for which the pair of congruences (4) is solvable.

Now we use Lemma 2 to give Voronoi's method for finding an integral basis for \(K \) when (1) does not hold.

Theorem 2. Suppose (1) does not hold. Let \(n^2 \) be the largest square dividing \(\Delta \) for which the pair of congruences (4) is solvable for \(t \). Then an integral basis for \(K \) is

\[
\{1, \theta, (t^2 - a + t\theta + \theta^2)/n\}.
\]

Proof: If \(t \) is a solution of the pair of congruences (4) then \((t^2 - a + t\theta + \theta^2)/n\) is an algebraic integer as it is a root of the polynomial

\[
p(x) = x^3 - \frac{(3t^2 - a)}{n} x^2 + \frac{3t(t^3 - at + b)}{n^2} x - \frac{(t^3 - at + b)^2}{n^3},
\]

which has rational integral coefficients. Since \(d(1, \theta, (t^2 - a + t\theta + \theta^2)/n) = d(K) \), we deduce that \(\{1, \theta, (t^2 - a + t\theta + \theta^2)/n\} \) is an integral basis for \(K \).

Example 1. Let \(K = \mathbb{Q}(\theta) \), where \(\theta^3 - 6\theta + 32 = 0 \). Then \(a = 6, b = 32, n = 6 \) and \(t = 4 \). Hence an integral basis for \(K \) is \(\{1, \theta, (10 + 4\theta + 6\theta^2)/6\} \).

We can treat the case \(a \equiv 3 \pmod{9} \) and \(b^2 \equiv a + 1 \pmod{27} \) in a similar manner. In this case \(\Delta \) is divisible by 729 and Voronoi's result is the following.

Theorem 3. Suppose (1) holds. Let \(n^2 \) be the largest square dividing \(\Delta/729 \) for which the pair of congruences

\[
\begin{align*}
t^3 - at + b &\equiv 0 \pmod{27n^2}, \\
3t^2 - a &\equiv 0 \pmod{9n},
\end{align*}
\]

(5)

is solvable for \(t \). Then an integral basis for \(K \) is

\[
\{1, (-t + \theta)/3, (t^2 - a + t\theta + \theta^2)/9n\}.
\]
Example 2. Let $K = \mathbb{Q}(\theta)$, where $\theta^3 - 3\theta + 56 = 0$. Then $a = 3$, $b = 56$, $n = 1$ and $t = 1$. Hence an integral basis for K is \{1, (−1 + \theta)/3, (−2 + \theta + \theta^2)/9\}.

The integral basis for a pure cubic field given in [2, Theorem 6.4.13] and the integral basis for a cyclic cubic field given in [2, Theorem 6.4.11 and Corollary 6.4.12] follow from Theorems 2 and 3.

References

Centre for Research in Algebra and Number Theory
School of Mathematics and Statistics, Carleton University
Ottawa, Ontario, Canada K1S 5B6

E-mail : salaca@math.carleton.ca

williams@math.carleton.ca