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1. Introduction. Let N denote the set of all positive integers, Z the set
of all integers, and Q the set of all rational numbers. For n ∈ N ∪ {0} and
k ∈ N we let rk(n) denote the number of representations of n as the sum of
k squares, that is,

rk(n) :=
∑

(x1,...,xk)∈Zk
x2

1+...+x2
k=n

1.

In the first decade of the twentieth century Glaisher obtained formulae for
rk(n) for k = 2, 4, 6, 8, 10, 12, 14, 16 and 18 in a systematic manner (see [2]).
All of Glaisher’s results were obtained from formulae derived from the theory
of elliptic functions and so cannot be considered elementary. Nathanson’s
book [7] contains elementary proofs of formulae for rk(n) for k = 2, 4, 6, 8, 10.

In this paper we consider the case k = 12. In 1864 Liouville [5] stated
the formula

r12(n) =
24
31

(21 + 25α+15)σ5(n/2α) if n ≡ 0 (mod 2),(1.1)

where α ∈ N is such that 2α ‖n, and, for k ∈ N and x ∈ Q,

σk(x) :=
{∑

d|x d
k if x ∈ N,

0 if x ∈ Q, x 6∈ N.
Petr [8] proved Liouville’s formula (1.1) in 1905 using theta functions and
Humbert [4] proved it in 1907 using elliptic functions. In 1907 Glaisher in
his paper [2, pp. 480–481] gave the formulae

r12(n) = −8
∑

d|n
(−1)d+(n/d)d5 if n ≡ 0 (mod 2),(1.2)
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r12(n) = 8σ5(n) + 2
∑

a,b,c,d∈Z
a2+b2+c2+d2=n

F (a, b, c, d) if n ≡ 1 (mod 2),(1.3)

where

F (a, b, c, d) := (a4 + b4 + c4 + d4)

− 2(a2b2 + a2c2 + a2d2 + b2c2 + b2d2 + c2d2),

and he pointed out that his formula (1.2) is equivalent to Liouville’s formula
(1.1). In 1987 Ewell [1, p. 298] gave the formulae

r12(n) = 8σ5(n)− 512σ5(n/4) if n ≡ 0 (mod 2),(1.4)

r12(n) = 8σ5(n) + 16σ(n)(1.5)

+ 256
∑

d<n/2

(−1)dd3
∑

k<n/2d

σ(n− 2kd) if n ≡ 1 (mod 2),

where σ(x) := σ1(x) for all x ∈ Q. An easy calculation shows that (1.4) is
equivalent to Liouville’s formula (1.1) and thus to Glaisher’s formula (1.2).
Although Ewell did not indicate how he proved his formulae (1.4) and (1.5),
he presumably used infinite product identities as in his proof of his formula
for r16(n).

In Section 2 of this paper we prove in an elementary manner two new
convolution identities (see Theorem 2). In Section 3 we give the first ele-
mentary proof of Liouville’s formula (1.1) in the form (1.4). In Section 4,
we prove in an elementary fashion a new formula for r12(n) when n is odd
which is simpler than both (1.3) and (1.5). We prove

Theorem 1. Let n be a positive odd integer. Then

r12(n) = 16σ3(n) + 8σ(n) + 128
∑

ax+by=n

(−1)a+b+xab3,(1.6)

where a, b, x, y run through all ordered quadruples of positive integers such
that ax+ by = n.

This formula is similar to one for r16(n), which can be deduced from
Milne [6, Theorem 1.4]. Finally in Section 5 we deduce Ewell’s formula (1.5)
from Theorems 1 and 2. Our main tool is the following recent identity due
to Huard, Ou, Spearman and Williams [3, Theorem 1], whose proof involves
nothing more than the manipulation of finite sums.

Proposition. Let f : Z4 → C be such that

f(a, b, x, y)− f(x, y, a, b) = f(−a,−b, x, y)− f(x, y,−a,−b)(1.7)

for all integers a, b, x and y. Then
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(1.8)
∑

ax+by=n

(f(a, b, x,−y)− f(a,−b, x, y) + f(a, a− b, x+ y, y)

− f(a, a+ b, y − x, y) + f(b− a, b, x, x+ y)− f(a+ b, b, x, x− y))

=
∑

d|n

∑

x<d

(f(0, n/d, x, d) + f(n/d, 0, d, x) + f(n/d, n/d, d− x,−x)

− f(x, x− d, n/d, n/d)− f(x, d, 0, n/d)− f(d, x, n/d, 0)),

where the sum on the left hand side of (1.8) is over all ordered quadruples
of positive integers a, b, x, y satisfying ax + by = n, the inner sum on the
right hand side is over all positive integers x satisfying x < d, and the outer
sum on the right hand side is over all positive integers d dividing n.

We also make use of the classical formulae for r4(n) and r8(n), which
can be deduced in an elementary way from the Proposition (see [3], [9] and
[10]):

r4(n) = 8σ(n)− 32σ(n/4),(1.9)

r8(n) = 16(−1)n−1(σ3(n)− 16σ3(n/2)).(1.10)

Clearly

r12(n) = r4(n) + r8(n) +
n−1∑

k=1

r4(n− k)r8(k).(1.11)

We note for later use the following elementary identity:

σe(2n)− (2e + 1)σe(n) + 2eσe(n/2) = 0, e, n ∈ N.(1.12)

2. Preliminary results. For e, f, n ∈ N we define

Se,f (n) :=
n−1∑

m=1

σe(m)σf (n−m).(2.1)

Clearly

Se,f (n) =
∑

ax+by=n

aebf = Sf,e(n).(2.2)

The sums Se,f (n) can be evaluated in an elementary manner for e, f ∈ N
satisfying

e ≡ f ≡ 1 (mod 2), e+ f = 2, 4, 6, 8, 12,(2.3)

by taking particular choices of f(a, b, x, y) in the Proposition (see [3]). We
just need the value of S1,3(n), namely,

S1,3(n) =
1

240
(21σ5(n) + (10− 30n)σ3(n)− σ(n)).(2.4)
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Secondly, for e, f, n ∈ N, we define

Ae,f (n) :=
∑

m<n/2

σe(m)σf (n− 2m) =
∑

2ax+by=n

aebf ,(2.5)

where m runs through the positive integers satisfying m < n/2. We note
that

Ae,f (n) =
∑

a<n/2

ae
∑

m<n/2a

σf (n− 2am).(2.6)

The values of A1,1(n), A1,3(n) and A3,1(n) were derived in an elementary
manner in [3] from the Proposition. We just need

A1,3(n) =
1

240
(5σ5(n) + (10− 15n)σ3(n) + 16σ5(n/2)− σ(n/2)),(2.7)

A3,1(n) =
1

240
(σ5(n)− σ(n) + 20σ5(n/2) + (10− 30n)σ3(n/2)).(2.8)

Thirdly, for e, f, n ∈ N, we define

Be,f (n) :=
∑

m<n/4

σe(m)σf (n− 4m) =
∑

4ax+by=n

aebf ,(2.9)

where m runs through the positive integers satisfying m < n/4. We note
that

Be,f (n) =
∑

a<n/4

ae
∑

m<n/4a

σf (n− 4am).(2.10)

The value of B1,1(n) was derived in [3] from the Proposition. We need the
following new evaluations of B1, 3(n) and B3, 1(n) when n is odd.

Theorem 2. Let n be a positive odd integer. Then

384B1,3(n) = 5σ5(n)+(10−12n)σ3(n)− 3σ(n)− 48
∑

ax+by=n

(−1)a+b+xab3,

7680B3,1(n) = −13σ5(n) + 30σ3(n)− 17σ(n) + 240
∑

ax+by=n

(−1)a+b+xab3.

Proof. We first use the Proposition to prove that

B1,3(n) + 4B3,1(n) =
1

480
(3σ5(n) + (20− 15n)σ3(n)− 8σ(n)).(2.11)

For m ∈ Z we set

F2(m) =
{

1 if 2 |m,
0 if 2 -m.

We choose
f(a, b, x, y) = ab3F2(a)F2(x).
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It is easy to see that f(a, b, x, y) satisfies condition (1.7) of the Proposition.
With this choice we now examine the various terms occurring in the identity
(1.8).

The first two terms on the left hand side give

2
∑

ax+by=n

ab3F2(a)F2(x) = 4
∑

4ax+by=n

ab3 = 4B1,3(n).

The third and fourth terms on the left hand side give (since F2(x + y) =
F2(y − x) = F2(x− y) and n is odd)

∑

ax+by=n

(a(a− b)3 − a(a+ b)3)F2(a)F2(x− y)

=
∑

2ax+by=n
x≡y (mod 2)

(−48a3b− 4ab3) =
∑

2ax+by=n
x≡1 (mod 2)

(−48a3b− 4ab3)

=
∑

2ax+by=n

(−48a3b− 4ab3)−
∑

2ax+by=n
2|x

(−48a3b− 4ab3)

= −48A3,1(n)− 4A1,3(n) +
∑

4ax+by=n

(48a3b+ 4ab3)

= 4B1,3(n) + 48B3,1(n)− 4A1,3(n)− 48A3,1(n).

The fifth and sixth terms on the left hand side give (as F2(a+b) = F2(b−a) =
F2(a− b) and n is odd)

∑

ax+by=n

((b− a)b3 − (a+ b)b3)F2(a− b)F2(x)

= −2
∑

2ax+by=n
a≡b (mod 2)

ab3 = −2
∑

2ax+by=n
a≡1 (mod 2)

ab3

= −2
( ∑

2ax+by=n

ab3 −
∑

2ax+by=n
2|a

ab3
)

= −2
(
A1,3(n)− 2

∑

4ax+by=n

ab3
)

= −2A1,3(n) + 4B1,3(n).

Thus the left hand side is equal to

12B1,3(n) + 48B3,1(n)− 6A1,3(n)− 48A3,1(n).

As n is odd, all but the fifth term on the right hand side of (1.8) vanish.
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The fifth term is
∑

d|n

∑

x<d

xd3F2(x) = 2
∑

d|n
d3

∑

1≤x≤(d−1)/2

x =
1
4

∑

d|n
d3(d2 − 1)

=
1
4

(σ5(n)− σ3(n)).

Thus, by the Proposition, we obtain

12B1,3(n) + 48B3,1(n)− 6A1,3(n)− 48A3,1(n) = −1
4
σ5(n) +

1
4
σ3(n).

Appealing to (2.7) and (2.8) for the values of A1,3(n) and A3,1(n) respec-
tively, we obtain (2.11).

Next we show that
∑

ax+by=n

(−1)a+b+xab3 = −S1,3(n) + 6A1,3(n) + 16A3,1(n)−8B1,3(n),(2.12)

by using the identity

(−1)a+b+x = (1 + (−1)a)(1 + (−1)b)(1 + (−1)x)− (1 + (−1)a)(1 + (−1)b)

− (1 + (−1)a)(1 + (−1)x)− (1 + (−1)b)(1 + (−1)x)

+ (1 + (−1)a) + (1 + (−1)b) + (1 + (−1)x)− 1

on the left hand side of (2.12). We obtain eight sums and evaluate two of
them. The rest can be evaluated in a similar fashion. As n is odd, we have

∑

ax+by=n

(1 + (−1)a)(1 + (−1)b)(1 + (−1)x)ab3 = 8
∑

ax+by=n
2|a, 2|b, 2|x

ab3 = 0

and
∑

ax+by=n

(1 + (−1)a)ab3 = 2
∑

ax+by=n
2|a

ab3 = 4
∑

2ax+by=n

ab3 = 4A1,3(n).

From (2.4), (2.7), (2.8) and (2.12), we deduce the first formula of Theorem 2.
The second formula of Theorem 2 then follows from (2.11).

3. Elementary proof of Liouville’s formula for r12(n) when n is
even. Let n be a positive even integer. Set n = 2N , where N ∈ N. By
(1.9)–(1.12), we have

r4(2N) = 8σ(2N)− 32σ(N/2) = 24σ(N)− 48σ(N/2),(3.1)

r8(2N) = −16σ3(2N) + 256σ3(N) = 112σ3(N) + 128σ3(N/2),(3.2)

r12(2N) = 112σ3(N)+128σ3(N/2)+24σ(N)−48σ(N/2)+T0 +T1,(3.3)
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where

Ti :=
2N−1∑

k=1
k≡i (mod 2)

r4(2N − k)r8(k), i = 0, 1.(3.4)

We first evaluate T0. Appealing to (3.1), (3.2) and (3.4), we obtain

T0 =
2N−1∑

k=1
2|k

r4(2N − k)r8(k) =
N−1∑

k=1

r4(2N − 2k)r8(2k)

=
N−1∑

k=1

(24σ(N − k)− 48σ((N − k)/2))(112σ3(k) + 128σ3(k/2)),

that is,
T0 = 2688U1 − 5376U2 + 3072U3 − 6144U4,(3.5)

where

U1 :=
N−1∑

k=1

σ(N − k)σ3(k) = S1,3(N),

U2 :=
N−1∑

k=1

σ((N − k)/2)σ3(k) =
∑

k<N/2

σ(k)σ3(N − 2k) = A1,3(N),

U3 :=
N−1∑

k=1

σ(N − k)σ3(k/2) =
∑

k<N/2

σ(N − 2k)σ3(k) = A3,1(N),

U4 :=
N−1∑

k=1

σ((N − k)/2)σ3(k/2) =
∑

k<N/2

σ(N/2− k)σ3(k) = S1,3(N/2),

so that from (2.4), (2.7), (2.8) and (3.5), we obtain

T0 = 136σ5(N)− 112σ3(N)− 24σ(N)(3.6)

− 640σ5(N/2)− 128σ3(N/2) + 48σ(N/2).

Now we turn to the evaluation of T1. By (1.9) and (1.10) we have

T1 =
2N−1∑

k=1
2-k

r4(2N − k)r8(k) =
N∑

k=1

r4(2N − (2k − 1))r8(2k − 1)

= 128
N∑

k=1

σ(2N − (2k − 1))σ3(2k − 1) = 128V1 − 128V2,
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where

V1 :=
2N−1∑

k=1

σ(2N − k)σ3(k), V2 :=
N−1∑

k=1

σ(2N − 2k)σ3(2k).

First we evaluate V1. We have by (2.4) and (1.12)

240V1 = 240S1,3(2N) = 21σ5(2N) + (10− 60N)σ3(2N)− σ(2N)

= 693σ5(N) + (90− 540N)σ3(N)− 3σ(N)

− 672σ5(N/2)− (80− 480N)σ3(N/2) + 2σ(N/2).

Next we evaluate V2. By (1.12) we have

V2 =
N−1∑

k=1

(3σ(N − k)− 2σ((N − k)/2))(9σ3(k)− 8σ3(k/2))

= 27S1,3(N)− 18A1,3(N)− 24A3,1(N) + 16S1,3(N/2).

Appealing to (2.4), (2.7) and (2.8), we obtain

240V2 = 453σ5(N) + (90− 540N)σ3(N)− 3σ(N)

− 432σ5(N/2) + (−80 + 480N)σ3(N/2) + 2σ(N/2).

Hence
T1 = 128σ5(N)− 128σ5(N/2).(3.7)

Thus, by (3.3), (3.6) and (3.7), we obtain

r12(2N) = 264σ5(N)− 768σ5(N/2).

Therefore for n ≡ 0 (mod 2) we have, by (1.12),

r12(n) = 264σ5(n/2)− 768σ5(n/4) = 8σ5(n)− 512σ5(n/4),

which is Ewell’s formula (1.4) and so is equivalent to Liouville’s formula
(1.1).

4. Elementary proof of Theorem 1. Let n be a positive odd integer.
By (1.9)–(1.11), we obtain

r12(n)− 16σ3(n)− 8σ(n)

=
n−1∑

k=1

r4(n− k)r8(k)

= 128
n−1∑

k=1

(−1)k−1(σ(n− k)− 4σ((n− k)/4))(σ3(k)− 16σ3(k/2))

= 128X1 − 512X2 − 2048X3 + 8192X4,
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where

X1 :=
n−1∑

k=1

(−1)k−1σ(n− k)σ3(k)

=
n−1∑

k=1

σ(n− k)σ3(k)− 2
∑

k<n/2

σ(n− 2k)σ3(2k)

= S1,3(n)− 2
∑

k<n/2

σ(n− 2k)(9σ3(k)− 8σ3(k/2)) (by (1.12))

= S1,3(n)− 18
∑

k<n/2

σ(n− 2k)σ3(k) + 16
∑

k<n/4

σ(n− 4k)σ3(k)

= S1,3(n)− 18A3,1(n) + 16B3,1(n),

X2 :=
n−1∑

k=1

(−1)k−1σ((n− k)/4)σ3(k) =
∑

k<n/4

σ(k)σ3(n− 4k) = B1,3(n),

X3 :=
n−1∑

k=1

(−1)k−1σ(n− k)σ3(k/2) = −
∑

k<n/2

σ(n− 2k)σ3(k) = −A3,1(n),

X4 :=
n−1∑

k=1

(−1)k−1σ((n− k)/4)σ3(k/2) = 0,

from which we obtain

r12(n)− 16σ3(n)− 8σ(n)

= 128S1,3(n)− 256A3,1(n) + 2048B3,1(n)− 512B1,3(n).

Hence Theorem 1 follows by appealing to (2.4), (2.8) and Theorem 2.

5. Elementary proof of Ewell’s formula when n is odd. Let n be
a positive odd integer. By (2.6) and (2.10) we have

∑

d<n/2

(−1)dd3
∑

k<n/2d

σ(n− 2kd)

= 2
∑

d<n/2
2|d

d3
∑

k<n/2d

σ(n− 2kd)−
∑

d<n/2

d3
∑

k<n/2d

σ(n− 2kd)

= 16
∑

d<n/4

d3
∑

k<n/4d

σ(n− 4kd)−
∑

d<n/2

d3
∑

k<n/2d

σ(n− 2kd)

= 16B3,1(n)− A3,1(n).
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Finally, by (2.8), Theorem 2 and Theorem 1, we obtain

8σ5(n) + 16σ(n) + 256
∑

d<n/2

(−1)dd3
∑

k<n/2d

σ(n− 2kd)

= 16σ3(n) + 8σ(n) + 128
∑

ax+by=n

ab3 = r12(n),

which is Ewell’s formula (1.5).
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