THE DISCRIMINANT OF A CYCLIC FIELD
OF ODD PRIME DEGREE

BLAIR K. SPEARMAN AND KENNETH S. WILLIAMS

ABSTRACT. Let \(p \) be an odd prime. Let \(f(x) \in \mathbb{Z}[x] \) be a defining polynomial for a cyclic extension field \(K \) of the rational number field \(\mathbb{Q} \) with \([K : \mathbb{Q}] = p\). An explicit formula for the discriminant \(d(K) \) of \(K \) is given in terms of the coefficients of \(f(x) \).

1. Introduction. Throughout this paper \(p \) denotes an odd prime. Let \(K \) be a cyclic extension field of the rational field \(\mathbb{Q} \) with \([K : \mathbb{Q}] = p\). In this paper we give an explicit formula for the discriminant \(d(K) \) of \(K \) in terms of the coefficients of a defining polynomial for \(K \). We prove

Theorem 1. Let \(f(X) = X^p + a_{p-2}X^{p-2} + \cdots + a_1X + a_0 \in \mathbb{Z}[X] \) be such that

\[
\text{Gal}(f) \cong \mathbb{Z}/p\mathbb{Z}
\]

and

\(q^{p-i} | a_i, \quad i = 0, 1, \ldots, p-2. \)

Let \(\theta \in \mathbb{C} \) be a root of \(f(X) \) and set \(K = \mathbb{Q}(\theta) \) so that \(K \) is a cyclic extension of \(\mathbb{Q} \) with \([K : \mathbb{Q}] = p\). Then

\[
d(K) = f(K)^{p-1},
\]

where the conductor \(f(K) \) of \(K \) is given by

\[
f(K) = p^{\alpha} \prod_{q \equiv 1 \pmod{p}, q | a_i, i=0,1,\ldots,p-2} q,
\]

Received by the editors on December 7, 2000.

2000 *AMS Mathematics Subject Classification.* 11R09, 11R16, 11R20, 11R29.

Research of the first author supported by a grant from the Natural Sciences and Engineering Research Council of Canada.

Research of the second author supported by a grant from the Natural Sciences and Engineering Research Council of Canada, grant A-7233.

Copyright \(\odot 2003 \) Rocky Mountain Mathematics Consortium

1101
where q runs through primes, and

$$
\alpha = \begin{cases}
0, & \text{if } p^{p(p-1)} \nmid \text{disc}(f) \text{ and } p \mid a_i, \ i = 1, \ldots, p-2 \\
& \text{does not hold}, \\
p^{p(p-1)} \mid \text{disc}(f) & \text{and } p^{p-1} \mid a_0, p^{p-1} \mid a_1, p^{p+1-i} \mid a_i, \\
i = 2, \ldots, p-2, & \text{does not hold}, \\
2, & \text{if } p^{p(p-1)} \nmid \text{disc}(f) \text{ and } p \mid a_i, \ i = 1, \ldots, p-2 \text{ holds} \\
& \text{or} \\
p^{p(p-1)} \mid \text{disc}(f) & \text{and } p^{p-1} \mid a_0, p^{p-1} \mid a_i, p^{p+1-i} \mid a_i, \\
i = 2, \ldots, p-2 \text{ holds.}
\end{cases}
$$

This theorem will follow from a number of lemmas proved in Section 2. In Section 3 Theorem 1 is applied to some quintic polynomials introduced by Lehmer [5] in 1988. In Section 4 some numerical examples illustrating Theorem 1 are given.

2. Results on the ramification of a prime in a cyclic field of odd prime degree. We begin with the following result.

Lemma 1. Let $g(X) \in \mathbb{Z}[X]$ be a monic polynomial of degree p having $\text{Gal}(g) \cong \mathbb{Z}/p\mathbb{Z}$. Let $\theta \in \mathbb{C}$ be a root of $g(X)$ and set $K = \mathbb{Q}(\theta)$. Let q be a prime. If q ramifies in K, then there exists an integer r such that

$$
g(X) \equiv (X - r)^p \pmod{q}.
$$

Proof. Suppose that the prime q ramifies in K. As K is a cyclic extension of \mathbb{Q}, it is a normal extension, and so

$$
q = Q^p
$$

for some prime ideal Q of K. Thus,

$$
|O_K/Q| = N(Q) = q,
$$
and so, as $\theta \in O_K$, there exists $r \in \mathbb{Z}$ such that

$$(5) \quad \theta \equiv r \pmod{Q}.$$

Let $\theta = \theta_1, \ldots, \theta_p \in \mathbb{C}$ be the roots of $g(X)$. Taking conjugates of (5), we obtain

$$\theta_i \equiv r \pmod{Q}, \quad i = 1, 2, \ldots, p.$$

Hence,

$$g(X) = \prod_{i=1}^{p}(X - \theta_i) \equiv \prod_{i=1}^{p}(X - r) \equiv (X - r)^p \pmod{Q}.$$

Since $g(X) \in \mathbb{Z}[X]$, $(X - r)^p \in \mathbb{Z}[X]$ and $q = Q^p$, we deduce that

$$g(X) \equiv (X - r)^p \pmod{q},$$

as asserted. \square

From this point on, we assume that $f(X) = X^p + a_{p-2}X^{p-2} + \cdots + a_1X + a_0 \in \mathbb{Z}[X]$ is such that (1) and (2) hold. We let $\theta = \theta_1, \ldots, \theta_p \in \mathbb{C}$ be the roots of $f(X)$ and we set $K = \mathbb{Q}(\theta)$ so that K is a cyclic extension of degree p.

Lemma 2. Let q be a prime $\neq p$. Then q ramifies in K \iff $q \mid a_i$, $i = 0, 1, \ldots, p - 2$.

Proof. (a) Suppose that q ramifies in K. Then, by Lemma 1, there exists an integer r such that

$$f(X) \equiv (X - r)^p \pmod{q},$$

that is,

$$X^p + a_{p-2}X^{p-2} + \cdots + a_1X + a_0$$

$$\equiv X^p - prX^{p-1} + \left(\frac{p}{2}\right)r^2X^{p-2}$$

$$- \cdots - r^p \pmod{q}.$$
Equating the coefficients of $X^{p-1} \pmod{q}$, we see that $0 \equiv -pr \pmod{q}$. As $p \neq q$ we must have $q \mid r$. From the coefficients of X^i, $i = 0, 1, \ldots, p - 2$, we deduce that

$$a_i \equiv (-1)^{i+1} \binom{p}{i} r^{p-i} \pmod{q},$$

so that

$$q \mid a_i, \quad i = 0, 1, \ldots, p - 2.$$

(b) Now suppose that

$$q \mid a_i, \quad i = 0, 1, \ldots, p - 2,$$

but that q does not ramify in K. Then

$$q = Q_1 \cdots Q_t, \quad t = 1 \text{ or } p,$$

where the Q_i are distinct prime ideals in K. We have

$$0 = f(\theta) = \theta^p + a_{p-2}\theta^{p-2} + \cdots + a_1\theta + a_0 \equiv \theta^p \pmod{q},$$

so that $Q_i \mid \theta^p$ for $i = 1, \ldots, t$. As Q_i is a prime ideal, we deduce that $Q_i \mid \theta$ for $i = 1, \ldots, t$, and so $q \mid \theta$. This shows that $\theta/q \in O_K$. The minimal polynomial of θ/q over \mathbb{Q} is

$$X^p + \frac{a_{p-2}}{q^2} X^{p-2} + \cdots + \frac{a_1}{q^{p-1}} X + \frac{a_0}{q^p},$$

which must belong in $\mathbb{Z}[X]$. Hence we have

$$q^{p-i} \mid a_i, \quad i = 0, 1, \ldots, p - 2,$$

contradicting (2). Hence q ramifies in K. □

Lemma 3. If

$$p \mid a_i, \quad i = 1, 2, \ldots, p - 2$$

does not hold

then p does not ramify in K.
Proof. Suppose on the contrary that p ramifies in K. By Lemma 1 there exists an integer r such that

$$f(X) \equiv (X - r)^p \pmod{p}$$

so that

$$X^p + a_{p-2}X^{p-2} + \cdots + a_1X + a_0 \equiv X^p - r \pmod{p}$$

and thus

$$p \mid a_i, \quad i = 1, 2, \ldots, p-2,$$

which is a contradiction. Hence p does not ramify in K. \(\square\)

Lemma 4. If

$$p^{p(p-1)} \nmid \text{disc}(f)$$

and

$$p \mid a_i, \quad i = 1, 2, \ldots, p-2,$$

then p ramifies in K.

Proof. Suppose p does not ramify in K. Then

$$p = Q_1 \cdots Q_t, \quad t = 1 \text{ or } p$$

for distinct prime ideals $Q_i, i = 1, \ldots, t$, of K. Now

$$0 = f(\theta) = \theta^p + a_{p-2}\theta^{p-2} + \cdots + a_0 \equiv \theta^p + a_0$$

$$\equiv \theta^p + a_0^p \equiv (\theta + a_0)^p \pmod{p}$$

so that $Q_i \mid (\theta + a_0)^p$ and thus $Q_i \mid \theta + a_0$ for $i = 1, \ldots, t$. Hence $Q_1Q_2 \cdots Q_t \mid \theta + a_0$ and so $p \mid \theta + a_0$. By conjugation, as K is a normal extension of \mathbb{Q}, we deduce that

$$p \mid \theta_i + a_0, \quad i = 1, 2, \ldots, p.$$

Hence

$$p \mid \theta_i - \theta_j, \quad 1 \leq i < j \leq p,$$
and so
\[p^{p(p-1)} \mid \prod_{1 \leq i < j \leq p} (\theta_i - \theta_j)^2, \]
that is,
\[p^{p(p-1)} \mid \text{disc}(f), \]
contradicting \(p^{p(p-1)} \nmid \text{disc}(f) \). This proves that \(p \) ramifies in \(K \).

Lemma 5. If
\[p^{-1} \| a_0, p^{-1} \mid a_1, p^{p+1-i} \mid a_i, \quad i = 2, \ldots, p-2, \]
then

(a) \(p \) ramifies in \(K \)

and

(b) \(p^{p(p-1)} \mid \text{disc}(f) \).

Proof. We define \(b_0, \ldots, b_{p-2} \in \mathbb{Z} \) by
\[b_0 = a_0/p^{p-1}, b_1 = a_1/p^{p-1}, b_i = a_i/p^{p+1-i}, \quad i = 2, \ldots, p-2. \]
Clearly \(p \nmid b_0 \). We set
\[h(X) = X^p + pb_1 X^{p-1} + \sum_{i=2}^{p-2} p^2 b_0^{i-1} b_i X^{p-i} + p b_0^{p-1} \in \mathbb{Z}[X]. \]
Then
\[h(b_0 pX) \]
\[= b_0^{p-1} p^p X^p + b_0^{p-1} b_1 p^p X^{p-1} + \sum_{i=2}^{p-2} b_0^{p-1} b_i p^{p+2-i} X^{p-i} + p b_0^{p-1} \]
\[= b_0^{p-1} p^p \left(b_0 p^{p-1} + b_1 \frac{p^{p-1}}{X} + \sum_{i=2}^{p-2} b_i \frac{p^{p+1-i}}{X^i} + \frac{1}{X^p} \right) \]
\[= b_0^{p-1} p^p f \left(\frac{1}{X} \right). \]
Hence $h(X)$ can be taken as the defining polynomial for the field K. Since $h(X)$ is p-Eisenstein we have $p = \wp^p$ for some prime ideal \wp of K, see, for example, [7, Proposition 4.18, p. 181]. Thus p ramifies in K.

Next we define the nonnegative integer k by $\wp^k \parallel \theta$. Then by conjugation we have $\wp^k \parallel \theta_i$, $i = 1, 2, \ldots, p$. Hence,

$$\wp^{pk} \parallel \theta_1 \cdots \theta_p = -a_0.$$

But $p^{p-1} \parallel a_0$ so that $\wp^{p(p-1)} \parallel a_0$. Hence $pk = p(p-1)$, that is, $k = p-1$ and $\wp^{p-1} \parallel \theta$.

Further,

$$f'(\theta) = p\theta^{p-1} + \sum_{i=2}^{p-2} ia_i \theta^{i-1} + a_1.$$

We have

$$\wp^{p+(p-1)^2} \parallel p\theta^{p-1},$$

$$\wp^{p+(p+1-i)+(p-1)(i-1)} \parallel ia_i \theta^{i-1}, \quad i = 2, \ldots, p-2,$$

$$\wp^{p(p-1)} \parallel a_1.$$

As

$$p + (p-1)^2 = p^2 - p + 1 > p(p-1)$$

and

$$p(p + 1 - i) + (p-1)(i-1) = p^2 - i + 1 \geq p^2 - (p-2) + 1 = p^2 - p + 3 > p(p-1),$$

we see that

$$\wp^{p(p-1)} \parallel f'(\theta).$$

By conjugation we deduce that

$$\wp^{p(p-1)} \parallel f'(\theta_i), \quad i = 1, \ldots, p,$$

so that

$$\wp^{p^2(p-1)} \bigg| \prod_{i=1}^{p} f'(\theta_i),$$

that is,

\[p^{p(p-1)} \mid \text{disc } (f). \]

This completes the proof of Lemma 5. \[\square\]

Lemma 6. If

\[p^{p(p-1)} \mid \text{disc } (f) \]

and

\[p^{p-1} | a_0, p^{p-1} | a_1, p^{p+1-i} | a_i, \quad i = 2, \ldots, p - 2, \]

does not hold,

then \(p \) does not ramify in \(K \).

Proof. Suppose \(p \) ramifies in \(K \). Then \(p = \varphi^p \) for some prime ideal \(\varphi \) in \(K \). As \(N(\varphi) = p \) there exists \(r \in \mathbb{Z} \) with \(0 \leq r \leq p - 1 \) such that

\[\theta \equiv r \pmod{\varphi}. \]

We consider two cases.

Case (i): \(r = 0 \). In this case \(\varphi \mid \theta \) so that \(\varphi^k \mid \theta \) for some positive integer \(k \). Suppose that \(k \geq p \). Then \(p \mid \theta \) and thus \(\theta/p \in O_K \). The minimal polynomial of \(\theta/p \) over \(\mathbb{Q} \) is

\[X^p + \frac{a_{p-2}}{p^2} X^{p-2} + \cdots + \frac{a_1}{p^{p-1}} X + \frac{a_0}{p^p}, \]

which must belong in \(\mathbb{Z}[X] \). Hence we have

\[p^{p-i} \mid a_i, \quad i = 0, 1, \ldots, p - 2, \]

contradicting (2). Thus \(1 \leq k \leq p - 1 \).

Next we define the nonnegative integer \(l \) by \(\varphi^l \mid f'(\theta) \). By conjugation we have \(\varphi^l \mid f'(\theta_i), \quad i = 1, 2, \ldots, p \). Hence

\[\varphi^{pl} \mid \prod_{i=1}^{p} f'(\theta_i) = \pm \text{disc } (f). \]
But $\wp^{p^2(p-1)} = p^{p(p-1)} \mid \text{disc}(f)$, so we must have $pl \geq p^2(p-1)$, that is, $l \geq p(p-1)$. Hence

(6) $\wp^{p(p-1)} \mid f'(\theta)$.

Now

(7) $f'(\theta) = p\theta^{p-1} + \sum_{i=2}^{p-1} (p - i)a_{p-i}\theta^{p-i-1},$

where

$v_\wp(p\theta^{p-1}) = p + (p - 1)k$

and

$v_\wp((p - i)a_{p-i}\theta^{p-i-1}) = v_\wp(a_{p-i}) + (p - i - 1)k, \quad i = 2, \ldots, p - 1.$

Clearly,

$v_\wp(p\theta^{p-1}) \equiv -k \pmod{p}$

and

$v_\wp((p - i)a_{p-i}\theta^{p-i-1}) \equiv -ik - k \pmod{p}, \quad i = 2, \ldots, p - 1.$

Since $\{-ik - k \mid i = 0, 1, \ldots, p-1\}$ is a complete residue system modulo p, $v_\wp(p\theta^{p-1})$ and $v_\wp((p - i)a_{p-i}\theta^{p-i-1})$, $i = 2, \ldots, p - 1$, are all distinct. Hence, by (6) and (7), we have

$v_\wp(p\theta^{p-1}) \geq p(p - 1)$

and

$v_\wp((p - i)a_{p-i}\theta^{p-i-1}) \geq p(p - 1), \quad i = 2, \ldots, p - 1.$

Thus

(8) $p + (p - 1)k \geq p(p - 1)$

and

(9) $v_\wp(a_{p-i}) + (p - i - 1)k \geq p(p - 1), \quad i = 2, \ldots, p - 1.$
From (8) we deduce that \(k \geq p - 1 \). As \(1 \leq k \leq p - 1 \), we must have \(k = p - 1 \) so \(\wp^{p-1} \mid \theta \). From (9), we obtain

\[
v_\wp(a_{p-i}) \geq (i+1)(p-i),
\]

so that

\[
v_p(a_{p-i}) \geq \frac{(i+1)(p-1)}{p}, \quad i = 2, \ldots, p - 1.
\]

Hence

\[
v_p(a_{p-i}) \geq i + 1, \quad \text{if } i = 2, \ldots, p - 2,
\]

and

\[
v_p(a_1) \geq p - 1.
\]

Thus

\[
\wp^{p(p-1)} \mid \theta^p
\]

\[
\wp^{p(i+1)+(p-i)(p-1)} \mid a_{p-i}\theta^{p-i}, \quad i = 2, \ldots, p - 2,
\]

\[
\wp^{p(p-1)+(p-1)} \mid a_1\theta,
\]

so that

\[
\wp^{p^2-p} \mid \theta^p + \sum_{i=2}^{p-1} a_{p-i}\theta^{p-i} = -a_0.
\]

Hence,

\[
p^{p-1} \mid a_0.
\]

Since \(p^{p-1} \mid a_1 \), \(p^{p-2} \mid a_2, \ldots, p^2 \mid a_{p-2} \), we must have by (2) that \(p^p \nmid a_0 \). This proves that \(p^{p-1} \mid a_0 \), contradicting the second assumption of the lemma.

Case (ii): \(r = 1, 2, \ldots, p - 1 \). We set

\[
g(X) = f(X + r) = \sum_{j=0}^{p} b_j X^j \in \mathbb{Z}[X]
\]

so that, with \(a_{p-1} = 0 \), \(a_p = 1 \),

\[
b_j = \sum_{i=j}^{p} a_i \binom{i}{j} r^{i-j}, \quad j = 0, 1, \ldots, p.
\]
In particular, we have $b_{p-1} = rp$, $b_p = 1$. Further, we set $\alpha = \theta - r$ so that $\alpha \equiv 0 \pmod{\wp}$. Moreover, $g(\alpha) = f(\alpha + r) = f(\theta) = 0$ so that α is a root of $g(X)$. Define the positive integer k by $\wp^k|\alpha$. If $k \geq p$ then $\alpha/p \in O_K$ and, as the minimal polynomial of α/p is

$$g^*(X) = \sum_{j=0}^{p} \frac{b_j}{p^{p-j}}X^j,$$

we must have

$$\frac{b_j}{p^{p-j}} \in \mathbb{Z}, \quad j = 0, 1, \ldots, p.$$

By Lemma 1 there exists an integer s such that

$$g^*(X) \equiv (X - s)^p \pmod{p}.$$

Thus

$$r = b_{p-1}/p = \text{coefficient of } X^{p-1} \text{ in } g^*(X) \equiv -ps \equiv 0 \pmod{p},$$

contradicting $1 \leq r \leq p - 1$. Hence, $k = 1, 2, \ldots, p - 1$.

Now let $\alpha = \alpha_1, \ldots, \alpha_p \in \mathbb{C}$ be the roots of $g(X)$, so that

$$\wp^{p^2(p-1)} = p^{p(p-1)} \mid \text{disc}(f) = \text{disc}(g) = \pm \prod_{i=1}^{p} g'(\alpha_i).$$

Suppose that $\wp^i|g'(\alpha)$. By conjugation we have $\wp^i|g'(\alpha_i)$, $i = 1, 2, \ldots, p$. Hence,

$$\wp^p \prod_{i=1}^{p} g'(\alpha_i).$$

Further

$$g'(\alpha) = p\alpha^{p-1} + rp(p - 1)\alpha^{p-2} + \sum_{i=1}^{p-2} ib_i\alpha^{i-1}$$

and

$$v_{\wp}(p\alpha^{p-1}) = p + (p - 1)k,$$

$$v_{\wp}(rp(p - 1)\alpha^{p-2}) = p + (p - 2)k,$$

$$v_{\wp}(ib_i\alpha^{i-1}) = v_{\wp}(b_i) + (i - 1)k, \quad i = 1, \ldots, p - 2.$$
Since
\[v_\varphi(p\alpha^{p-1}), v_\varphi(rp(p-1)\alpha^{p-2}), v_\varphi(ib_i\alpha^{i-1}), \quad i = 1, \ldots, p - 2, \]
are all distinct modulo \(p \), they must all be different. From (10) and (11), we deduce
\[
\left\{ \begin{array}{l}
\varphi^p(p-1) | p\alpha^{p-1}, \\
\varphi^p(p-1) | rp(p-1)\alpha^{p-2}, \\
\varphi^p(p-1) | ib_i\alpha^{i-1}, \quad i = 1, \ldots, p - 2.
\end{array} \right.
\]
From the first of these, we have
\[p(p-1) \leq p + (p-1)k \]
so that
\[k \geq \frac{p^2 - 2p}{p - 1}. \]
As \(k \in \mathbb{Z} \) we must have \(k \geq p - 1 \). Since \(k \in \{1, 2, \ldots, p - 1\} \), we deduce that \(k = p - 1 \). Then, from the second divisibility condition in (12), we deduce that
\[p(p-1) \leq p + (p-2)k = p + (p-2)(p-1) = p^2 - 2p + 2, \]
which is impossible.

In both cases we have been led to a contradiction. Thus \(p \) does not ramify in \(K \). \(\Box \)

3. Proof of Theorem 1. It is well known, see, for example, [6, p. 831], that
\[d(K) = f(K)^{p-1} \]
and
\[f(K) = p^\alpha \prod_{\substack{q \equiv 1 \pmod{p} \\ q \text{ ramifies in } K}} q, \]
where \(q \) runs through primes and
\[\alpha = \begin{cases}
0 & \text{if } p \text{ does not ramify in } K, \\
2 & \text{if } p \text{ ramifies in } K.
\end{cases} \]
Clearly, by Lemma 2, we have

\[\prod_{q \equiv 1 \text{ (mod } p) \text{ and } q \text{ ramifies in } K} q = \prod_{q \equiv 1 \text{ (mod } p) \text{ and } q | a_i, i=0,1,...,p-2} q. \]

Finally we treat the prime \(p \). We consider four cases.

(I) \(p^p(p-1) \not| \ \text{disc}(f) \), \(p | a_i, i = 1, \ldots, p-2 \), does not hold,

(II) \(p^p(p-1) \not| \ \text{disc}(f) \), \(p | a_i, i = 1, \ldots, p-2 \), holds,

(III) \(p^p(p-1) | \ \text{disc}(f) \), \(p^{p-1} | a_0, p^{p-1} | a_1, p^{p+1-i} | a_i, i = 2, \ldots, p-2 \), holds,

(IV) \(p^p(p-1) | \ \text{disc}(f) \), \(p^{p-1} | a_0, p^{p-1} | a_1, p^{p+1-i} | a_i, i = 2, \ldots, p-2 \), does not hold.

In Case (I), by Lemma 3, \(p \) does not ramify in \(K \), and so \(\alpha = 0 \). In Case (II), by Lemma 4, \(p \) ramifies in \(K \), and so \(\alpha = 2 \). In Case (III), by Lemma 5, \(p \) ramifies in \(K \), and so \(\alpha = 2 \). In Case (IV), by Lemma 6, \(p \) does not ramify in \(K \), and so \(\alpha = 0 \).

This completes the proof of Theorem 1. \(\square \)

We conclude this section by looking at the case \(p = 3 \) in some detail.

Let \(f(X) = X^3 + aX + b \in \mathbb{Z}[X] \) be such that \(\text{Gal}(f) \simeq \mathbb{Z}/3\mathbb{Z} \) and suppose that there does not exist a prime \(q \) such that \(q^2 | a \) and \(q^3 | b \). Here \(\text{disc}(f) = -4a^3 - 27b^2 \). As \(\text{Gal}(f) \simeq \mathbb{Z}/3\mathbb{Z} \), we have

\[-4a^3 - 27b^2 = c^2 \]

for some positive integer \(c \). Since \(3^2 | a, 3^3 | b \) cannot occur, we deduce as in [4, p. 4] that exactly one of the following four possibilities occurs:

(i) \(3 \nmid a, 3 \nmid c \),

(ii) \(3 \| a, 3 \nmid b, 3^2 \| c \),

(iii) \(3 \| a, 3 \nmid b, 3^3 \mid c \),

(iv) \(3^2 \| a, 3^2 \| b, 3^3 \| c \).

Clearly (i) is equivalent to

(i)’ \(3^6 \nmid \text{disc}(f), 3 \nmid a \);
(ii) is equivalent to

 \[
 (ii)' \ 3^6 \mid \text{disc}(f), \ 3 \mid a;
 \]

(iii) is equivalent to

 \[
 (iii)' \ 3^6 \mid \text{disc}(f), \ 3\|a;
 \]

(iv) is equivalent to

 \[
 (iv)' \ 3^6 \mid \text{disc}(f), \ 3^2 \mid a, \ 3^2\|b.
 \]

By Theorem 1, we have

 \[
 f(K) = 3^\alpha \prod_{q \equiv 1 \pmod{3}} q,
 \]

where \(q \) runs through primes, and

 \[
 \alpha = \begin{cases}
 0 & \text{in cases (i)', (iii)'}, \\
 2 & \text{in cases (ii)', (iv)'}.
 \end{cases}
 \]

that is,

 \[
 \alpha = \begin{cases}
 0 & \text{in cases (i), (iii)}, \\
 2 & \text{in cases (ii), (iv)},
 \end{cases}
 \]

in agreement with [4].

3. Emma Lehmer’s quintics. Let \(t \in \mathbb{Q} \) and set

 \[
 f_t(X) = X^5 + a_4(t)X^4 + a_3(t)X^3 + a_2(t)X^2 + a_1(t)X + a_0(t),
 \]

where

 \[
 \begin{align*}
 a_4(t) &= t^2, \\
 a_3(t) &= -(2t^3 + 6t^2 + 10t + 10), \\
 a_2(t) &= t^4 + 5t^3 + 11t^2 + 15t + 5, \\
 a_1(t) &= t^3 + 4t^2 + 10t + 10, \\
 a_0(t) &= 1.
 \end{align*}
 \]

These polynomials were introduced by Lehmer [5] in 1988 and have been discussed by Schoof and Washington [8], Darmon [2] and Gaál and Pohst [3]. We set

 \[
 t = u/v, \ u \in \mathbb{Z}, \ v \in \mathbb{Z}, \quad (u, v) = 1, \ v > 0.
 \]
It is convenient to define

\[
\begin{align*}
E &= E(u, v) = u^4 + 5u^3v + 15u^2v^2 + 25uv^3 + 25v^4, \\
F &= F(u, v) = 4u^2 + 10uv + 5v^2, \\
G &= G(u, v) = 3u^4 + 15u^3v + 20u^2v^2 - 50v^4, \\
H &= H(u, v) = 4u^6 + 30u^5v + 65u^4v^2 - 200u^2v^4 - 125uv^5 + 125v^6, \\
I &= I(u, v) = u^3 + 5u^2v + 10uv^2 + 7v^3, \\
J &= J(u, v) = 12u^5 + 58u^4v + 15u^3v^2 - 130u^2v^3 - 175uv^4 + 200v^5, \\
L &= L(u, v) = 3u^3 + 7u^2v + 20uv^2 + 15v^3.
\end{align*}
\]

Let \(\theta \) be a root of \(f_t(x) \) and set \(K = \mathbb{Q}(\theta) \). As an application of Theorem 1, we prove the following result.

Theorem 2. With the above notation, if \(K \) is a cyclic quintic field, then its conductor \(f(K) \) is given by

\[
f(K) = 5^\alpha \prod_{\substack{q \equiv 1 \pmod{5} \\ q | E \\ v_q(E) \neq 0 \pmod{5}}} q,
\]

where \(q \) runs through primes, and

\[
\alpha = \begin{cases}
0 & \text{if } 5 \nmid u, \\
2 & \text{if } 5 | u.
\end{cases}
\]

We remark that when \(t \in \mathbb{Z} \), equivalently \(v = 1 \), it is known that \(K \) is a cyclic quintic field [8]. The special case of Theorem 2 when \(E(u, 1) \) is squarefree is given in [3].

Proof. We have

\[
g_t(X) = 5^5 f_t((X - t^2)/5) = X^5 + g_3X^3 + g_2X^2 + g_1X + g_0,
\]
where
\begin{align*}
g_3 &= -10t^4 - 50t^3 - 150t^2 - 250t - 250, \\
g_2 &= 20t^6 + 150t^5 + 575t^4 + 1375t^3 + 2125t^2 \\
&\quad + 1875t + 625, \\
g_1 &= -15t^8 - 150t^7 - 700t^6 - 2000t^5 - 3500t^4 \\
&\quad - 3125t^3 + 1250t^2 + 6250t + 6250, \\
g_0 &= 4t^{10} + 50t^9 + 275t^8 + 875t^7 + 1625t^6 + 1250t^5 \\
&\quad - 1875t^4 - 6250t^3 - 6250t^2 + 3125.
\end{align*}

Next we set
\begin{align*}
(19) \quad h_{u,v}(X) &= v^{10}g_{u/v}(X/v^2) = X^5 + h_3X^3 + h_2X^2 + h_1X + h_0,
\end{align*}
where
\begin{align*}
h_3 &= -10u^4 - 50u^3v - 150u^2v^2 - 250uv^3 - 250v^4 \\
&= -10(u^4 + 5u^3v + 15u^2v^2 + 25uv^3 + 25v^4); \\
h_2 &= 20u^6 + 150u^5v + 575u^4v^2 + 1375u^3v^3 + 2125u^2v^4 \\
&\quad + 1875uv^5 + 625v^6 \\
&= 5(u^4 + 5u^3v + 15u^2v^2 + 25uv^3 + 25v^4)(4u^2 + 10uv + 5v^2); \\
h_1 &= -15u^8 - 150u^7v - 700u^6v^2 - 2000u^5v^3 - 3500u^4v^4 \\
&\quad - 3125u^3v^5 + 1250u^2v^6 + 6250uv^7 + 6250v^8 \\
&= -5(u^4 + 5u^3v + 15u^2v^2 + 25uv^3 + 25v^4) \\
&\quad \times (3u^4 + 15u^3v + 20u^2v^2 - 50v^4); \\
h_0 &= 4u^{10} + 50u^9v + 275u^8v^2 + 875u^7v^3 + 1625u^6v^4 \\
&\quad + 1250u^5v^5 - 1875u^4v^6 - 6250u^3v^7 - 6250u^2v^8 + 3125v^{10} \\
&= (u^4 + 5u^3v + 15u^2v^2 + 25uv^3 + 25v^4) \\
&\quad \times (4u^6 + 30u^5v + 65u^4v^2 - 200u^3v^4 - 125uv^5 + 125v^6);
\end{align*}
so that by (16) we have
\begin{align*}
(20) \quad h_3 &= -10E, \quad h_2 = 5EF, \quad h_1 = -5EG, \quad h_0 = EH.
\end{align*}

Next let \(m \) denote the largest positive integer such that
\begin{align*}
(21) \quad m^2|h_3, \quad m^3|h_2, \quad m^4|h_1, \quad m^5|h_0,
\end{align*}
and set

\[(22) \quad k_{u,v}(X) = h_{u,v}(mX)/m^5 = X^5 + k_3X^3 + k_2X^2 + k_1X + k_0,\]

where

\[(23) \quad k_3 = h_3/m^2, \quad k_2 = h_2/m^3, \quad k_1 = h_1/m^4, \quad k_0 = h_0/m^5.\]

Appealing to MAPLE, we find

\[(24) \quad \text{disc}(k_{u,v}) = 5^{20}E^4I^2v^{18}/m^{20}\]

and

\[(25) \quad EJ - HL = 5^5v^9.\]

Clearly \(k_{u,v}(X)\) is a defining polynomial for the cyclic quintic field \(K\). Hence, by Theorem 1, we have

\[(26) \quad f(K) = 5^\alpha \prod_{q \equiv 1 \pmod{5}} q, \quad q|k_0, q|k_1, q|k_2, q|k_3\]

where \(q\) runs through primes, and

\[(27) \quad \begin{cases}
0 & \text{if } 5^{20} \nmid \text{disc}(k_{u,v}) \text{ and } 5 \mid k_1, 5 \mid k_2, 5 \mid k_3 \\
5^{20} \mid \text{disc}(k_{u,v}) \text{ and } 5^4|k_0, 5^4 \mid k_1, 5^4 \mid k_2, 5^3 \mid k_3 & \text{does not hold}, \\
2 & \text{if } 5^{20} \nmid \text{disc}(k_{u,v}) \text{ and } 5 \mid k_1, 5 \mid k_2, 5 \mid k_3, \\
& \text{or } 5^{20} \mid \text{disc}(k_{u,v}) \text{ and } 5^4|k_0, 5^4 \mid k_1, 5^4 \mid k_2, 5^3 \mid k_3.
\end{cases}\]

Let \(q\) be a prime with

\[q \equiv 1 \pmod{5}, \quad q \mid k_3, q \mid k_2, q \mid k_1, q \mid k_0.\]

We show that

\[q \mid E, \quad v_q(E) \not\equiv 0 \pmod{5}.\]
By (23) we have
\[q \mid h_3, \ q \mid h_2, \ q \mid h_1, \ q \mid h_0. \]
As \(q \equiv 1 \pmod{5} \), we have \(q \neq 2, 5 \). Thus, from (20), we deduce that \(q \mid E \). Suppose next that \(q \mid v \). Then, from the definition of \(E \) in (16) we see that \(q \mid u \), contradicting \((u, v) = 1\). Hence \(q \nmid v \). Then, from (25), we deduce that \(q \nmid H \). If \(v_q(E) \equiv 0 \pmod{5} \), say \(v_q(E) = 5w, w \geq 1 \), then by (20) we have
\[q^{5w} \parallel h_3, \ q^{5w} \mid h_2, \ q^{5w} \mid h_1, \ q^{5w} \parallel h_0, \]
so that by (21) we have
\[q^w \parallel m. \]
Thus by (23),
\[q \nmid h_0/m^5 = k_0, \]
a contradiction. Hence \(v_q(E) \not\equiv 0 \pmod{5} \).

Conversely, let \(q \) be a prime with
\[q \equiv 1 \pmod{5}, \ q \mid E, \ v_q(E) \not\equiv 0 \pmod{5}. \]
We show that
\[q \mid k_3, \ q \mid k_2, \ q \mid k_1, \ q \mid k_0. \]
Suppose that \(q \mid v \). Then, by the definition of \(E \) in (16), we have \(q \mid u \), contradicting \((u, v) = 1\). Hence \(q \nmid v \). Thus, by (25), we see that \(q \nmid H \). As \(v_q(E) \not\equiv 0 \pmod{5} \), we have \(q^{5z+r} \parallel E \), where \(z \) is a nonnegative integer and \(r = 1, 2, 3, 4 \). Thus by (20) we have
\[q^{5z+r} \parallel h_3, \ q^{5z+r} \mid h_2, \ q^{5z+r} \mid h_1, \ q^{5z+r} \parallel h_0. \]
This shows by (21) that
\[q^z \parallel m \]
so that by (23)
\[q^{3z+r} \parallel k_3, \ q^{3z+r} \mid k_2, \ q^{3z+r} \mid k_1, \ q^r \parallel k_0, \]
proving
\[q \mid k_3, \ q \mid k_2, \ q \mid k_1, \ q \mid k_0. \]
We have shown that

\[(28) \prod_{q \equiv 1 \pmod{5}, q | k_0, q | k_1, q | k_2, q | k_3} q = \prod_{q \equiv 1 \pmod{5}, q | E, q | E} q.\]

Finally, to complete the proof of Theorem 2, we show that

\[(29) \alpha = \begin{cases} 0 & \text{if } 5 \nmid u, \\ 2 & \text{if } 5 | u. \end{cases}\]

If \(5 | u\), then by (15), \(5 \nmid v\) and, by (16),

\[5^2 || E, 5 || F, 5^2 || G, 5^3 || H, 5 \nmid I.\]

Hence, by (20),

\[5^3 || h_3, 5^4 || h_2, 5^5 || h_1, 5^5 || h_0,\]

so that, by (21),

\[5 || m.\]

This shows by (23) that

\[5 || k_3, 5 || k_2, 5 || k_1, 5 \nmid k_0,\]

and by (24) that

\[5^8 || \text{disc}(k_{u,v}).\]

Thus by (27) \(\alpha = 2\).

If \(5 \nmid u\), then by (16)

\[5 \nmid E, 5 \nmid F, 5 \nmid G, 5 \nmid H.\]

Hence by (20)

\[5 || h_3, 5 || h_2, 5 || h_1, 5 \nmid h_0,\]

so that by (21)

\[5 \nmid m.\]

This shows by (23) that

\[5 || k_3, 5 || k_2, 5 || k_1, 5 \nmid k_0,\]
and, by (24), that
\[5^{20} | \text{disc}(k_{u,v}). \]
Thus, by (27), \(\alpha = 0 \).

Theorem 2 now follows from (26), (27), (28) and (29).

We conclude this section with a numerical example to illustrate Theorem 2. We choose \(u = 5 \), \(v = 6 \), so that \(t = 5/6 \) and
\[
f_{5/6}(X) = X^5 + \frac{25}{36} X^4 - \frac{2555}{108} X^3 + \frac{36955}{1296} X^2 + \frac{4685}{216} X + 1.
\]
MAPLE confirms that
\[
\text{Gal}(f_{5/6}) \simeq \mathbb{Z}/5\mathbb{Z}.
\]
Now \(E = 5^2 \times 11 \times 281 \), so that by Theorem 2,
\[
f(K) = 5^2 \times 11 \times 281, \quad d(K) = 5^8 \times 11^4 \times 281^4
\]
in agreement with PARI.

4. Numerical examples. We conclude with six numerical examples.

Example 1. \(f(X) = X^5 - 110X^3 - 55X^2 + 2310X + 979 \). \(a_0 = 11 \times 89 \), \(a_1 = 2 \times 3 \times 5 \times 7 \times 11 \), \(a_2 = -5 \times 11 \), \(a_3 = -2 \times 5 \times 11 \). \(\text{Gal}(f) \simeq \mathbb{Z}/5\mathbb{Z} \), \(\text{disc}(f) = 5^{20} \times 11^4 \). [MAPLE, PARI] \(5^{20} | \text{disc}(f) \), \(5 \nmid a_0 \), so that \(\alpha = 0 \). Theorem 1 gives \(f(K) = 11 \), \(d(K) = 11^4 \), in agreement with PARI.

Example 2. \(f(X) = X^5 - 25X^3 + 50X^2 - 25 \). \(a_0 = -5^2 \), \(a_1 = 0 \), \(a_2 = 2 \times 5^2 \), \(a_3 = -5^2 \). \(\text{Gal}(f) \simeq \mathbb{Z}/5\mathbb{Z} \), \(\text{disc}(f) = 5^{12} \times 7^2 \). [MAPLE, PARI] \(5^{20} \mid \text{disc}(f) \), \(5 \mid a_1 \), \(5 \mid a_2 \), \(5 \mid a_3 \), so that \(\alpha = 2 \). Theorem 1 gives \(f(K) = 5^2 \), \(d(K) = 5^8 \), in agreement with PARI.

Example 3. \(f(X) = X^5 - 375X^3 - 3750X^2 - 10000X - 625 \). \(a_0 = -5^4 \), \(a_1 = -2^4 \times 5^4 \), \(a_2 = -2 \times 3 \times 5^4 \), \(a_3 = -3 \times 5^3 \). \(\text{Gal}(f) \simeq \mathbb{Z}/5\mathbb{Z} \), \(\text{disc}(f) = 5^{20} \times 7^6 \) [MAPLE, PARI] \(5^{20} \mid \text{disc}(f) \), \(5^4 \mid a_0 \), \(5^4 \mid a_1 \),
$5^4 \mid a_2, 5^3 \mid a_3$, so that $\alpha = 2$. Theorem 1 gives $f(K) = 5^2$, $d(K) = 5^8$, in agreement with PARI.

Example 4. $f(X) = X^5 - 2483X^3 - 7449X^2 + 3247X - 191$. $a_0 = 191$, $a_1 = 17 \times 191$, $a_2 = -3 \times 13 \times 191$, $a_3 = -13 \times 191$. $\text{Gal}(f) \simeq \mathbb{Z}/5\mathbb{Z}$, $\text{disc}(f) = 5^{10} \times 41^2 \times 191^4 \times 1039^2$ [MAPLE, PARI] $5^{20} \nmid \text{disc}(f)$, $5 \nmid a_1$, so that $\alpha = 0$. Theorem 1 gives $f(K) = 191$, $d(K) = 191^4$, in agreement with PARI.

Example 5. $f(X) = X^7 - 609X^5 + 609X^4 + 70847X^3 + 25172X^2 - 1321124X + 2048647$. $a_0 = 29 \times 41 \times 1723$, $a_1 = -2^2 \times 7 \times 29 \times 1627$, $a_2 = 2^2 \times 7 \times 29 \times 31$, $a_3 = 7 \times 29 \times 349$, $a_4 = 3 \times 7 \times 29$, $a_5 = -3 \times 7 \times 29$. $\text{Gal}(f) \simeq \mathbb{Z}/7\mathbb{Z}$, $\text{disc}(f) = 7^{12} \times 17^2 \times 29^6$ [MAPLE] $7^{12} \nmid \text{disc}(f)$, $\nmid a_0$, so that $\alpha = 0$. Theorem 1 now gives $f(K) = 29$, $d(K) = 29^6$, in agreement with PARI.

Example 6. $f(X) = X^{13} - 78X^{11} - 65X^{10} + 2080X^9 + 2457X^8 - 24128X^7 - 27027X^6 + 137683X^5 + 110214X^4 - 376064X^3 - 128206X^2 + 363883X - 12167$. $a_0 = -23^3$, $a_1 = 13 \times 23 \times 2717$, $a_2 = -2 \times 13 \times 4931$, $a_3 = -2^8 \times 13 \times 113$, $a_4 = 2 \times 3^3 \times 13 \times 157$, $a_5 = 7 \times 13 \times 17 \times 89$, $a_6 = -3^3 \times 7 \times 11 \times 13$, $a_7 = -2^6 \times 13 \times 29$, $a_8 = 3^3 \times 7 \times 13$, $a_9 = 2^5 \times 5 \times 13$, $a_{10} = -5 \times 13$, $a_{11} = -2 \times 3 \times 13$. $\text{disc}(f) = 13^{24} \times 196^6 \times 23^{10} \times 337^2 \times 832^2 \times 7121^2 \times 21317^2$ [MAPLE] $13^{156} \nmid \text{disc}(f)$, $13 \mid a_i$, $i = 1, 2, \ldots, 11$, so that $\alpha = 2$. Theorem 1 gives $f(K) = 13^2$, $d(K) = 13^{24}$ in agreement with [1].

REFERENCES

Department of Mathematics and Statistics, Okanagan University College, Kelowna, BC, Canada V1V 1V7
E-mail address: bkspearm@okuc02.okanagan.bc.ca

Centre for Research in Algebra and Number Theory, School of Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada K1S 5B6
E-mail address: williams@math.carleton.ca