$$
n=\Delta+\Delta+2(\Delta+\Delta)
$$

KENNETH S. WILLIAMS

(Received June 8, 2003)

Submitted by K. K. Azad

Abstract

Let n be a nonnegative integer. An explicit formula is given for the number of quadruples $\left(t_{1}, t_{2}, t_{3}, t_{4}\right)$ of triangular numbers such that $$
n=t_{1}+t_{2}+2\left(t_{3}+t_{4}\right)
$$

As a consequence of this formula we deduce that every nonnegative integer is of the form $t_{1}+t_{2}+2\left(t_{3}+t_{4}\right)$ for some triangular numbers $t_{1}, t_{2}, t_{3}, t_{4}$.

1. Introduction

Let $\mathbb{N}=\{1,2,3, \ldots\}$ and $\mathbb{N}_{0}=\{0,1,2,3, \ldots\}$. The triangular numbers are the nonnegative integers

$$
T_{k}=\frac{1}{2} k(k+1), \quad k \in \mathbb{N}_{0}
$$

so that

$$
T_{0}=0, T_{1}=1, T_{2}=3, T_{3}=6, T_{4}=10, T_{5}=15, \ldots
$$

2000 Mathematics Subject Classification: Primary 11E25.

Key words and phrases: triangular numbers.
The author was supported by Natural Sciences and Engineering Research Council of Canada grant A-7233.

We set

$$
\Delta=\left\{T_{k} \mid k \in \mathbb{N}_{0}\right\} .
$$

For $n \in \mathbb{N}_{0}$ and $m \in \mathbb{N}$ we let

$$
\delta_{m}(n)=\operatorname{card}\left\{\left(t_{1}, \ldots, t_{m}\right) \in \Delta^{m} \mid n=t_{1}+\cdots+t_{m}\right\}
$$

so that $\delta_{m}(n)$ counts the number of representations of n as the sum of m triangular numbers. It is an easily proved classical result that

$$
\begin{equation*}
\delta_{2}(n)=\sum_{\substack{d \in \mathbb{N} \\ d \mid 4 n+1}}\left(\frac{-4}{d}\right), n \in \mathbb{N}_{0}, \tag{1.1}
\end{equation*}
$$

where d runs through the positive integers dividing $4 n+1$ and

$$
\left(\frac{-4}{d}\right)= \begin{cases}+1, & \text { if } d \equiv 1(\bmod 4) \\ 0, & \text { if } d \equiv 0(\bmod 2) \\ -1, & \text { if } d \equiv-1(\bmod 4)\end{cases}
$$

see for example [4, pp. 77-78]. Similarly

$$
\begin{equation*}
\delta_{4}(n)=\sigma(2 n+1), \quad n \in \mathbb{N}_{0}, \tag{1.2}
\end{equation*}
$$

where

$$
\sigma(m)= \begin{cases}\sum_{d \in \mathbb{N}} d, & m \in \mathbb{N}, \\ d \mid m \\ 0, & m \notin \mathbb{N} .\end{cases}
$$

The result (1.2) was known to Legendre [2]. A proof using modular forms has been given by Ono, Robins and Wahl [4, pp. 79-80]. An elementary arithmetic proof has been given by Huard, Ou, Spearman and Williams [1, pp. 259-262].

In this paper, we determine

$$
\begin{equation*}
R(n)=\operatorname{card}\left\{\left(t_{1}, t_{2}, t_{3}, t_{4}\right) \in \Delta^{4} \mid n=t_{1}+t_{2}+2\left(t_{3}+t_{4}\right)\right\} \tag{1.3}
\end{equation*}
$$

by entirely arithmetic means. We make use of the elementary result (1.1) as well as the recent elementary identity due to Huard, Ou, Spearman

$$
\begin{equation*}
n=\Delta+\Delta+2(\Delta+\Delta) \tag{235}
\end{equation*}
$$

and Williams [1, Theorem 1, p. 230], which was used to prove (1.2). This identity is given in Section 2 as Proposition 1. In Section 3, we prove the following result.

Theorem. For $n \in \mathbb{N}_{0}$ we have

$$
R(n)=\frac{1}{4} \sum_{\substack{d \in \mathbb{N} \\ d \mid 4 n+3}}\left(d-(-1)^{(d-1) / 2}\right)
$$

An immediate consequence of this theorem is that every nonnegative integer is of the form $t_{1}+t_{2}+2 t_{3}+2 t_{4}$ for triangular numbers $t_{1}, t_{2}, t_{3}, t_{4}$.

2. Preliminary Results

The elementary identity of Huard, Ou , Spearman and Williams [1, Theorem 1, p. 230] mentioned in Section 1 is the following result:

Proposition 1. Let $f: \mathbb{Z}^{4} \mapsto \mathbb{C}$ be such that

$$
f(a, b, x, y)-f(x, y, a, b)=f(-a,-b, x, y)-f(x, y,-a,-b)
$$

for all $(a, b, x, y) \in \mathbb{Z}^{4}$. Then, for $n \in \mathbb{N}$, we have

$$
\begin{aligned}
& \sum_{\substack{(a, b, x, y) \in \mathbb{N}^{4} \\
a x+b y=n}}(f(a, b, x,-y)-f(a,-b, x, y)+f(a, a-b, x+y, y) \\
& -f(a, a+b, y-x, y)+f(b-a, b, x, x+y)-f(a+b, b, x, x-y)) \\
= & \sum_{\substack{d \in \mathbb{N} \\
d \mid n}} \sum_{x=1}^{d-1}(f(0, n / d, x, d)+f(n / d, 0, d, x)+f(n / d, n / d, d-x,-x) \\
& -f(x, x-d, n / d, n / d)-f(x, d, 0, n / d)-f(d, x, n / d, 0)) .
\end{aligned}
$$

For $x \in \mathbb{Z}$ and $k \in \mathbb{N}$ with $k \geq 2$, we let

$$
F_{k}(x)= \begin{cases}1, & \text { if } k \mid x, \\ 0, & \text { if } k \nmid x .\end{cases}
$$

As usual we set

$$
d(m)= \begin{cases}\sum_{d \in \mathbb{N}} 1, & \text { if } m \in \mathbb{N} \\ d \mid m m & \text { if } m \notin \mathbb{N} \\ 0, & \text { in }\end{cases}
$$

Taking $f(a, b, x, y)=f(a) F_{2}(x)$ in Proposition 1 , where $f: \mathbb{Z} \mapsto \mathbb{C}$ is an even function, we obtain the following interesting identity.

Proposition 2. Let $f: \mathbb{Z} \mapsto \mathbb{C}$ be an even function. Then, for $n \in \mathbb{N}$, we have

$$
\begin{aligned}
& \sum_{\substack{(a, b, x, y) \in \mathbb{N} \\
2 a x+b y=n}}(f(a-b)-f(a+b)) \\
= & \frac{1}{2} f(0)(\sigma(n)-d(n)-d(n / 2))+\frac{1}{2} \sum_{\substack{d \in \mathbb{N} \\
d \mid n}}\left(1+\frac{n}{d}\right) f(d) \\
& +\frac{1}{2} \sum_{\substack{d \in \mathbb{N} \\
d \left\lvert\, \frac{n}{2}\right.}}\left(1-2 d+\frac{2 n}{d}\right) f(d)-\sum_{\substack{d \in \mathbb{N} \\
d \mid n}}\left(\sum_{v=1}^{d} f(v)\right)-\sum_{\substack{d \in \mathbb{N} \\
d \left\lvert\, \frac{n}{2}\right.}}\left(\sum_{v=1}^{d} f(v)\right) .
\end{aligned}
$$

Proposition 2 is similar to the following identity of Liouville [3, p. 284].

Proposition 3. Let $f: \mathbb{Z} \mapsto \mathbb{C}$ be an even function. Then, for $n \in \mathbb{N}$,

$$
\begin{aligned}
& \sum_{\substack{(a, b, x, y) \in \mathbb{N}^{4} \\
a x+b y=n}}(f(a-b)-f(a+b)) \\
= & f(0)(\sigma(n)-d(n))+\sum_{\substack{d \in \mathbb{N} \\
d \mid n}}\left(1-d+\frac{2 n}{d}\right) f(d)-2 \sum_{\substack{d \in \mathbb{N} \\
d \mid n}}\left(\sum_{v=1}^{d} f(v)\right) .
\end{aligned}
$$

Taking $f(x)=F_{4}(x)$ in Proposition 2, and replacing n by $4 n+3$, we obtain, as

$$
F_{4}(a-b)-F_{4}(a+b)=\left(\frac{-4}{a b}\right), \text { for all } a, b \in \mathbb{N},
$$

the following result.

$$
n=\Delta+\Delta+2(\Delta+\Delta)
$$

Proposition 4. For $n \in \mathbb{N}_{0}$ we have

$$
\sum_{\substack{(a, b, x, y) \in \mathbb{N}^{4} \\ 2 a x+b y=4 n+3}}\left(\frac{-4}{a b}\right)=\frac{1}{4} \sum_{\substack{d \in \mathbb{N} \\ d \mid 4 n+3}}\left(d-\left(\frac{-4}{d}\right)\right) .
$$

3. Proof of Theorem

Let $n \in \mathbb{N}_{0}$. By (1.1) and (1.3) we have

$$
\begin{equation*}
R(n)=\sum_{\substack{m \in \mathbb{N}_{0} \\ m \leq n / 2}} \delta_{2}(m) \delta_{2}(n-2 m) \tag{3.1}
\end{equation*}
$$

Appealing to (1.1) and (3.1), we obtain

$$
\begin{equation*}
R(n)=\sum_{\substack{m \in \mathbb{N}_{0} \\ m \leq n / 2}}\left(\sum_{\substack{a \in \mathbb{N} \\ a \mid 4 m+1}}\left(\frac{-4}{a}\right)\right)\left(\sum_{\substack{b \in \mathbb{N} \\ b \mid 4(n-2 m)+1}}\left(\frac{-4}{b}\right)\right) \tag{3.2}
\end{equation*}
$$

Now

$$
\left(\frac{-4}{a}\right)\left(\frac{-4}{b}\right)=\left(\frac{-4}{a b}\right), \text { for all } a, b \in \mathbb{N}
$$

and

$$
\begin{aligned}
& a|4 m+1, b| 4(n-2 m)+1 \text { for some } m \in \mathbb{N}_{0} \text { with } m \leq n / 2 \\
\Leftrightarrow & 4 n+3=2 a x+b y, a x \equiv 1(\bmod 4) \text { for some } x, y \in \mathbb{N} .
\end{aligned}
$$

Hence (3.2) becomes

$$
\begin{equation*}
R(n)=\sum_{\substack{(a, b, x, y) \in \mathbb{N}^{4} \\ 2 a x+b y=4 n+3 \\ a x=1(\bmod 4)}}\left(\frac{-4}{a b}\right) \tag{3.3}
\end{equation*}
$$

Next, we show that

$$
\begin{equation*}
\sum_{\substack{(a, b, x, y) \in \mathbb{N}^{4} \\ 2 a x+b y=4 n+3 \\ a x=3(\bmod 4)}}\left(\frac{-4}{a b}\right)=0 . \tag{3.4}
\end{equation*}
$$

Interchanging the roles of a and x in the sum (3.4), and noting that

$$
\left(\frac{-4}{x b}\right)=\left(\frac{-4}{a^{2} x b}\right)=\left(\frac{-4}{a x}\right)\left(\frac{-4}{a b}\right)=\left(\frac{-4}{3}\right)\left(\frac{-4}{a b}\right)=-\left(\frac{-4}{a b}\right),
$$

we obtain

from which (3.4) follows. Adding (3.4) to (3.1), we obtain

$$
R(n)=\sum_{\substack{(a, b, x, y) \in \mathbb{N}^{4} \\ 2 a x+b y=4 n+3 \\ a x=1(\bmod 2)}}\left(\frac{-4}{a b}\right) .
$$

If a is even, then $\left(\frac{-4}{a b}\right)=0$ so

$$
\begin{equation*}
R(n)=\sum_{\substack{(a, b, x, y) \in \mathbb{N}^{4} \\ 2 a x+b y=4 n+3 \\ x=1(\bmod 2)}}\left(\frac{-4}{a b}\right) . \tag{3.6}
\end{equation*}
$$

Next, we show that

$$
\begin{equation*}
\sum_{\substack{(a, b, x, y) \in \mathbb{N}^{4} \\ 2 a x+b y=4 n+3 \\ x=0(\bmod 2)}}\left(\frac{-4}{a b}\right)=0 . \tag{3.7}
\end{equation*}
$$

Interchanging the roles of b and y in the sum in (3.7), and noting that

$$
\left(\frac{-4}{a y}\right)=\left(\frac{-4}{b^{2} a y}\right)=\left(\frac{-4}{b y}\right)\left(\frac{-4}{a b}\right)=\left(\frac{-4}{3}\right)\left(\frac{-4}{a b}\right)=-\left(\frac{-4}{a b}\right)
$$

we obtain

$$
\sum_{\substack{(a, b, x, y) \in \mathbb{N}^{4} \\ 2 a x+b y=4 n+3 \\ x=0(\bmod 2)}}\left(\frac{-4}{a b}\right)=\sum_{\substack{(a, b, x, y) \in \mathbb{N}^{4} \\ 2 a x+b y=4+3 \\ x=0(\bmod 2)}}\left(\frac{-4}{a y}\right)=-\sum_{\substack{(a, b, x, y) \in \mathbb{N}^{4} \\ 2 a x+b y=4 n+3 \\ x=0(\bmod 2)}}\left(\frac{-4}{a b}\right),
$$

$$
\begin{equation*}
n=\Delta+\Delta+2(\Delta+\Delta) \tag{239}
\end{equation*}
$$

from which (3.7) follows. Adding (3.6) and (3.7), we obtain

$$
\begin{equation*}
R(n)=\sum_{\substack{(a, b, x, y) \in \mathbb{N}^{4} \\ 2 a x+b y=4 n+3}}\left(\frac{-4}{a b}\right) \tag{3.8}
\end{equation*}
$$

Appealing to Proposition 4, (3.8) yields

$$
R(n)=\frac{1}{4} \sum_{\substack{d \in \mathbb{N} \\ d \mid 4 n+3}}\left(d-\left(\frac{-4}{d}\right)\right)
$$

The theorem now follows as $\left(\frac{-4}{d}\right)=(-1)^{(d-1) / 2}$ for d odd.
For odd $d \in \mathbb{N}$ we have

$$
d-(-1)^{(d-1) / 2} \geq d-1 \geq 0
$$

Hence for $n \in \mathbb{N}_{0}$ we deduce that

$$
R(n)=\frac{1}{4} \sum_{\substack{d \in \mathbb{N} \\ d 14 n+3 \\ d<4 n+3}}\left(d-(-1)^{(d-1) / 2}\right)+n+1 \geq 0+0+1=1
$$

This shows that every nonnegative integer is of the form $t_{1}+t_{2}+$ $2\left(t_{3}+t_{4}\right)$ for some triangular numbers $t_{1}, t_{2}, t_{3}, t_{4}$.

For example, with $n=6$ we have

$$
R(6)=\frac{1}{4} \sum_{\substack{d \in \mathbb{N} \\ d \mid 27}}\left(d-(-1)^{(d-1) / 2}\right)=\frac{1}{4}(0+4+8+28)=10 .
$$

The 10 representations $\left(t_{1}, t_{2}, t_{3}, t_{4}\right) \in \Delta^{4}$ in $6=t_{1}+t_{2}+2\left(t_{3}+t_{4}\right)$ are

$$
\begin{aligned}
\left(t_{1}, t_{2}, t_{3}, t_{4}\right)= & (0,0,0,3),(0,0,3,0),(0,6,0,0),(1,1,1,1),(1,3,0,1) \\
& (1,3,1,0),(3,1,0,1),(3,1,1,0),(3,3,0,0),(6,0,0,0)
\end{aligned}
$$

References

[1] J. G. Huard, Z. M. Ou, B. K. Spearman and K. S. Williams, Number Theory for the Millennium II, M. A. Bennett et al., eds., A. K. Peters Ltd., Natick, Massachusetts, 2002.
[2] A. Legendre, Traité des Fonctions Elliptiques, Vol. 3, Paris, 1828.
[3] J. Liouville, Sur quelques formules générales qui peuvent être utiles dans la théorie des nombres (cinquième article), J. Math. Pures Appl. 3 (1858), 273-288.
[4] K. Ono, S. Robins and P. T. Wahl, On the representation of integers as sums of triangular numbers, Aequationes Math. 50 (1995), 73-94.

Centre for Research in Algebra and Number Theory
School of Mathematics and Statistics
Carleton University
Ottawa, Ontario, Canada K1S 5B6
e-mail: williams@math.carleton.ca

