ON A PROCEDURE FOR FINDING THE GALOIS GROUP OF A QUINTIC POLYNOMIAL

Blair K. Spearman and Kenneth S. Williams

Received November 27, 2001

Abstract

In [4, Proposition, pp. 883-884] a procedure is given to find the Galois group of an irreducible quintic polynomial $\in \mathbb{Z}[x]$. It is shown that this procedure does not al ways find the Galois group.

1. Introduction. Let $f(x) \in \mathbb{E}[x]$ be a monic irreducible quintic polynomial. The Galois group Gal (f) of $f(x)$ over Q is isomorphic to one of S_{5} (the symmetric group of order 120), A_{5} (the alternating group of order 60), F_{20} (the Frobenius group of order 20), D_{5} (the dihedral group of order 10) or \mathbb{Z}_{5} (the cyclic group of order 5), see $[1$, p. 872] or $[3, p p$. 556-557]. Let p be a prime. We write

$$
f(x) \equiv\left(d_{1}\right)^{n_{1}} \cdots\left(d_{r}\right)^{n_{r}}(\bmod p)
$$

to denote that $f(x)$ factors modulo p into r distinct irreducible factors of degrees d_{1}, \cdots, d_{r} and multiplicities n_{1}, \cdots, n_{r} respectively. The following procedure [4, Proposition, pp. 883 884] has been given for determining $\operatorname{Gal}(f)$.

Let p be a prime $=1(\bmod 5)$ such that

$$
f(x) \equiv(1)(1)(1)(1)(1)(\bmod p)
$$

We know that such a prime exists by the Tchebotarov density theorem.

1. If there exists a prime $p_{1}<p$ such that $f(x) \equiv(2)(3)\left(\bmod p_{1}\right)$ then $\operatorname{Gal}(f) \simeq S_{5}$.
2. If there exists a prime $p_{2}<p$ such that $f(x) \equiv(1)(1)(3)\left(\bmod p_{2}\right)$ and case 1 does not hold then $\operatorname{Gal}(f) \cong A_{5}$.
3. If there exists a prime $p_{3}<p$ such that $f(x) \equiv(1)(4)\left(\bmod p_{3}\right)$ and cases 2 and 3 do not hold then $\operatorname{Gal}(f) \cong F_{20}$.
4. If there exists a prime $p_{4}<p$ such that $f(x) \equiv(1)(2)(2)\left(\bmod p_{4}\right)$ and cases 2,3 and 4 do not hold then $\operatorname{Gal}(f) \cong D_{5}$.
5. If for every prime $q<p$ either $f(x) \equiv(1)(1)(1)(1)(1)(\bmod q)$ or $f(x) \equiv(5)(\bmod q)$ then $\operatorname{Gal}(f) \cong \mathbb{Z}_{5}$.

We show that this procedure is not guaranteed to determine Gal (f). We illustrate this with the parametric family

$$
\begin{equation*}
c_{k}(x)=x(x+9)\left(x^{3}+3 x+3\right)+2 \cdot 3 \cdot 5 \cdot 7 \cdot 11(3 k+1), k \in \mathbb{Z} \tag{1}
\end{equation*}
$$

We prove
Theorem. (a) $c_{k}(x)$ is irredacible for all $k \in \mathbb{Z}$.

$$
\begin{align*}
& c_{k}(x)=(1)(1)(3)(\bmod 2) \tag{b}\\
& c_{k}(x) \equiv(1)^{5}(\bmod 3) \\
& c_{k}(x) \equiv(1)(1)(3)(\bmod 5) \\
& c_{k}(x) \equiv(1)(1)(1)(2)(\bmod 7) \\
& c_{k}(x) \equiv(1)(1)(1)(1)(1)(\bmod 11)
\end{align*}
$$

(c) $\operatorname{Gal}\left(c_{k}(x)\right) \cong S_{3}$ for all k in \mathbb{Z}
(d) Let $p_{1}=13, p_{2}=17, p_{3}=19, \ldots$ be the primes >11. For each positive integer t there eaist infinitely many $k \in \mathbb{Z}$ auch that the leat prime p for which cif(x) $=(2)(3)$ (mod p) satiofies $p>p_{t}$.

With $p=11$ the procedure gives $G a l\left(c t(x) \simeq A_{s}(k \in Z)\right.$ contradicting $G a l\left(c_{k}(x)\right) \simeq S_{3}$ $(k \in \mathbb{Z})$. Thus the procedure does not find the correct Gelois group for infinitely many quintics. Part (d) of the Theorem shows that however large we choose the prime p the procedure still fails for infinitely many quintics. In order to prove part (d) of the Theorem we use the following result.

Proposition. Let $g(x)$ e $2[\mid$, Let p be a prime such that

$$
g(x) \neq c h(x)^{2}(\bmod p), \quad c \in \mathbb{Z}, h(x) \in Z[x] .
$$

Then

$$
\left|\sum_{x=0}^{-1}\left(\frac{g(x)}{p}\right)\right| \leq(n-1) \sqrt{p} .
$$

where n denotes the degree of $g(x)$ and $\left(\frac{*}{p}\right)$ is the Legendre symbol modulo p.
This character sum estinate is due to Well $[7,2,207]$ and is a consequence of his proof of the Riemann hypothesis for algebraic function fields over a finite field [6].
2. Proof of Theorem. (a) From (1) we have

$$
c_{k}(x)=x^{5}+9 x^{4}+3 x^{3}+30 x^{2}+27 x+6930 k+2310
$$

so that $c_{k}(x)$ is 3 - Eisenstein and thus irreducible.

$$
\begin{align*}
& c_{k}(x)=x(x+1)\left(x^{3}+x+1\right)(\bmod 2) . \tag{b}\\
& c_{k}(x)=x^{3}(\bmod 3) . \\
& c_{k}(x)=x(x+4)\left(x^{3}+3 x+3\right)(\bmod 5) . \\
& c_{k}(x)=x(x+2)(x+6)\left(x^{2}+x+4\right)(\bmod 7) . \\
& c_{k}(x)=x(x+2)(x+3)(x+6)(x+9)(\bmod 11) .
\end{align*}
$$

(c) The discriminant of $c_{k}(x)$ is

$$
d(k)=7207471937531250000 k^{4}+14839976794731858000 k^{3}
$$

$+9996640539362977500 k^{2}+2785738364780554260 k$
 +278489107278162009 .

As $d(k)=5(\bmod 7)$ we deduce that $d(k)$ is not a perfect square. Hence $G a l\left(c_{k}(x)\right)$ is not a subgroup of A_{5} and so

$$
\operatorname{Gal}\left(c_{k}(x)\right) \cong F_{20} \text { or } S_{5}
$$

Further, as $d(k) \neq 0(\bmod 2)$ and

$$
c_{k}(x)=(1)(1)(3)(\bmod 2)
$$

by [3, Corollary 41, p. 554] Gal $\left(c_{k}(x)\right)$ contains a 3-cycle. Hence 3 divides the order of $\mathrm{Gal}\left(c_{k}(x)\right)$. But 3 does not divide the order of $F_{20} 80 \mathrm{Gal}\left(c_{k}(x)\right) \cong S_{5}$.
(d) Let p be a prime >11. The number N of pairs (k, y) of integers modulo p satisfying the congruence

$$
y^{2} \equiv d(k)(\bmod p)
$$

is

$$
N=\sum_{k=0}^{p-1}\left(1+\left(\frac{d(k)}{p}\right)\right)=p+\sum_{k=0}^{p-1}\left(\frac{d(k)}{p}\right)
$$

Now the coefficient of k^{4} in $d(k)$ is

$$
2^{4} \cdot 3^{8} \cdot 5^{9} \cdot 7^{4} \cdot 11^{4}
$$

and the discriminant of $d(k)$ is

$$
2^{20} \cdot 3^{55} \cdot 5^{15} \cdot 7^{12} \cdot 11^{12} \cdot 37^{2} \cdot 382103^{3} \cdot 8570461^{2}
$$

so that for $p \neq 37,382103,8570461$ we have

$$
d(k) \not \equiv c h(k)^{2}(\bmod p)
$$

for any $c \in \mathbb{Z}$ and any polynomial $h(k) \in \mathbb{Z}[x]$. Hence by the Proposition

$$
\left|\sum_{k=0}^{p-1}\left(\frac{d(k)}{p}\right)\right| \leq(\operatorname{deg}(d(k))-1) \sqrt{p}-3 \sqrt{p}
$$

Thus for $p \neq 13,17,37,382103,8570461$ we have

$$
N \geq p-3 \sqrt{p} \geq 5
$$

so that there exists $k_{p} \in \mathbb{Z}$ such that

$$
\begin{equation*}
\left(\frac{d\left(k_{p}\right)}{p}\right)=1 \tag{2}
\end{equation*}
$$

For $p=13,17,37,382103,8570461$ we choose $k_{p}=1,4,3,3,2$ respectively so that (2) holds in these cases as well.

Let $t \in \mathbb{N}$. By the Chinese remainder theorem we can choose infinitely many integers k such that

$$
\begin{equation*}
k \equiv k_{p i}\left(\bmod p_{i}\right), i=1, \ldots, t \tag{3}
\end{equation*}
$$

Hence, by (2) and (3), we have

$$
\begin{equation*}
\left(\frac{d(k)}{p_{i}}\right)=\left(\frac{d\left(k_{p_{i}}\right)}{p_{i}}\right)=1, i=1, \ldots, t . \tag{4}
\end{equation*}
$$

But, by Stickelberger's theorem [5], [2], we have

$$
\begin{equation*}
\left(\frac{d(k)}{p_{i}}\right)=(-1)^{s-r_{i}}, \quad i=1, \ldots, t \tag{5}
\end{equation*}
$$

where r_{i} is the number of irreducible factors of $c_{k}(x)\left(\bmod p_{i}\right)$. Thus, by (4) and (5), we have

$$
r_{i} \equiv 1(\bmod 2), i=1, \ldots, t .
$$

Hence

$$
c_{k}(x) \not \equiv(2)(3)\left(\bmod p_{i}\right), i=1, \ldots, t
$$

Thus the least prime p for which

$$
c_{k}(x) \equiv(2)(3)(\bmod p)
$$

satisfies $p>\boldsymbol{p}_{\boldsymbol{t}}$.

References

[1] G. Butler and J. McKay, The transitive groups of degnee up eleven, Comm. Algebra 11 (1983), 863-911.
[2] L. Carlitz, A theonem of Stickelberger, Math. Scand. 1 (1953), 82-84.
[3] D. S. Dummit and R. M. Foote, Abstrect Algebra, Prentice Hall, New Jersey, 1991.
[4] S. Kobayashi and H. Nakagawa, Resolution of solvable quintic equation, Math. Japonica 37 (1992), 883-886.
[5] L. Stickelberger, Über eine neve Eigenschaft der Diskriminanten algebraischer Zahlkörper, Verhandlungen des ersten internationalen Mathematiker-Kongresses in Zürich 1897, Leipzig, 1898, pp. 182-193.
[6] A. Weil, Sur les courbes algébriques et les variétés qui s'èn déduisent, Publ. Inst. Math. Univ. Strasbourg 7 (1945), 1-85.
[7] A. Weil, On some exponential sums, Proc. Nat. Acad. Sci. (USA) 34 (1948), 204-207.
Department of Mathematics and Statistics
Okanagan University College
Kelowna, British Columbia V1V IV7
Canada
e-mail: bspearman@okanagan.bc.ca
Centre for Research in Algebra and Number Theory
School of Mathematics and Statistics
Carleton University
Ottawa, Ontario K1S 5B6
Canada
e-mail: williams@math.carleton.ca

