The Discriminant of a Dihedral Quintic Field Defined by a Trinomial $X^{5}+a X+b$

Blair K. Spearman and Kenneth S. Williams

Abstract. Let $X^{5}+a X+b \in Z[X]$ have Galois group D_{5}. Let θ be a root of $X^{5}+a X+b$. An explicit formula is given for the discriminant of $Q(\theta)$.

1 Introduction

Let $f(X)=X^{5}+a X+b \in Z[X]$ have Galois group D_{5} (the dihedral group of order 10). Let θ be a root of $f(X)$. Set $K=Q(\theta)$. If p is a prime such that $p^{4} \mid a$ and $p^{5} \mid b$ then θ / p is a root of $X^{5}+\left(a / p^{4}\right) X+\left(b / p^{5}\right) \in Z[X]$ and $K=Q(\theta / p)$. Hence we may assume that
there does not exist a prime p such that $p^{4} \mid a$ and $p^{5} \mid b$.
Our objective in this paper is to give an explicit formula for the discriminant $d(K)$ of K in terms of a and b. We prove
Theorem With the notation of the first paragraph

$$
d(K)=2^{\alpha} 5^{\beta} \prod_{\substack{p \neq 2,5 \\ v_{p}(b)>v_{p}(a)=2}} p^{2} \prod_{\substack{p \neq 2,5 \\ 1 \leq v_{p}(b) \leq v_{p}(a)}} p^{4}
$$

where

$$
\alpha= \begin{cases}4, & \text { if } 2^{2} \| a \\ 6, & \text { if } 2 \nmid a\end{cases}
$$

and

$$
\beta= \begin{cases}0, & \text { if } 5 \nmid a, \\ 2, & \text { if } 5^{2} \| a, 5^{3} \mid b, \\ 6, & \text { if } 5 \| a, 5 \nmid b \text { or } 5^{2}\left\|a, 5^{2}\right\| b, \\ 8, & \text { if } 5^{4}\left\|a, 5^{4}\right\| b .\end{cases}
$$

Here and throughout p denotes a prime and if c is a nonzero integer with $p^{m} \mid c$, $p^{m+1} \nmid c$ we write $p^{m} \| c$ or $v_{p}(c)=m$.

Received by the editors January 20, 2000.
The first author's research was supported by a grant from the Natural Sciences and Engineering Research Council of Canada. The second author's research was supported by Natural Sciences and Engineering Research Council of Canada grant A-7233.

AMS subject classification: 11R21, 11R29.
Keywords: dihedral quintic field, trinomial, discriminant.
(C)Canadian Mathematical Society 2002.

The starting point of the proof of our theorem is a representation of a and b given by Roland, Yui, and Zagier [4] (see Proposition 2.1). Then in Section 3 we determine the 2-part of $d(K)$, in Section 4 the 5-part of $d(K)$, and in Section 5 the p-part of $d(K)$ for a prime $p \neq 2,5$. The proof of the Theorem is completed in Section 6. In Section 7 two corollaries to the Theorem are given. In Section 8 a number of numerical examples illustrating the Theorem are given.

2 Representation of a and b

Our first proposition is a formula of Roland, Yui, and Zagier [4, formula (2)]. We remark that their proof needs a slight modification as their change of variable $\lambda=$ $5(u+1) /(u-1)$ does not yield a rational u when $\lambda=5$.

Proposition 2.1 There exist coprime integers m and n, and integers $i, j=0$ or 1 , such that

$$
\begin{aligned}
& a=2^{2-4 i} 5^{1-4 j} d_{2}\left(m^{2}-m n-n^{2}\right) E^{2} F, \\
& b=2^{4-5 i} 5^{-5 j} d_{1}(2 m-n)(m+2 n) E^{3} F,
\end{aligned}
$$

where d_{1}^{2} is the largest square dividing $m^{2}+n^{2}, d_{2}^{5}$ is the largest fifth power dividing $m^{2}+m n-n^{2}$, and

$$
E=\left(m^{2}+n^{2}\right) / d_{1}^{2}, \quad F=\left(m^{2}+m n-n^{2}\right) / d_{2}^{5}
$$

Roland, Yui, and Zagier [4] do not give the values of i and j explicitly in terms of m and n. As we shall need them we determine i and j explicitly in the next two propositions. We recall that $(m, n)=1$ so that $m \equiv n \equiv 0(\bmod 2)$ does not occur.

Proposition 2.2

$$
\begin{aligned}
& i=1 \Longleftrightarrow m \equiv n \equiv 1(\bmod 2) \Longleftrightarrow 2 \nmid a, 2^{2} \| b \\
& i=0 \Longleftrightarrow m \equiv n+1(\bmod 2) \Longleftrightarrow 2^{2} \| a, 2^{5} \mid b .
\end{aligned}
$$

Proof As $(m, n)=1$ we have

$$
\begin{gathered}
v_{2}\left(m^{2}+n^{2}\right)= \begin{cases}1, & \text { if } m \equiv n \equiv 1(\bmod 2), \\
0, & \text { if } m \equiv n+1(\bmod 2),\end{cases} \\
v_{2}\left(d_{1}\right)=0,
\end{gathered}, \begin{array}{ll}
1, & \text { if } m \equiv n \equiv 1(\bmod 2), \\
0, & \text { if } m \equiv n+1(\bmod 2),
\end{array}, \begin{gathered}
v_{2}\left(m^{2}-m n-n^{2}\right)=0,
\end{gathered} v_{2}\left(m^{2}+m n-n^{2}\right)=v_{2}\left(d_{2}\right)=v_{2}(F)=0, ~\left(\begin{array}{ll}
0, & \text { if } m \equiv n \equiv 1(\bmod 2), \\
\geq 1, & \text { if } m \equiv n+1(\bmod 2),
\end{array}\right.
$$

so that by Proposition 2.1, we see that

$$
v_{2}(a)= \begin{cases}4-4 i, & \text { if } m \equiv n \equiv 1(\bmod 2) \\ 2-4 i, & \text { if } m \equiv n+1(\bmod 2)\end{cases}
$$

and

$$
v_{2}(b)= \begin{cases}7-5 i, & \text { if } m \equiv n \equiv 1(\bmod 2) \\ \geq 5-5 i, & \text { if } m \equiv n+1(\bmod 2)\end{cases}
$$

If $m \equiv n \equiv 1(\bmod 2)$ then $i=1$ otherwise $i=0$ and $v_{2}(a)=4, v_{2}(b)=7$, which contradicts (1.1). In this case $v_{2}(a)=0$ and $v_{2}(b)=2$. If $m \equiv n+1(\bmod 2)$ then $2-4 i=v_{2}(a) \geq 0$ so that $i=0$. In this case $v_{2}(a)=2$ and $v_{2}(b) \geq 5$.

Proposition 2.2 shows that either $2 \nmid a$ or $2^{2} \| a$.

Proposition 2.3

$$
\begin{aligned}
j=0, \text { if } m \neq & 2 n, 3 n(\bmod 5) \\
& \text { or } \\
m \equiv & 3 n(\bmod 5), E \not \equiv 0(\bmod 5) \\
& \text { or } \\
m \equiv & 2 n(\bmod 5), m \not \equiv 57 n(\bmod 125) \\
& \text { or } \\
m \equiv & 2 n(\bmod 5), m \equiv 57 n(\bmod 125), E \not \equiv 0(\bmod 5), \\
j=1, \text { if } m \equiv & 3 n(\bmod 5), E \equiv 0(\bmod 5) \\
& o r \\
m \equiv & 2 n(\bmod 5), m \equiv 57 n(\bmod 125), E \equiv 0(\bmod 5) .
\end{aligned}
$$

Proof As $(m, n)=1$ we have

$$
v_{5}\left(m^{2}+m n-n^{2}\right)=v_{5}\left((2 m+n)^{2}-5 n^{2}\right)= \begin{cases}0, & \text { if } m \not \equiv 2 n(\bmod 5) \\ 1, & \text { if } m \equiv 2 n(\bmod 5)\end{cases}
$$

so that

$$
v_{5}\left(d_{2}\right)=0
$$

and

$$
v_{5}(F)= \begin{cases}0, & \text { if } m \not \equiv 2 n(\bmod 5) \\ 1, & \text { if } m \equiv 2 n(\bmod 5)\end{cases}
$$

Similarly

$$
v_{5}\left(m^{2}-m n-n^{2}\right)=v_{5}\left((2 m-n)^{2}-5 n^{2}\right)= \begin{cases}0, & \text { if } m \not \equiv 3 n(\bmod 5) \\ 1, & \text { if } m \equiv 3 n(\bmod 5)\end{cases}
$$

Next, as E is squarefree, we have

$$
v_{5}(E)= \begin{cases}0, & \text { if } E \not \equiv 0(\bmod 5) \\ 1, & \text { if } E \equiv 0(\bmod 5)\end{cases}
$$

and a simple calculation shows that

$$
v_{5}\left(d_{1}\right)= \begin{cases}0, & \text { if } m \not \equiv 2 n, 3 n(\bmod 5) \\ & \text { or } \\ & m \equiv 2 n(\bmod 5), m \not \equiv 57 n(\bmod 125), E \equiv 0(\bmod 5) \\ \geq 0, & \text { if } m \equiv 3 n(\bmod 5), E \equiv 0(\bmod 5) \\ 1, & \text { if } m \equiv 2 n(\bmod 5), m \not \equiv 57 n(\bmod 125), E \not \equiv 0(\bmod 5) \\ \geq 1, & \text { if } m \equiv 2 n(\bmod 5), m \equiv 57 n(\bmod 125), E \equiv 0(\bmod 5) \\ & \text { or } \\ & m \equiv 3 n(\bmod 5), E \not \equiv 0(\bmod 5), \\ \geq 2, & \text { if } m \equiv 2 n(\bmod 5), m \equiv 57 n(\bmod 125), E \not \equiv 0(\bmod 5)\end{cases}
$$

Also

$$
v_{5}((2 m-n)(m+2 n))= \begin{cases}0, & \text { if } m \not \equiv 3 n(\bmod 5) \\ \geq 2, & \text { if } m \equiv 3 n(\bmod 5)\end{cases}
$$

We consider the following seven mutually exclusive and exhaustive cases.
(i) $\quad m \not \equiv 2 n, 3 n(\bmod 5)$. From Proposition 2.1 and the above remarks, we have

$$
v_{5}(a)=1-4 j, \quad v_{5}(b)=-5 j
$$

As $v_{5}(b) \geq 0$ and $j=0$ or 1 we must have $j=0$.
(ii) $\quad m \equiv 3 n(\bmod 5), E \equiv 0(\bmod 5)$. Here

$$
v_{5}(a)=4-4 j, \quad v_{5}(b) \geq 5-5 j
$$

If $j=0$ then $v_{5}(a)=4, v_{5}(b) \geq 5$, contradicting (1.1). Hence $j=1$.
(iii) $m \equiv 3 n(\bmod 5), E \not \equiv 0(\bmod 5)$. Here

$$
v_{5}(a)=2-4 j, \quad v_{5}(b) \geq 3-5 j
$$

so that $j=0$.
(iv) $m \equiv 2 n(\bmod 5), m \equiv 57 n(\bmod 125), E \equiv 0(\bmod 5)$. Here

$$
v_{5}(a)=4-4 j, \quad v_{5}(b) \geq 5-5 j
$$

If $j=0$ then $v_{5}(a)=4, v_{5}(b) \geq 5$, contradicting (1.1). Hence $j=1$.
(v) $\quad m \equiv 2 n(\bmod 5), m \equiv 57 n(\bmod 125), E \not \equiv 0(\bmod 5)$. Here

$$
v_{5}(a)=2-4 j, \quad v_{5}(b) \geq 3-5 j,
$$

so that $j=0$.
(vi) $m \equiv 2 n(\bmod 5), m \not \equiv 57 n(\bmod 125), E \equiv 0(\bmod 5)$. Here

$$
v_{5}(a)=4-4 j, \quad v_{5}(b)=4-5 j,
$$

so that $j=0$.
(vii) $m \equiv 2 n(\bmod 5), m \not \equiv 57 n(\bmod 125), E \not \equiv 0(\bmod 5)$. Here

$$
v_{5}(a)=2-4 j, \quad v_{5}(b)=2-5 j,
$$

so that $j=0$.
In the course of the proof of Proposition 2.3 we showed the following result.

Proposition 2.4

$$
\begin{aligned}
5 \nmid a & \Longleftrightarrow \quad \begin{array}{c}
m \equiv 3 n(\bmod 5), E \equiv 0(\bmod 5) \\
\\
\\
\\
m \equiv 2 n(\bmod 5), m \equiv 57 n(\bmod 125), E \equiv 0(\bmod 5), \\
5 \| a, 5 \nmid b
\end{array} \Longleftrightarrow m \neq 2 n, 3 n(\bmod 5), \\
5^{2}\left\|a, 5^{2}\right\| b & \Longleftrightarrow m \equiv 2 n(\bmod 5), m \not \equiv 57 n(\bmod 125), E \not \equiv 0(\bmod 5), \\
5^{2} \| a, 5^{3} \mid b & \Longleftrightarrow \quad m \equiv 3 n(\bmod 5), E \not \equiv 0(\bmod 5) \\
& m \equiv 2 n(\bmod 5), m \equiv 57 n(\bmod 125), E \not \equiv 0(\bmod 5), \\
& m \equiv m \equiv 2 n(\bmod 5), m \not \equiv 57 n(\bmod 125), E \equiv 0(\bmod 5) .
\end{aligned}
$$

We denote by M the splitting field of $f(X)$ and by k the unique quadratic subfield of M. From [4, p. 139] we know that

$$
k=Q\left(\sqrt{-5\left(m^{2}+n^{2}\right)}\right)=Q(\sqrt{-5 E}) .
$$

3 The 2-part of $d(K)$

By Proposition 2.2 we know that either $2 \nmid a$ or $2^{2} \| a$. We prove
Proposition 3.1

$$
\begin{aligned}
2^{6} \| d(K) & \Longleftrightarrow 2 \nmid a \\
2^{4} \| d(K) & \Longleftrightarrow 2^{2} \| a
\end{aligned}
$$

Proof By a result of Roland, Yui, and Zagier [4, p. 139], we have

$$
v_{2}(d(K))=2 v_{2}(d(k))
$$

If $2 \nmid a$ then, by Proposition 2.2, m and n are both odd so that

$$
v_{2}(d(k))=v_{2}\left(d\left(Q\left(\sqrt{-5\left(m^{2}+n^{2}\right)}\right)\right)\right)=3
$$

and

$$
v_{2}(d(K))=6
$$

If $2^{2} \| a$ then, by Proposition 2.2, m and n are of opposite parity so that

$$
v_{2}(d(k))=v_{2}\left(d\left(Q\left(\sqrt{-5\left(m^{2}+n^{2}\right)}\right)\right)\right)=2
$$

and

$$
v_{2}(d(K))=4
$$

4 The 5-Part of $d(K)$

From Proposition 2.4 we know that only the following possibilities can occur:

$$
\begin{array}{cl}
5 \nmid a, \\
5 \| a, & 5 \nmid b, \\
5^{2} \| a, & 5^{2} \| b, \tag{4.1}\\
5^{2} \| a, & 5^{3} \mid b, \\
5^{4} \| a, & 5^{4} \| b .
\end{array}
$$

We determine the power of 5 in $d(K)$ in each of these five cases in the following four propositions.
Proposition $4.1 \quad 5|d(K) \Longleftrightarrow 5| a$.

Proof First suppose that $5 \mid d(K)$. We have $5|d(K) \Longrightarrow 5| \operatorname{disc}(f(X)) \Longrightarrow 5 \mid 4^{4} a^{5}+$ $5^{5} b^{4} \Longrightarrow 5 \mid a$.

Now suppose that $5 \mid a$. We consider two cases according as $5 \mid b$ or $5 \nmid b$.
Case (i): $5 \mid b$. Suppose that $5 \nmid d(K)$. Then $\langle 5\rangle=P_{1} \cdots P_{t}$ for distinct prime ideals P_{1}, \ldots, P_{t} of O_{K} with $1 \leq t \leq 5$. Since $a \in P_{i}$ and $b \in P_{i}$ for $1 \leq i \leq t$, we have $\theta^{5}=-a \theta-b \in P_{i}$ and therefore $\theta \in P_{i}, 1 \leq i \leq t$. Hence

$$
\langle\theta\rangle=P_{1} \cdots P_{t} Q
$$

for some ideal Q in O_{K}. Hence $5 \mid \theta$ and so $\theta=5 \mu$ for some $\mu \in O_{K}$. Then

$$
\mu^{5}+\left(a / 5^{4}\right) \mu+\left(b / 5^{5}\right)=f(\theta) / 5^{5}=0 .
$$

Since $\mu \in O_{K}, a / 5^{4} \in Z$ and $b / 5^{5} \in Z$. This contradicts (1). Hence $5 \mid d(K)$.
Case (ii): $5 \nmid b$. Suppose $5 \nmid d(K)$. We have

$$
\begin{aligned}
g(y) & =f(y-b)=(y-b)^{5}+a(y-b)+b \\
& =y^{5}-5 b y^{4}+10 b^{2} y^{3}-10 b^{3} y^{2}+\left(5 b^{4}+a\right) y-\left(b^{5}+a b-b\right)
\end{aligned}
$$

As $5 \nmid d(K)$, we have $\langle 5\rangle=P_{1} \cdots P_{t}$, where P_{1}, \ldots, P_{t} are $t(1 \leq t \leq 5)$ distinct prime ideals in O_{K}. Let $\gamma=\theta+b$ so that $\gamma \in O_{K}$ is a root of $g(y)$. For $1 \leq i \leq t$ we have $5 \in P_{i}$ so that $5 b^{4}+a \in P_{i}$ and $b^{5}+a b-b \in P_{i}$. Thus

$$
\gamma^{5}=5 b \gamma^{4}-10 b^{2} \gamma^{3}+10 b^{3} \gamma^{2}-\left(5 b^{4}+a\right) \gamma+\left(b^{5}+a b-b\right) \in P_{i}
$$

and so $\gamma \in P_{i}(1 \leq i \leq t)$. Hence $P_{1} \cdots P_{t} \mid\langle\gamma\rangle$ and so $5 \mid \gamma$, say $\gamma=5 \mu$ with $\mu \in O_{K}$ and

$$
\mu^{5}-b \mu^{4}+\frac{2 b^{2}}{5} \mu^{3}-\frac{2 b^{3}}{5^{2}} \mu^{2}+\frac{\left(5 b^{4}+a\right)}{5^{4}} \mu-\frac{\left(b^{5}+a b-b\right)}{5^{5}}=0
$$

Since $\mu \in O_{K}$ we must have $2 b^{2} / 5 \in Z$. This contradicts that $5 \nmid b$. Hence $5 \mid d(K)$.

Proposition $4.25^{2}\left\|d(K) \Longleftrightarrow 5^{2}\right\| a, 5^{3} \mid b$.

Proof Suppose that $5^{2} \| d(K)$. Then, by [1, Theorem 4.2 .6 (ii)], 5 ramifies in k but not in M / k. Hence, by [1 , Lemma 4.2.2], we have

$$
\langle 5\rangle=P_{1} P_{2}^{2} P_{3}^{2}
$$

for distinct prime ideals of O_{K}. By Proposition 4.1 we have $5 \mid a$. We consider two cases according as $5 \nmid b$ or $5 \mid b$.

Case (i): $5 \nmid b$. Since $4^{4} a^{5}+5^{5} b^{4}$ is a perfect square we have $5 \| a$. We consider $g(y)=f(y-b)$ whose root $\gamma=\theta+b$ is such that $Q(\gamma)=Q(\theta)=K$ and

$$
\begin{equation*}
\gamma^{5}-5 b \gamma^{4}+10 b^{2} \gamma^{3}-10 b^{3} \gamma^{2}+\left(5 b^{4}+a\right) \gamma-\left(b^{5}+a b-b\right)=0 \tag{4.2}
\end{equation*}
$$

Since 5 divides $-5 b, 10 b^{2},-10 b^{3}, 5 b^{4}+a$, and $b^{5}+a b-b$, we have $5 \mid \gamma^{5}$ so that $P_{1} P_{2} P_{3} \mid\langle\gamma\rangle$. If $5 \mid \gamma$ then $\gamma=5 \mu$ where $\mu \in O_{K}$ and

$$
\mu^{5}-b \mu^{4}+\frac{2 b^{2}}{5} \mu^{3}-\frac{2 b^{3}}{5^{2}} \mu^{2}+\frac{\left(5 b^{4}+a\right)}{5^{4}} \mu-\frac{\left(b^{5}+a b-b\right)}{5^{5}}=0
$$

Thus $2 b^{2} / 5 \in Z$, contradicting $5 \nmid b$. Hence $5 \nmid \gamma$ and so not both of P_{2}^{2} and P_{3}^{2} can divide γ. Without loss of generality we may suppose that $P_{2}^{2} \nmid\langle\gamma\rangle$. Now $N_{K / Q}\left(P_{1} P_{2} P_{3}\right) \mid N_{K / Q}(\langle\gamma\rangle)$ so that $5^{3} \mid b^{5}+a b-b$ and thus $v_{P_{2}}\left(b^{5}+a b-b\right) \geq 6$. Also

$$
v_{P_{2}}\left(\gamma^{5}\right)=5, \quad v_{P_{2}}\left(5 b \gamma^{4}\right)=6, \quad v_{P_{2}}\left(10 b^{2} \gamma^{3}\right)=5, \quad v_{P_{2}}\left(10 b^{3} \gamma^{2}\right)=4
$$

and

$$
v_{P_{2}}\left(\left(5 b^{4}+a\right) \gamma\right)=2 t+1
$$

for some $t \in Z$ with $t \geq 1$. This clearly contradicts (4.2).
Case (ii): $5 \mid b$. From $\theta^{5}+a \theta+b=0$ we see that $5 \nmid \theta^{5}$ so that $P_{1} P_{2} P_{3} \mid\langle\theta\rangle$. Now $N_{K / Q}\left(P_{1} P_{2} P_{3}\right) \mid N_{K / Q}(\langle\theta\rangle)$ so that $5^{3} \mid b$. Since $4^{4} a^{5}+5^{5} b^{4}$ is a perfect square, we must have in view of (4.1) either $5^{2} \| a$ or $5^{4}\left\|a, 5^{4}\right\| b$. The latter case implies that $5^{4} \mid d(K)$, see [3, question $28(\mathrm{c}), \mathrm{p} .90$], contradicting $5^{2} \| d(K)$. Thus we must have $5^{2} \| a, 5^{3} \mid b$.

Now suppose that $5^{2} \| a, 5^{3} \mid b$. We show that $5^{2} \| d(K)$. By Proposition 2.4 we have $E \not \equiv 0(\bmod 5)$. Hence 5 ramifies in $k=Q(\sqrt{-5 E})$, so that $\langle 5\rangle=P^{2}$ for some prime ideal P in O_{k}. We show next that P is unramified in M / k. Set $\phi=E \theta / \sqrt{-5 E}$. Clearly $\phi \in M$ and satisfies

$$
\phi^{5}+\frac{a E^{2}}{25} \phi-\frac{b E^{2}}{125} \sqrt{-5 E}=0
$$

Since

$$
X^{5}+\frac{a E^{2}}{25} X-\frac{b E^{2}}{125} \sqrt{-5 E} \in O_{k}[X]
$$

any prime ideal of O_{k} ramifying in O_{M} must divide the discriminant

$$
4^{4}\left(\frac{a E^{2}}{25}\right)^{5}+5^{5}\left(\frac{-b E^{2} \sqrt{-5 E}}{125}\right)^{4}
$$

of this polynomial. As $5^{2} \| a$ and $5 \nmid E$ we see that P does not divide this discriminant and so is unramified in O_{M}. Then, by [1, Theorem 4.2 .6 (iii)], we must have $v_{5}(d(K))=2$.
Proposition $4.35^{8}\left\|d(K) \Longleftrightarrow 5^{4}\right\| a, 5^{4} \| b$.

Proof We assume first that $5^{8} \| d(K)$. By [1, Theorem 4.2 .6 (iii)] either 5 is ramified in M / k but not in k or is totally ramified in M. In either case we have $\langle 5\rangle=P^{5}$ for some prime ideal P of O_{K} with $N_{K / Q}(P)=5$. By Proposition 4.1 we have $5 \mid a$. We consider two cases according as $5 \nmid b$ or $5 \mid b$.

Case (i): $5 \nmid b$. As $4^{4} a^{5}+5^{5} b^{4}$ is a perfect square we have $5 \| a$. We set $g(y)=$ $f(y-b)$ and $\phi=\theta+b$ so that $g(\phi)=0$ and $Q(\phi)=Q(\theta)=K$. Then

$$
\begin{equation*}
\phi^{5}-5 b \phi^{4}+10 b^{2} \phi^{3}-10 b^{3} \phi^{2}+\left(5 b^{4}+a\right) \phi-\left(b^{5}+a b-b\right)=0 \tag{4.3}
\end{equation*}
$$

Clearly $5 b, 10 b^{2}, 10 b^{3}, 5 b^{4}+a$ and $b^{5}+a b-b$ are all divisible by 5 , so that $5 \mid \phi^{5}$ and $P \mid\langle\phi\rangle$. Suppose that $P^{5} \mid\langle\phi\rangle$. Then $5 \mid \phi$ and we can write $\phi=5 \mu$, where $\mu \in O_{K}$, and

$$
\mu^{5}-b \mu^{4}+\frac{2 b^{2}}{5} \mu^{3}-\frac{2 b^{3}}{5^{2}} \mu^{2}+\frac{\left(5 b^{4}+a\right)}{5^{4}} \mu-\frac{\left(b^{5}+a b-b\right)}{5^{5}}=0
$$

Thus $2 b^{2} / 5 \in Z$, contradicting $5 \nmid b$. Hence $P^{t} \|\langle\phi\rangle$, where $1 \leq t \leq 4$. Thus $5^{t} \| N_{K / Q}(\langle\phi\rangle)= \pm\left(b^{5}+a b-b\right)$, so that

$$
v_{P}\left(b^{5}+a b-b\right)=5 t
$$

Further

$$
\begin{gathered}
v_{P}\left(\left(5 b^{4}+a\right) \phi\right)=5 l+t, \quad l \in Z^{+} \\
v_{P}\left(10 b^{3} \phi^{2}\right)=5+2 t \\
v_{P}\left(10 b^{2} \phi^{3}\right)=5+3 t \\
v_{P}\left(5 b \phi^{4}\right)=5+4 t \\
v_{P}\left(\phi^{5}\right)=5 t
\end{gathered}
$$

The equation (4.3) implies that there are two values among $5 t, 5 l+t, 5+2 t$ equal and minimal. This is not the case if $t=2,3$ or 4 since

$$
\begin{aligned}
\{5 t, 5 l+t, 5+2 t\} & =\{10,7 \text { or } \geq 12,9,10\}, \quad \text { if } t=2, \\
& =\{15,8 \text { or } \geq 13,11,15\}, \quad \text { if } t=3, \\
& =\{20,9 \text { or } \geq 14,13,20\}, \quad \text { if } t=4 .
\end{aligned}
$$

Hence $t=1$ and $5 \| b^{5}+a b-b$. As $5^{8} \mid d(K)$ we have $5^{8} \mid 4^{4} a^{5}+5^{5} b^{4}$ so that

$$
4^{4}\left(\frac{a}{5}\right)^{5}+b^{4} \equiv 0\left(\bmod 5^{3}\right)
$$

Taking this congruence modulo 5 , we see that $a / 5 \equiv-1(\bmod 5)$, so that there is an integer z such that $a=25 z-5$. Hence

$$
\begin{aligned}
b^{4}+a-1 & \equiv-4^{4}\left(\frac{a}{5}\right)^{5}+a-1\left(\bmod 5^{2}\right) \\
& \equiv-4^{4}(5 z-1)^{5}+(25 z-6)\left(\bmod 5^{2}\right) \\
& \equiv 6-6 \equiv 0\left(\bmod 5^{2}\right)
\end{aligned}
$$

and thus $5^{2} \mid b^{5}+a b-b$, contradicting $5 \| b^{5}+a b-b$. Thus case (i) cannot occur.
Case (ii): $5 \mid b$. As $5 \mid a$ and $5 \mid b$, by (4.1), we have $5^{2} \| a, 5^{2} \mid b$ or $5^{4}\left\|a, 5^{4}\right\| b$. If $5^{2} \| a, 5^{3} \mid b$, by Proposition 4.2, we have $5^{2} \| d(K)$, contradicting $5^{8} \| d(K)$. If
$5^{2}\left\|a, 5^{2}\right\| b$, then $P^{10}\left\|\langle a\rangle, P^{10}\right\|\langle b\rangle$, and so from $\theta^{5}+a \theta+b=0$, we see that $P^{2} \|\langle\theta\rangle$. Thus $1, \theta, \theta^{2}, \theta^{3} / 5$ and $\theta^{4} / 5 \in O_{K}$, and their discriminant satisfies

$$
\begin{aligned}
v_{5}\left(\operatorname{disc}\left(1, \theta, \theta^{2}, \theta^{3} / 5, \theta^{4} / 5\right)\right) & =v_{5}\left(\operatorname{disc}\left(1, \theta, \theta^{2}, \theta^{3}, \theta^{4}\right)\right)-4 \\
& =v_{5}\left(4^{4} a^{5}+5^{5} b^{4}\right)-4=10-4=6,
\end{aligned}
$$

contradicting that $v_{5}(d(K))=8$. Hence $5^{4}\left\|a, 5^{4}\right\| b$ as asserted.
Now we suppose that $5^{4}\left\|a, 5^{4}\right\| b$. By Proposition 2.4 we have $5 \| E$. Hence 5 does not ramify in $k=Q(\sqrt{-5 E})$. As $5 \mid a$, by Proposition $4.1,5 \mid d(K)$, and so 5 ramifies in K and thus in M. Hence 5 ramifies in M / k. Then, by [1, Theorem 4.2.6 (iii)], we have $v_{5}(d(K))=8$ as asserted.

Proposition $4.45^{6}\|d(K) \Longleftrightarrow 5\| a, 5 \nmid b$ or $5^{2}\left\|a, 5^{2}\right\| b$.

Proof By [1, Theorem 4.2 .6 (iii)] we have

$$
v_{5}(d(K))=0,2,6 \text { or } 8
$$

If $5 \| a, 5 \nmid b$ or $5^{2}\left\|a, 5^{2}\right\| b$, by Propositions 4.1-4.3, we have $v_{5}(d(K)) \neq 0,2$ or 8. Hence $v_{5}(d(K))=6$. On the other hand if $v_{5}(d(K))=6$ then by Propositions 4.14.3, a and b do not satisfy any of

$$
5 \nmid a ; \quad 5^{2}\left\|a, 5^{3} \mid b ; \quad 5^{4}\right\| a, 5^{4} \| b .
$$

Hence by (4.1) we have $5 \| a, 5 \nmid b$ or $5^{2}\left\|a, 5^{2}\right\| b$.

5 The p-Part of $d(K), p \neq 2,5$

Let p be a prime $\neq 2,5$. Clearly p falls into one and only one of the following cases:
(i) $p \nmid b$,
(ii) $p \mid b, p \nmid a$,
(iii) $1 \leq v_{p}(b) \leq v_{p}(a)$,
(iv) $1 \leq v_{p}(a)<v_{p}(b)$.

By (1.1) we have

$$
\begin{aligned}
& v_{p}(b)<5 \quad \text { in case (iii) } \\
& v_{p}(a)<4 \text { in case (iv). }
\end{aligned}
$$

In the course of the proof of the next proposition we see that we must have $v_{p}(a)=2$ in case (iv).
Proposition 5.1 Let p be a prime $\neq 2$, 5. Then

$$
\begin{gathered}
p^{4} \| d(K) \Longleftrightarrow 1 \leq v_{p}(b) \leq v_{p}(a) \\
p^{2} \| d(K) \Longleftrightarrow 2=v_{p}(a)<v_{p}(b) \\
p \nmid d(K) \Longleftrightarrow v_{p}(a)=0 \text { or } v_{p}(b)=0 .
\end{gathered}
$$

Proof By Llorente, Nart and Vila [2, Theorem 1] we have

$$
v_{p}(d(K))= \begin{cases}4-\left(4, v_{p}(a)\right), & \text { if } 5 v_{p}(a)<4 v_{p}(b) \\ 5-\left(5, v_{p}(b)\right), & \text { if } 5 v_{p}(a) \geq 4 v_{p}(b)\end{cases}
$$

In case (i) we have $v_{p}(d(K))=5-(5,0)=5-5=0$. In case (ii) we have $v_{p}(d(K))=4-(4,0)=4-4=0$. In case (iii) we have $v_{p}(d(K))=5-$ $\left(5, v_{p}(b)\right)=5-1=4$, as $v_{p}(b)=1,2,3$ or 4 . In case (iv) we show that $5 v_{p}(a)<$ $4 v_{p}(b)$. Suppose not. Then $5 v_{p}(a) \geq 4 v_{p}(b)$ and so

$$
v_{p}(b)-1 \geq v_{p}(a) \geq \frac{4}{5} v_{p}(b)
$$

so that $v_{p}(b) \geq 5$. Thus $v_{p}(a) \geq 4 v_{p}(b) / 5 \geq 4$, contradicting (1.1). Hence $5 v_{p}(a)<$ $4 v_{p}(b)$ and so

$$
v_{p}\left(4^{4} a^{5}+5^{5} b^{4}\right)=5 v_{p}(a) \equiv 0(\bmod 2)
$$

as $4^{4} a^{5}+5^{5} b^{4}$ is a perfect square. Thus $v_{p}(a) \equiv 0(\bmod 2)$. As $1 \leq v_{p}(a)<4$ we must have $v_{p}(a)=2$. Then $v_{p}(d(K))=4-(4,2)=4-2=2$.

We close this section by proving the following result.
Proposition 5.2 Let $p \neq 2,5$ be a prime. Then

$$
\begin{aligned}
p \mid E & \Longleftrightarrow 2=v_{p}(a)<v_{p}(b), \quad(\text { case (iv)) } \\
p \mid F & \Longleftrightarrow 1 \leq v_{p}(b) \leq v_{p}(a), \quad(\text { case (iii)) } \\
p \nmid E, p \nmid F & \Longleftrightarrow v_{p}(a)=0 \text { or } v_{p}(b)=0 \quad \text { (cases (i), (ii)). }
\end{aligned}
$$

Proof As m and n are coprime, p cannot divide both E and F.
If $p \mid E$ then $p \| E, p \nmid m^{2} \pm m n-n^{2}, p \nmid 2 m-n, p \nmid m+2 n, p \nmid F, p \nmid d_{2}$ so that, by Proposition 2.1, we have

$$
v_{p}(a)=2, \quad v_{p}(b)=v_{p}\left(d_{1}\right)+3
$$

and thus

$$
2=v_{p}(a)<v_{p}(b)
$$

If $p \mid F$ then $p \nmid m^{2}-m n-n^{2}, p \nmid m^{2}+n^{2}, p \nmid d_{1}, p \nmid E, p \nmid 2 m-n, p \nmid m+2 n$ so that, by Proposition 2.1, we have

$$
v_{p}(a)=v_{p}\left(d_{2}\right)+v_{p}(F), \quad v_{p}(b)=v_{p}(F)
$$

and thus

$$
v_{p}(a) \geq v_{p}(b) \geq 1
$$

If $p \nmid E, p \nmid F$ then, by Proposition 2.1, we have

$$
\begin{gathered}
v_{p}(a)=v_{p}\left(d_{2}\right)+v_{p}\left(m^{2}-m n-n^{2}\right) \\
v_{p}(b)=v_{p}\left(d_{1}\right)+v_{p}(2 m-n)+v_{p}(m+2 n)
\end{gathered}
$$

As m and n are coprime at most one of $v_{p}\left(d_{1}\right), v_{p}\left(d_{2}\right), v_{p}\left(m^{2}-m n-n^{2}\right), v_{p}(2 m-n)$, $v_{p}(m+2 n)$ can be nonzero so that either $v_{p}(a)=0$ or $v_{p}(b)=0$.

From Propositions 5.1 and 5.2 we have
Proposition 5.3 If p is a prime $\neq 2,5$ then

$$
\begin{aligned}
& p^{4} \| d(K) \Longleftrightarrow p \mid F, \\
& p^{2} \| d(K) \Longleftrightarrow p \mid E, \\
& p \nmid d(K) \Longleftrightarrow p \nmid E \text { and } p \nmid F .
\end{aligned}
$$

6 Proof of Theorem

The Theorem now follows from Propositions 3.1, 4.1, 4.2, 4.3, 4.4 and 5.1 as $d(K)>$ 0 .

7 Two Corollaries

From the Theorem, Proposition 2.2, Proposition 2.4 and Proposition 5.3, we obtain the formulation of $d(K)$ in terms of m and n.

Corollary 1

$$
d(K)=2^{\alpha} 5^{\beta} \prod_{\substack{p \neq 2,5 \\ p \mid E}} p^{2} \prod_{\substack{p \neq 2,5 \\ p \mid F}} p^{4},
$$

where

$$
\alpha= \begin{cases}4, & \text { if } m \equiv n+1(\bmod 2) \\ 6, & \text { if } m \equiv n \equiv 1(\bmod 2)\end{cases}
$$

and

$$
\beta=\left\{\begin{aligned}
0, & \text { if } m \equiv 3 n(\bmod 5), E \equiv 0(\bmod 5) \\
& \text { or } \\
& m \equiv 2 n(\bmod 5), m \equiv 57 n(\bmod 125), E \equiv 0(\bmod 5), \\
2, & \text { if } m \equiv 3 n(\bmod 5), E \not \equiv 0(\bmod 5) \\
& \text { or } \\
& m \equiv 2 n(\bmod 5), m \equiv 57 n(\bmod 125), E \not \equiv 0(\bmod 5), \\
6, & \text { if } m \not \equiv 2 n, 3 n(\bmod 5) \\
& \text { or } \\
& m \equiv 2 n(\bmod 5), m \not \equiv 57 n(\bmod 125), E \not \equiv 0(\bmod 5), \\
8, & \text { if } m \equiv 2 n(\bmod 5), m \not \equiv 57 n(\bmod 125), E \equiv 0(\bmod 5) .
\end{aligned}\right.
$$

Corollary $2 d(K)=d(k)^{2} f^{4}$, where

$$
f=5^{\theta} \prod_{1 \leq v_{p}(b) \leq v_{p}(a)} p,
$$

and

$$
\theta= \begin{cases}0, & \text { if } 5 \nmid a \text { or } 5^{2} \| a, 5^{3} \mid b, \\ 1, & \text { if } 5 \| a, 5 \nmid b \text { or } 5^{2}\left\|a, 5^{2}\right\| b, \\ 2, & \text { if } 5^{4}\left\|a, 5^{4}\right\| b .\end{cases}
$$

Proof From the proof of Proposition 3.1 we have

$$
v_{2}(d(k))=\alpha / 2
$$

As $k=Q(\sqrt{-5 E})$ we have

$$
v_{5}(d(k))= \begin{cases}0, & \text { if } 5 \| E, \\ 1, & \text { if } 5 \nmid E .\end{cases}
$$

Thus, by Proposition 2.4, we obtain $v_{5}(d(k))=\gamma$, where

$$
\gamma= \begin{cases}0, & \text { if } 5 \nmid a \text { or } 5^{4}\left\|a, 5^{4}\right\| b \tag{7.1}\\ 1, & \text { if } 5 \| a, 5 \nmid b \text { or } 5^{2} \| a, 5^{2} \mid b .\end{cases}
$$

For $p \neq 2,5$ we have

$$
v_{p}(d(k))= \begin{cases}0, & \text { if } p \mid E \\ 1, & \text { if } p \nmid E\end{cases}
$$

Hence, since $d(k)<0$, we have

$$
d(k)=-2^{\alpha / 2} 5^{\gamma} \prod_{\substack{p \neq 2,5 \\ p \mid E}} p
$$

Thus, by Corollary 1, we obtain

$$
\frac{d(K)}{d(k)^{2}}=5^{\beta-2 \gamma} \prod_{\substack{p \neq 2,5 \\ p \mid F}} p^{4}
$$

From the Theorem and (7.1) we deduce that

$$
\beta-2 \gamma= \begin{cases}0, & \text { if } 5 \nmid a \text { or } 5^{2} \| a, 5^{3} \mid b \\ 4, & \text { if } 5 \| a, 5 \nmid b \text { or } 5^{2}\left\|a, 5^{2}\right\| b \\ 8, & \text { if } 5^{4}\left\|a, 5^{4}\right\| b\end{cases}
$$

so that

$$
\beta-2 \gamma=4 \theta
$$

Finally, by Proposition 5.2, we have

$$
d(K)=d(k)^{2} f^{4}
$$

where

$$
f=5^{\theta} \prod_{\substack{p \neq 2,5 \\ p \mid F}} p=5^{\theta} \prod_{\substack{p \neq 2,5 \\ 1 \leq v_{p}(b) \leq v_{p}(a)}} p
$$

8 Some Numerical Examples

We close with a few examples illustrating the Theorem.

	$X^{5}+a X+b$
$a=-2^{2} \times 5^{2} \times 19$	$d(K)$
$a=2^{4} \times 5^{6}$	
$b=-5^{2} \times 11$	
$a=2^{2} \times 5^{2} \times 19$	$2^{4} \times 5^{2} \times 19^{4}$
$b=2^{5} \times 5^{3} \times 19$	
$a=2^{2} \times 5^{4}$	$2^{4} \times 5^{8}$
$b=2^{6} \times 3 \times 5^{4}$	

$X^{5}+a X+b$	$d(K)$
$\begin{aligned} a= & 2^{2} \times 5 \times 11^{3} \times 59 \times 3150376609 \\ & \times 255718143721^{2} \\ b= & 2^{5} \times 11 \times 37 \times 97^{2} \times 890957 \\ & \times 255718143721^{3} \end{aligned}$	$\begin{aligned} & 2^{4} \times 5^{6} \times 11^{4} \\ & \times 255718143721^{2} \end{aligned}$
$\begin{aligned} a= & 5 \times 11^{2} \times 17^{2} \times 149^{2} \times 1699 \\ & \times 1973^{2} \times 5821 \\ b= & -2^{2} \times 11 \times 17^{3} \times 73 \times 149^{3} \\ & \times 1973^{3} \times 7069 \end{aligned}$	$\begin{gathered} 2^{6} \times 5^{6} \times 11^{4} \times 17^{2} \\ \times 149^{2} \times 1973^{2} \end{gathered}$
$\begin{aligned} a & =2^{2} \times 5 \times 11^{2} \times 61 \times 109^{2} \\ b & =2^{8} \times 11^{2} \times 17 \times 109^{3} \end{aligned}$	$2^{4} \times 5^{6} \times 11^{4} \times 109^{2}$
$\begin{aligned} & a=-2^{2} \times 5 \times 11^{3} \times 29 \times 41 \times 2521^{2} \\ & b=2^{5} \times 11^{3} \times 37 \times 53 \times 2521^{3} \end{aligned}$	$2^{4} \times 5^{6} \times 11^{4} \times 2521^{2}$
$\begin{array}{cc} a= & -2^{2} \times 5 \times 11^{3} \times 29 \times 331 \\ & \times 9479 \times 116116717^{2} \\ b= & 2^{6} \times 11^{2} \times 991 \times 23767 \\ & \times 116116717^{3} \end{array}$	$2^{4} \times 5^{6} \times 11^{4} \times 116116717^{2}$
$\begin{aligned} & a=\quad-5^{2} \times 11^{4} \times 131 \times 8081 \\ & \times 257111845279 \\ & \times 31058167967208281^{2} \\ & b=2^{2} \times 5^{3} \times 11 \times 37 \times 59 \times 197 \times 293 \\ & \times 1289 \times 195869 \\ & \times 31058167967208281^{3} \end{aligned}$	$\begin{aligned} & 2^{6} \times 5^{2} \times 11^{4} \\ & \times 31058167967208281^{2} \end{aligned}$
$\begin{array}{rc} a= & 2^{2} \times 11^{4} \times 865661 \times 28602901 \\ & \times 27267702368057^{2} \\ b= & -2^{7} \times 11^{2} \times 137 \times 379 \times 1301 \\ & \times 4001 \times 27267702368057^{3} \end{array}$	$\begin{aligned} & 2^{4} \times 5^{6} \times 11^{4} \\ & \times 27267702368057^{2} \end{aligned}$
$\begin{array}{cc} a= & 5 \times 11^{4} \times 13^{2} \times 66169109^{2} \\ & \times 1657799551 \\ b= & -2^{2} \times 11^{3} \times 13^{3} \times 29 \times 109 \\ & \times 92693 \times 66169109^{3} \end{array}$	$\begin{aligned} 2^{6} & \times 5^{6} \times 11^{4} \times 13^{2} \\ & \times 66169109^{2} \end{aligned}$
$\begin{aligned} a= & -5 \times 11^{4} \times 53^{2} \times 157^{2} \times 401 \\ b= & 2^{2} \times 11^{4} \times 13 \times 19 \times 53^{3} \\ & \times 149 \times 157^{3} \end{aligned}$	$2^{6} \times 5^{6} \times 11^{4} \times 53^{2} \times 157^{2}$

References

[1] D. Liu, Dihedral polynomial congruences and binary quadratic forms: a class field theory approach. Ph.D. thesis, Carleton University, Ottawa, Ontario, Canada, 1992.
[2] P. Llorente, E. Nart and N. Vila, Discriminants of number fields defined by trinomials. Acta Arith. 43(1984), 367-373.
[3] D. A. Marcus, Number Fields. Springer-Verlag, New York-Heidelberg-Berlin, 1977.
[4] G. Roland, N. Yui and D. Zagier, A parametric family of quintic polynomials with Galois group D_{5}. J. Number Theory 15(1982), 137-142.

Department of Mathematics and Statistics Okanagan University College
Kelowna, BC
V1V 1V7
email: bkspearm@okuc02.okanagan.bc.ca

Centre for Research in Algebra and Number Theory
School of Mathematics and Statistics
Carleton University
Ottawa, Ontario
K1S 5B6
email: williams@math.carleton.ca

