The Discriminant of a Dihedral Quintic Field Defined by a Trinomial $X^5 + aX + b$

Blair K. Spearman and Kenneth S. Williams

Abstract. Let $X^5 + aX + b \in Z[X]$ have Galois group D_5 . Let θ be a root of $X^5 + aX + b$. An explicit formula is given for the discriminant of $Q(\theta)$.

1 Introduction

Let $f(X) = X^5 + aX + b \in Z[X]$ have Galois group D_5 (the dihedral group of order 10). Let θ be a root of f(X). Set $K = Q(\theta)$. If p is a prime such that $p^4|a$ and $p^5|b$ then θ/p is a root of $X^5 + (a/p^4)X + (b/p^5) \in Z[X]$ and $K = Q(\theta/p)$. Hence we may assume that

(1.1) there does not exist a prime p such that $p^4|a$ and $p^5|b$.

Our objective in this paper is to give an explicit formula for the discriminant d(K) of K in terms of a and b. We prove

Theorem With the notation of the first paragraph

$$d(K) = 2^{\alpha} 5^{\beta} \prod_{\substack{p \neq 2,5 \\ \nu_p(b) > \nu_p(a) = 2}} p^2 \prod_{\substack{p \neq 2,5 \\ 1 \leq \nu_p(b) \leq \nu_p(a)}} p^4,$$

where

$$\alpha = \begin{cases} 4, & \text{if } 2^2 \parallel a, \\ 6, & \text{if } 2 \nmid a, \end{cases}$$

and

$$\beta = \begin{cases} 0, & \text{if } 5 \nmid a, \\ 2, & \text{if } 5^2 \parallel a, 5^3 \mid b, \\ 6, & \text{if } 5 \parallel a, 5 \nmid b \text{ or } 5^2 \parallel a, 5^2 \parallel b, \\ 8, & \text{if } 5^4 \parallel a, 5^4 \parallel b. \end{cases}$$

Here and throughout p denotes a prime and if c is a nonzero integer with $p^m|c$, $p^{m+1} \nmid c$ we write $p^m \parallel c$ or $v_p(c) = m$.

Received by the editors January 20, 2000.

The first author's research was supported by a grant from the Natural Sciences and Engineering Research Council of Canada. The second author's research was supported by Natural Sciences and Engineering Research Council of Canada grant A-7233.

AMS subject classification: 11R21, 11R29.

Keywords: dihedral quintic field, trinomial, discriminant.

[©] Canadian Mathematical Society 2002.

The starting point of the proof of our theorem is a representation of a and b given by Roland, Yui, and Zagier [4] (see Proposition 2.1). Then in Section 3 we determine the 2-part of d(K), in Section 4 the 5-part of d(K), and in Section 5 the p-part of d(K) for a prime $p \neq 2, 5$. The proof of the Theorem is completed in Section 6. In Section 7 two corollaries to the Theorem are given. In Section 8 a number of numerical examples illustrating the Theorem are given.

2 Representation of *a* and *b*

Our first proposition is a formula of Roland, Yui, and Zagier [4, formula (2)]. We remark that their proof needs a slight modification as their change of variable $\lambda = 5(u+1)/(u-1)$ does not yield a rational u when $\lambda = 5$.

Proposition 2.1 There exist coprime integers m and n, and integers i, j = 0 or 1, such that

$$a = 2^{2-4i}5^{1-4j}d_2(m^2 - mn - n^2)E^2F,$$

$$b = 2^{4-5i}5^{-5j}d_1(2m - n)(m + 2n)E^3F,$$

where d_1^2 is the largest square dividing $m^2 + n^2$, d_2^5 is the largest fifth power dividing $m^2 + mn - n^2$, and

$$E = (m^2 + n^2)/d_1^2$$
, $F = (m^2 + mn - n^2)/d_2^5$.

Roland, Yui, and Zagier [4] do not give the values of i and j explicitly in terms of m and n. As we shall need them we determine i and j explicitly in the next two propositions. We recall that (m, n) = 1 so that $m \equiv n \equiv 0 \pmod{2}$ does not occur.

Proposition 2.2

$$i = 1 \iff m \equiv n \equiv 1 \pmod{2} \iff 2 \nmid a, 2^2 \parallel b$$

 $i = 0 \iff m \equiv n + 1 \pmod{2} \iff 2^2 \parallel a, 2^5 \mid b.$

Proof As (m, n) = 1 we have

$$v_2(m^2 + n^2) = \begin{cases} 1, & \text{if } m \equiv n \equiv 1 \pmod{2}, \\ 0, & \text{if } m \equiv n + 1 \pmod{2}, \end{cases}$$

$$v_2(d_1) = 0,$$

$$v_2(E) = \begin{cases} 1, & \text{if } m \equiv n \equiv 1 \pmod{2}, \\ 0, & \text{if } m \equiv n + 1 \pmod{2}, \end{cases}$$

$$v_2(m^2 - mn - n^2) = 0,$$

$$v_2(m^2 + mn - n^2) = v_2(d_2) = v_2(F) = 0,$$

$$v_2((2m - n)(m + 2n)) = \begin{cases} 0, & \text{if } m \equiv n \equiv 1 \pmod{2}, \\ \geq 1, & \text{if } m \equiv n + 1 \pmod{2}, \end{cases}$$

so that by Proposition 2.1, we see that

$$v_2(a) = \begin{cases} 4 - 4i, & \text{if } m \equiv n \equiv 1 \text{ (mod 2),} \\ 2 - 4i, & \text{if } m \equiv n + 1 \text{ (mod 2),} \end{cases}$$

and

$$v_2(b) = \begin{cases} 7 - 5i, & \text{if } m \equiv n \equiv 1 \pmod{2}, \\ \ge 5 - 5i, & \text{if } m \equiv n + 1 \pmod{2}. \end{cases}$$

If $m \equiv n \equiv 1 \pmod{2}$ then i = 1 otherwise i = 0 and $v_2(a) = 4$, $v_2(b) = 7$, which contradicts (1.1). In this case $v_2(a) = 0$ and $v_2(b) = 2$. If $m \equiv n + 1 \pmod{2}$ then $2 - 4i = v_2(a) \ge 0$ so that i = 0. In this case $v_2(a) = 2$ and $v_2(b) \ge 5$.

Proposition 2.2 shows that either $2 \nmid a$ or $2^2 \parallel a$.

Proposition 2.3

$$j = 0$$
, if $m \not\equiv 2n$, $3n \pmod{5}$
or
 $m \equiv 3n \pmod{5}$, $E \not\equiv 0 \pmod{5}$
or
 $m \equiv 2n \pmod{5}$, $m \not\equiv 57n \pmod{125}$
or
 $m \equiv 2n \pmod{5}$, $m \equiv 57n \pmod{125}$, $E \not\equiv 0 \pmod{5}$,
 $j = 1$, if $m \equiv 3n \pmod{5}$, $E \equiv 0 \pmod{5}$
or
 $m \equiv 2n \pmod{5}$, $m \equiv 57n \pmod{125}$, $E \equiv 0 \pmod{5}$.

Proof As (m, n) = 1 we have

$$v_5(m^2 + mn - n^2) = v_5((2m + n)^2 - 5n^2) = \begin{cases} 0, & \text{if } m \not\equiv 2n \pmod{5}, \\ 1, & \text{if } m \equiv 2n \pmod{5}, \end{cases}$$

so that

$$v_5(d_2)=0$$

and

$$v_5(F) = \begin{cases} 0, & \text{if } m \not\equiv 2n \pmod{5}, \\ 1, & \text{if } m \equiv 2n \pmod{5}. \end{cases}$$

Similarly

$$v_5(m^2 - mn - n^2) = v_5((2m - n)^2 - 5n^2) = \begin{cases} 0, & \text{if } m \not\equiv 3n \pmod{5}, \\ 1, & \text{if } m \equiv 3n \pmod{5}. \end{cases}$$

Next, as *E* is squarefree, we have

$$\nu_5(E) = \begin{cases} 0, & \text{if } E \not\equiv 0 \text{ (mod 5),} \\ 1, & \text{if } E \equiv 0 \text{ (mod 5),} \end{cases}$$

and a simple calculation shows that

$$v_{5}(d_{1}) = \begin{cases} 0, & \text{if } m \not\equiv 2n, 3n \pmod{5} \\ & \text{or} \\ & m \equiv 2n \pmod{5}, m \not\equiv 57n \pmod{125}, E \equiv 0 \pmod{5}, \\ \geq 0, & \text{if } m \equiv 3n \pmod{5}, E \equiv 0 \pmod{5}, \\ 1, & \text{if } m \equiv 2n \pmod{5}, m \not\equiv 57n \pmod{125}, E \not\equiv 0 \pmod{5}, \\ \geq 1, & \text{if } m \equiv 2n \pmod{5}, m \equiv 57n \pmod{125}, E \equiv 0 \pmod{5}, \\ & \text{or} \\ & m \equiv 3n \pmod{5}, E \not\equiv 0 \pmod{5}, \\ \geq 2, & \text{if } m \equiv 2n \pmod{5}, m \equiv 57n \pmod{125}, E \not\equiv 0 \pmod{5}. \end{cases}$$

Also

$$v_5((2m-n)(m+2n)) = \begin{cases} 0, & \text{if } m \not\equiv 3n \pmod{5}, \\ \geq 2, & \text{if } m \equiv 3n \pmod{5}. \end{cases}$$

We consider the following seven mutually exclusive and exhaustive cases.

(i) $m \not\equiv 2n, 3n \pmod{5}$. From Proposition 2.1 and the above remarks, we have

$$v_5(a) = 1 - 4i$$
, $v_5(b) = -5i$.

As $v_5(b) \ge 0$ and j = 0 or 1 we must have j = 0.

(ii) $m \equiv 3n \pmod{5}$, $E \equiv 0 \pmod{5}$. Here

$$v_5(a) = 4 - 4j$$
, $v_5(b) \ge 5 - 5j$.

If j = 0 then $v_5(a) = 4$, $v_5(b) \ge 5$, contradicting (1.1). Hence j = 1.

(iii) $m \equiv 3n \pmod{5}$, $E \not\equiv 0 \pmod{5}$. Here

$$v_5(a) = 2 - 4j$$
, $v_5(b) \ge 3 - 5j$,

so that i = 0.

(iv) $m \equiv 2n \pmod{5}$, $m \equiv 57n \pmod{125}$, $E \equiv 0 \pmod{5}$. Here

$$v_5(a) = 4 - 4j$$
, $v_5(b) \ge 5 - 5j$.

If j = 0 then $v_5(a) = 4$, $v_5(b) \ge 5$, contradicting (1.1). Hence j = 1.

(v) $m \equiv 2n \pmod{5}$, $m \equiv 57n \pmod{125}$, $E \not\equiv 0 \pmod{5}$. Here

$$v_5(a) = 2 - 4j, \quad v_5(b) \ge 3 - 5j,$$

so that j = 0.

(vi) $m \equiv 2n \pmod{5}$, $m \not\equiv 57n \pmod{125}$, $E \equiv 0 \pmod{5}$. Here

$$v_5(a) = 4 - 4j$$
, $v_5(b) = 4 - 5j$,

so that j = 0.

(vii) $m \equiv 2n \pmod{5}$, $m \not\equiv 57n \pmod{125}$, $E \not\equiv 0 \pmod{5}$. Here

$$v_5(a) = 2 - 4j$$
, $v_5(b) = 2 - 5j$,

so that
$$j = 0$$
.

In the course of the proof of Proposition 2.3 we showed the following result.

Proposition 2.4

$$5 \nmid a \iff m \equiv 3n \pmod{5}, E \equiv 0 \pmod{5}$$

$$or$$

$$m \equiv 2n \pmod{5}, m \equiv 57n \pmod{125}, E \equiv 0 \pmod{5},$$

$$5 \parallel a, 5 \nmid b \iff m \not\equiv 2n, 3n \pmod{5}$$
,

$$5^2 \parallel a, 5^2 \parallel b \iff m \equiv 2n \pmod{5}, m \not\equiv 57n \pmod{125}, E \not\equiv 0 \pmod{5},$$

$$5^2 \parallel a, 5^3 \mid b \iff m \equiv 3n \pmod{5}, E \not\equiv 0 \pmod{5}$$

 or
 $m \equiv 2n \pmod{5}, m \equiv 57n \pmod{125}, E \not\equiv 0 \pmod{5},$

$$5^4 \parallel a, 5^4 \parallel b \iff m \equiv 2n \pmod{5}, m \not\equiv 57n \pmod{125}, E \equiv 0 \pmod{5}.$$

We denote by M the splitting field of f(X) and by k the unique quadratic subfield of M. From [4, p. 139] we know that

$$k = Q(\sqrt{-5(m^2 + n^2)}) = Q(\sqrt{-5E}).$$

3 The 2-part of d(K)

By Proposition 2.2 we know that either $2 \nmid a$ or $2^2 \parallel a$. We prove

Proposition 3.1

$$2^6 \parallel d(K) \iff 2 \nmid a$$
,

$$2^4 \parallel d(K) \iff 2^2 \parallel a$$
.

Proof By a result of Roland, Yui, and Zagier [4, p. 139], we have

$$\nu_2(d(K)) = 2\nu_2(d(k)).$$

If $2 \nmid a$ then, by Proposition 2.2, m and n are both odd so that

$$v_2(d(k)) = v_2\left(d\left(Q\left(\sqrt{-5(m^2+n^2)}\right)\right)\right) = 3$$

and

$$\nu_2(d(K)) = 6.$$

If $2^2 \parallel a$ then, by Proposition 2.2, m and n are of opposite parity so that

$$v_2(d(k)) = v_2\left(d\left(Q\left(\sqrt{-5(m^2+n^2)}\right)\right)\right) = 2$$

and

$$v_2(d(K)) = 4.$$

4 The 5-Part of d(K)

From Proposition 2.4 we know that only the following possibilities can occur:

$$5 \nmid a,$$

$$5 \parallel a, \quad 5 \nmid b,$$

$$5^{2} \parallel a, \quad 5^{2} \parallel b,$$

$$5^{2} \parallel a, \quad 5^{3} \mid b,$$

$$5^{4} \parallel a, \quad 5^{4} \parallel b.$$

We determine the power of 5 in d(K) in each of these five cases in the following four propositions.

Proposition 4.1 $5|d(K) \iff 5|a$.

Proof First suppose that 5|d(K). We have $5|d(K) \Longrightarrow 5|\operatorname{disc}(f(X)) \Longrightarrow 5|4^4a^5 + 5^5b^4 \Longrightarrow 5|a$.

Now suppose that 5|a. We consider two cases according as 5|b or $5 \nmid b$.

Case (*i*): 5|b. Suppose that $5 \nmid d(K)$. Then $\langle 5 \rangle = P_1 \cdots P_t$ for distinct prime ideals P_1, \ldots, P_t of O_K with $1 \leq t \leq 5$. Since $a \in P_i$ and $b \in P_i$ for $1 \leq i \leq t$, we have $\theta^5 = -a\theta - b \in P_i$ and therefore $\theta \in P_i$, $1 \leq i \leq t$. Hence

$$\langle \theta \rangle = P_1 \cdots P_t Q$$

for some ideal *Q* in O_K . Hence $5|\theta$ and so $\theta = 5\mu$ for some $\mu \in O_K$. Then

$$\mu^5 + (a/5^4)\mu + (b/5^5) = f(\theta)/5^5 = 0.$$

Since $\mu \in O_K$, $a/5^4 \in Z$ and $b/5^5 \in Z$. This contradicts (1). Hence 5|d(K).

Case (ii): $5 \nmid b$. Suppose $5 \nmid d(K)$. We have

$$g(y) = f(y - b) = (y - b)^5 + a(y - b) + b$$

= $y^5 - 5by^4 + 10b^2y^3 - 10b^3y^2 + (5b^4 + a)y - (b^5 + ab - b).$

As $5 \nmid d(K)$, we have $\langle 5 \rangle = P_1 \cdots P_t$, where P_1, \dots, P_t are $t \ (1 \leq t \leq 5)$ distinct prime ideals in O_K . Let $\gamma = \theta + b$ so that $\gamma \in O_K$ is a root of g(y). For $1 \leq i \leq t$ we have $5 \in P_i$ so that $5b^4 + a \in P_i$ and $b^5 + ab - b \in P_i$. Thus

$$\gamma^5 = 5b\gamma^4 - 10b^2\gamma^3 + 10b^3\gamma^2 - (5b^4 + a)\gamma + (b^5 + ab - b) \in P_i$$

and so $\gamma \in P_i$ $(1 \le i \le t)$. Hence $P_1 \cdots P_t | \langle \gamma \rangle$ and so $5 | \gamma$, say $\gamma = 5 \mu$ with $\mu \in O_K$ and

$$\mu^{5} - b\mu^{4} + \frac{2b^{2}}{5}\mu^{3} - \frac{2b^{3}}{5^{2}}\mu^{2} + \frac{(5b^{4} + a)}{5^{4}}\mu - \frac{(b^{5} + ab - b)}{5^{5}} = 0.$$

Since $\mu \in O_K$ we must have $2b^2/5 \in Z$. This contradicts that $5 \nmid b$. Hence $5 \mid d(K)$.

Proposition 4.2 $5^2 \parallel d(K) \iff 5^2 \parallel a, 5^3 \mid b.$

Proof Suppose that $5^2 \parallel d(K)$. Then, by [1, Theorem 4.2.6 (ii)], 5 ramifies in k but not in M/k. Hence, by [1, Lemma 4.2.2], we have

$$\langle 5 \rangle = P_1 P_2^2 P_3^2$$

for distinct prime ideals of O_K . By Proposition 4.1 we have 5|a. We consider two cases according as $5 \nmid b$ or 5|b.

Case (i): $5 \nmid b$. Since $4^4a^5 + 5^5b^4$ is a perfect square we have $5 \parallel a$. We consider g(y) = f(y - b) whose root $\gamma = \theta + b$ is such that $Q(\gamma) = Q(\theta) = K$ and

$$(4.2) \qquad \gamma^5 - 5b\gamma^4 + 10b^2\gamma^3 - 10b^3\gamma^2 + (5b^4 + a)\gamma - (b^5 + ab - b) = 0.$$

Since 5 divides -5b, $10b^2$, $-10b^3$, $5b^4 + a$, and $b^5 + ab - b$, we have $5|\gamma^5$ so that $P_1P_2P_3|\langle\gamma\rangle$. If $5|\gamma$ then $\gamma = 5\mu$ where $\mu \in O_K$ and

$$\mu^5 - b\mu^4 + \frac{2b^2}{5}\mu^3 - \frac{2b^3}{5^2}\mu^2 + \frac{(5b^4 + a)}{5^4}\mu - \frac{(b^5 + ab - b)}{5^5} = 0.$$

Thus $2b^2/5 \in \mathbb{Z}$, contradicting $5 \nmid b$. Hence $5 \nmid \gamma$ and so not both of P_2^2 and P_3^2 can divide γ . Without loss of generality we may suppose that $P_2^2 \nmid \langle \gamma \rangle$. Now $N_{K/O}(P_1P_2P_3)|N_{K/O}(\langle \gamma \rangle)$ so that $5^3|b^5+ab-b$ and thus $v_{P_2}(b^5+ab-b) \geq 6$. Also

$$v_{P_2}(\gamma^5) = 5$$
, $v_{P_2}(5b\gamma^4) = 6$, $v_{P_2}(10b^2\gamma^3) = 5$, $v_{P_2}(10b^3\gamma^2) = 4$,

and

$$v_{P_2}((5b^4+a)\gamma) = 2t+1$$

for some $t \in Z$ with $t \ge 1$. This clearly contradicts (4.2).

Case (ii): $5 \mid b$. From $\theta^5 + a\theta + b = 0$ we see that $5 \nmid \theta^5$ so that $P_1P_2P_3 \mid \langle \theta \rangle$. Now $N_{K/Q}(P_1P_2P_3) \mid N_{K/Q}(\langle \theta \rangle)$ so that $5^3 \mid b$. Since $4^4a^5 + 5^5b^4$ is a perfect square, we must have in view of (4.1) either $5^2 \parallel a$ or $5^4 \parallel a$, $5^4 \parallel b$. The latter case implies that $5^4 \mid d(K)$, see [3, question 28(c), p. 90], contradicting $5^2 \parallel d(K)$. Thus we must have $5^2 \parallel a$, $5^3 \mid b$.

Now suppose that $5^2 \parallel a$, $5^3 \mid b$. We show that $5^2 \parallel d(K)$. By Proposition 2.4 we have $E \not\equiv 0 \pmod{5}$. Hence 5 ramifies in $k = Q(\sqrt{-5E})$, so that $\langle 5 \rangle = P^2$ for some prime ideal P in O_k . We show next that P is unramified in M/k. Set $\phi = E\theta/\sqrt{-5E}$. Clearly $\phi \in M$ and satisfies

$$\phi^5 + \frac{aE^2}{25}\phi - \frac{bE^2}{125}\sqrt{-5E} = 0.$$

Since

$$X^5 + \frac{aE^2}{25}X - \frac{bE^2}{125}\sqrt{-5E} \in O_k[X],$$

any prime ideal of O_k ramifying in O_M must divide the discriminant

$$4^{4} \left(\frac{aE^{2}}{25}\right)^{5} + 5^{5} \left(\frac{-bE^{2}\sqrt{-5E}}{125}\right)^{4}$$

of this polynomial. As $5^2 \parallel a$ and $5 \nmid E$ we see that P does not divide this discriminant and so is unramified in O_M . Then, by [1, Theorem 4.2.6 (iii)], we must have $v_5(d(K)) = 2$.

Proposition 4.3 $5^8 \parallel d(K) \iff 5^4 \parallel a, 5^4 \parallel b.$

Proof We assume first that $5^8 \parallel d(K)$. By [1, Theorem 4.2.6 (iii)] either 5 is ramified in M/k but not in k or is totally ramified in M. In either case we have $\langle 5 \rangle = P^5$ for some prime ideal P of O_K with $N_{K/Q}(P) = 5$. By Proposition 4.1 we have 5|a. We consider two cases according as $5 \nmid b$ or 5|b.

Case (i): $5 \nmid b$. As $4^4a^5 + 5^5b^4$ is a perfect square we have $5 \parallel a$. We set g(y) = f(y-b) and $\phi = \theta + b$ so that $g(\phi) = 0$ and $Q(\phi) = Q(\theta) = K$. Then

$$(4.3) \phi^5 - 5b\phi^4 + 10b^2\phi^3 - 10b^3\phi^2 + (5b^4 + a)\phi - (b^5 + ab - b) = 0.$$

Clearly 5b, $10b^2$, $10b^3$, $5b^4 + a$ and $b^5 + ab - b$ are all divisible by 5, so that $5|\phi^5$ and $P|\langle\phi\rangle$. Suppose that $P^5|\langle\phi\rangle$. Then $5|\phi$ and we can write $\phi = 5\mu$, where $\mu \in O_K$, and

$$\mu^5 - b\mu^4 + \frac{2b^2}{5}\mu^3 - \frac{2b^3}{5^2}\mu^2 + \frac{(5b^4 + a)}{5^4}\mu - \frac{(b^5 + ab - b)}{5^5} = 0.$$

Thus $2b^2/5 \in \mathbb{Z}$, contradicting $5 \nmid b$. Hence $P^t \parallel \langle \phi \rangle$, where $1 \leq t \leq 4$. Thus $5^t \parallel N_{K/Q}(\langle \phi \rangle) = \pm (b^5 + ab - b)$, so that

$$v_{P}(b^{5} + ab - b) = 5t.$$

Further

$$v_P((5b^4 + a)\phi) = 5l + t, \quad l \in Z^+,$$

$$v_P(10b^3\phi^2) = 5 + 2t,$$

$$v_P(10b^2\phi^3) = 5 + 3t,$$

$$v_P(5b\phi^4) = 5 + 4t,$$

$$v_P(\phi^5) = 5t.$$

The equation (4.3) implies that there are two values among 5t, 5l+t, 5+2t equal and minimal. This is not the case if t=2,3 or 4 since

$${5t, 5l + t, 5 + 2t} = {10, 7 \text{ or } \ge 12, 9, 10}, \text{ if } t = 2,$$

= ${15, 8 \text{ or } \ge 13, 11, 15}, \text{ if } t = 3,$
= ${20, 9 \text{ or } \ge 14, 13, 20}, \text{ if } t = 4.$

Hence t = 1 and $5 \parallel b^5 + ab - b$. As $5^8 \mid d(K)$ we have $5^8 \mid 4^4a^5 + 5^5b^4$ so that

$$4^4 \left(\frac{a}{5}\right)^5 + b^4 \equiv 0 \; (\text{mod } 5^3).$$

Taking this congruence modulo 5, we see that $a/5 \equiv -1 \pmod{5}$, so that there is an integer z such that a = 25z - 5. Hence

$$b^{4} + a - 1 \equiv -4^{4} \left(\frac{a}{5}\right)^{5} + a - 1 \pmod{5^{2}}$$
$$\equiv -4^{4} (5z - 1)^{5} + (25z - 6) \pmod{5^{2}}$$
$$\equiv 6 - 6 \equiv 0 \pmod{5^{2}}$$

and thus $5^2 \mid b^5 + ab - b$, contradicting $5 \mid b^5 + ab - b$. Thus case (i) cannot occur.

Case (ii): $5 \mid b$. As $5 \mid a$ and $5 \mid b$, by (4.1), we have $5^2 \parallel a$, $5^2 \mid b$ or $5^4 \parallel a$, $5^4 \parallel b$. If $5^2 \parallel a$, $5^3 \mid b$, by Proposition 4.2, we have $5^2 \parallel d(K)$, contradicting $5^8 \parallel d(K)$. If

 $5^2 \parallel a$, $5^2 \parallel b$, then $P^{10} \parallel \langle a \rangle$, $P^{10} \parallel \langle b \rangle$, and so from $\theta^5 + a\theta + b = 0$, we see that $P^2 \parallel \langle \theta \rangle$. Thus $1, \theta, \theta^2, \theta^3/5$ and $\theta^4/5 \in O_K$, and their discriminant satisfies

$$v_5(\operatorname{disc}(1,\theta,\theta^2,\theta^3/5,\theta^4/5)) = v_5(\operatorname{disc}(1,\theta,\theta^2,\theta^3,\theta^4)) - 4$$
$$= v_5(4^4a^5 + 5^5b^4) - 4 = 10 - 4 = 6,$$

contradicting that $v_5(d(K)) = 8$. Hence $5^4 \parallel a, 5^4 \parallel b$ as asserted.

Now we suppose that $5^4 \parallel a$, $5^4 \parallel b$. By Proposition 2.4 we have $5 \parallel E$. Hence 5 does not ramify in $k = Q(\sqrt{-5E})$. As $5 \mid a$, by Proposition 4.1, $5 \mid d(K)$, and so 5 ramifies in K and thus in M. Hence 5 ramifies in M/k. Then, by [1, Theorem 4.2.6 (iii)], we have $v_5(d(K)) = 8$ as asserted.

Proposition 4.4 $5^6 \parallel d(K) \iff 5 \parallel a, 5 \nmid b \text{ or } 5^2 \parallel a, 5^2 \parallel b.$

Proof By [1, Theorem 4.2.6 (iii)] we have

$$v_5(d(K)) = 0, 2, 6 \text{ or } 8.$$

If $5 \parallel a, 5 \nmid b$ or $5^2 \parallel a, 5^2 \parallel b$, by Propositions 4.1–4.3, we have $v_5(d(K)) \neq 0, 2$ or 8. Hence $v_5(d(K)) = 6$. On the other hand if $v_5(d(K)) = 6$ then by Propositions 4.1–4.3, a and b do *not* satisfy any of

$$5 \nmid a$$
; $5^2 \parallel a$, $5^3 \mid b$; $5^4 \parallel a$, $5^4 \parallel b$.

Hence by (4.1) we have $5 \parallel a$, $5 \nmid b$ or $5^2 \parallel a$, $5^2 \parallel b$.

5 The p-Part of d(K), $p \neq 2, 5$

Let p be a prime $\neq 2, 5$. Clearly p falls into one and only one of the following cases:

- (i) $p \nmid b$,
- (ii) $p \mid b, p \nmid a$,
- (iii) $1 \leq v_p(b) \leq v_p(a)$,
- (iv) $1 \le v_p(a) < v_p(b)$.

By (1.1) we have

$$v_p(b) < 5$$
 in case (iii),
 $v_p(a) < 4$ in case (iv).

In the course of the proof of the next proposition we see that we must have $v_p(a) = 2$ in case (iv).

Proposition 5.1 Let p be a prime $\neq 2, 5$. Then

$$p^{4} \parallel d(K) \iff 1 \le \nu_{p}(b) \le \nu_{p}(a),$$

$$p^{2} \parallel d(K) \iff 2 = \nu_{p}(a) < \nu_{p}(b),$$

$$p \nmid d(K) \iff \nu_{p}(a) = 0 \text{ or } \nu_{p}(b) = 0.$$

Proof By Llorente, Nart and Vila [2, Theorem 1] we have

$$v_p(d(K)) = \begin{cases} 4 - (4, v_p(a)), & \text{if } 5v_p(a) < 4v_p(b), \\ 5 - (5, v_p(b)), & \text{if } 5v_p(a) \ge 4v_p(b). \end{cases}$$

In case (i) we have $v_p(d(K)) = 5 - (5,0) = 5 - 5 = 0$. In case (ii) we have $v_p(d(K)) = 4 - (4,0) = 4 - 4 = 0$. In case (iii) we have $v_p(d(K)) = 5 - (5,v_p(b)) = 5 - 1 = 4$, as $v_p(b) = 1,2,3$ or 4. In case (iv) we show that $5v_p(a) < 4v_p(b)$. Suppose not. Then $5v_p(a) \ge 4v_p(b)$ and so

$$v_p(b) - 1 \ge v_p(a) \ge \frac{4}{5} v_p(b),$$

so that $v_p(b) \ge 5$. Thus $v_p(a) \ge 4v_p(b)/5 \ge 4$, contradicting (1.1). Hence $5v_p(a) < 4v_p(b)$ and so

$$v_p(4^4a^5 + 5^5b^4) = 5v_p(a) \equiv 0 \pmod{2},$$

as $4^4a^5 + 5^5b^4$ is a perfect square. Thus $\nu_p(a) \equiv 0 \pmod{2}$. As $1 \le \nu_p(a) < 4$ we must have $\nu_p(a) = 2$. Then $\nu_p(d(K)) = 4 - (4, 2) = 4 - 2 = 2$.

We close this section by proving the following result.

Proposition 5.2 Let $p \neq 2, 5$ be a prime. Then

$$p \mid E \iff 2 = v_p(a) < v_p(b), \quad (case\ (iv))$$

 $p \mid F \iff 1 \le v_p(b) \le v_p(a), \quad (case\ (iii))$
 $p \nmid E, p \nmid F \iff v_p(a) = 0 \text{ or } v_p(b) = 0 \quad (cases\ (i),\ (ii)).$

Proof As m and n are coprime, p cannot divide both E and F.

If p|E then $p \parallel E$, $p \nmid m^2 \pm mn - n^2$, $p \nmid 2m - n$, $p \nmid m + 2n$, $p \nmid F$, $p \nmid d_2$ so that, by Proposition 2.1, we have

$$v_p(a) = 2$$
, $v_p(b) = v_p(d_1) + 3$,

and thus

$$2 = \nu_p(a) < \nu_p(b).$$

If p|F then $p \nmid m^2 - mn - n^2$, $p \nmid m^2 + n^2$, $p \nmid d_1$, $p \nmid E$, $p \nmid 2m - n$, $p \nmid m + 2n$ so that, by Proposition 2.1, we have

$$v_p(a) = v_p(d_2) + v_p(F), \quad v_p(b) = v_p(F),$$

and thus

$$v_p(a) \ge v_p(b) \ge 1$$
.

If $p \nmid E$, $p \nmid F$ then, by Proposition 2.1, we have

$$v_p(a) = v_p(d_2) + v_p(m^2 - mn - n^2),$$

$$v_p(b) = v_p(d_1) + v_p(2m - n) + v_p(m + 2n).$$

As m and n are coprime at most one of $v_p(d_1)$, $v_p(d_2)$, $v_p(m^2 - mn - n^2)$, $v_p(2m - n)$, $v_p(m + 2n)$ can be nonzero so that either $v_p(a) = 0$ or $v_p(b) = 0$.

From Propositions 5.1 and 5.2 we have

Proposition 5.3 If p is a prime $\neq 2, 5$ then

$$p^{4} \parallel d(K) \iff p \mid F,$$

$$p^{2} \parallel d(K) \iff p \mid E,$$

$$p \nmid d(K) \iff p \nmid E \text{ and } p \nmid F.$$

6 Proof of Theorem

The Theorem now follows from Propositions 3.1, 4.1, 4.2, 4.3, 4.4 and 5.1 as d(K) > 0.

7 Two Corollaries

From the Theorem, Proposition 2.2, Proposition 2.4 and Proposition 5.3, we obtain the formulation of d(K) in terms of m and n.

Corollary 1

$$d(K) = 2^{\alpha} 5^{\beta} \prod_{\substack{p \neq 2,5 \\ p \mid E}} p^{2} \prod_{\substack{p \neq 2,5 \\ p \mid F}} p^{4},$$

where

$$\alpha = \begin{cases} 4, & \text{if } m \equiv n+1 \pmod{2}, \\ 6, & \text{if } m \equiv n \equiv 1 \pmod{2}, \end{cases}$$

and

$$\beta = \begin{cases} 0, & \text{if } m \equiv 3n \pmod{5}, E \equiv 0 \pmod{5} \\ & \text{or} \\ & m \equiv 2n \pmod{5}, m \equiv 57n \pmod{125}, E \equiv 0 \pmod{5}, \end{cases}$$

$$2, & \text{if } m \equiv 3n \pmod{5}, E \not\equiv 0 \pmod{5}$$

$$0, & \text{or} \\ & m \equiv 2n \pmod{5}, m \equiv 57n \pmod{125}, E \not\equiv 0 \pmod{5}, \end{cases}$$

$$6, & \text{if } m \not\equiv 2n, 3n \pmod{5}$$

$$0, & \text{or} \\ & m \equiv 2n \pmod{5}, m \not\equiv 57n \pmod{125}, E \not\equiv 0 \pmod{5}, \end{cases}$$

$$8, & \text{if } m \equiv 2n \pmod{5}, m \not\equiv 57n \pmod{125}, E \equiv 0 \pmod{5}.$$

Corollary 2 $d(K) = d(k)^2 f^4$, where

$$f=5^{\theta}\prod_{1\leq \nu_p(b)\leq \nu_p(a)}p,$$

and

$$\theta = \begin{cases} 0, & \text{if } 5 \nmid a \text{ or } 5^2 \parallel a, 5^3 \mid b, \\ 1, & \text{if } 5 \parallel a, 5 \nmid b \text{ or } 5^2 \parallel a, 5^2 \parallel b, \\ 2, & \text{if } 5^4 \parallel a, 5^4 \parallel b. \end{cases}$$

Proof From the proof of Proposition 3.1 we have

$$v_2(d(k)) = \alpha/2$$

As $k = Q(\sqrt{-5E})$ we have

$$\nu_5(d(k)) = \begin{cases} 0, & \text{if } 5 \parallel E, \\ 1, & \text{if } 5 \nmid E. \end{cases}$$

Thus, by Proposition 2.4, we obtain $v_5(d(k)) = \gamma$, where

(7.1)
$$\gamma = \begin{cases} 0, & \text{if } 5 \nmid a \text{ or } 5^4 \parallel a, 5^4 \parallel b, \\ 1, & \text{if } 5 \parallel a, 5 \nmid b \text{ or } 5^2 \parallel a, 5^2 \mid b. \end{cases}$$

For $p \neq 2$, 5 we have

$$v_p(d(k)) = \begin{cases} 0, & \text{if } p \mid E, \\ 1, & \text{if } p \nmid E. \end{cases}$$

Hence, since d(k) < 0, we have

$$d(k) = -2^{\alpha/2} 5^{\gamma} \prod_{\substack{p \neq 2,5\\p \mid E}} p.$$

Thus, by Corollary 1, we obtain

$$\frac{d(K)}{d(k)^2} = 5^{\beta - 2\gamma} \prod_{\substack{p \neq 2,5 \\ p \mid F}} p^4.$$

From the Theorem and (7.1) we deduce that

$$\beta - 2\gamma = \begin{cases} 0, & \text{if } 5 \nmid a \text{ or } 5^2 \parallel a, 5^3 \mid b, \\ 4, & \text{if } 5 \parallel a, 5 \nmid b \text{ or } 5^2 \parallel a, 5^2 \parallel b, \\ 8, & \text{if } 5^4 \parallel a, 5^4 \parallel b, \end{cases}$$

so that

$$\beta - 2\gamma = 4\theta$$
.

Finally, by Proposition 5.2, we have

$$d(K) = d(k)^2 f^4,$$

where

$$f = 5^{\theta} \prod_{\substack{p \neq 2,5 \\ p \mid F}} p = 5^{\theta} \prod_{\substack{p \neq 2,5 \\ 1 \leq \nu_p(b) \leq \nu_p(a)}} p.$$

8 Some Numerical Examples

We close with a few examples illustrating the Theorem.

	1
$X^5 + aX + b$	d(K)
$a = -2^2 \times 5^2 \times 19$ $b = 2^5 \times 5^2 \times 11$	$2^4 \times 5^6$
$a = -2^2 \times 5^2 \times 19$ $b = 2^5 \times 5^3 \times 19$	$2^4 \times 5^2 \times 19^4$
$a = 2^2 \times 5^4$ $b = 2^6 \times 3 \times 5^4$	$2^4 \times 5^8$

-	_
$X^5 + aX + b$	d(K)
$a = 2^2 \times 5 \times 11^3 \times 59 \times 3150376609 \times 255718143721^2$	$2^4 \times 5^6 \times 11^4$
$b = 2^5 \times 11 \times 37 \times 97^2 \times 890957 \times 255718143721^3$	×255718143721 ²
$a = 5 \times 11^{2} \times 17^{2} \times 149^{2} \times 1699$ $\times 1973^{2} \times 5821$	$2^6 \times 5^6 \times 11^4 \times 17^2$
$b = -2^2 \times 11 \times 17^3 \times 73 \times 149^3 \times 1973^3 \times 7069$	$\times 149^2 \times 1973^2$
$a = 2^{2} \times 5 \times 11^{2} \times 61 \times 109^{2}$ $b = 2^{8} \times 11^{2} \times 17 \times 109^{3}$	$2^4 \times 5^6 \times 11^4 \times 109^2$
$a = -2^{2} \times 5 \times 11^{3} \times 29 \times 41 \times 2521^{2}$ $b = 2^{5} \times 11^{3} \times 37 \times 53 \times 2521^{3}$	$2^4 \times 5^6 \times 11^4 \times 2521^2$
$a = -2^2 \times 5 \times 11^3 \times 29 \times 331$ $\times 9479 \times 116116717^2$	$2^4 \times 5^6 \times 11^4 \times 116116717^2$
$b = 2^6 \times 11^2 \times 991 \times 23767 \times 116116717^3$	2 × 3 × 11 × 110110/1/
$a = -5^2 \times 11^4 \times 131 \times 8081$ $\times 257111845279$ $\times 31058167967208281^2$	$2^6 \times 5^2 \times 11^4$
$b = 2^2 \times 5^3 \times 11 \times 37 \times 59 \times 197 \times 293$ $\times 1289 \times 195869$ $\times 31058167967208281^3$	×31058167967208281 ²
$a = 2^2 \times 11^4 \times 865661 \times 28602901 \times 27267702368057^2$	$2^4 \times 5^6 \times 11^4$
$b = -2^7 \times 11^2 \times 137 \times 379 \times 1301 \times 4001 \times 27267702368057^3$	×27267702368057 ²
$a = 5 \times 11^4 \times 13^2 \times 66169109^2 \times 1657799551$	$2^6 \times 5^6 \times 11^4 \times 13^2$
$b = -2^2 \times 11^3 \times 13^3 \times 29 \times 109$ $\times 92693 \times 66169109^3$	$\times 66169109^{2}$
$a = -5 \times 11^{4} \times 53^{2} \times 157^{2} \times 401$ $b = 2^{2} \times 11^{4} \times 13 \times 19 \times 53^{3}$ $\times 149 \times 157^{3}$	$2^6 \times 5^6 \times 11^4 \times 53^2 \times 157^2$

References

- [1] D. Liu, Dihedral polynomial congruences and binary quadratic forms: a class field theory approach. Ph.D. thesis, Carleton University, Ottawa, Ontario, Canada, 1992.
- [2] P. Llorente, E. Nart and N. Vila, *Discriminants of number fields defined by trinomials*. Acta Arith. **43**(1984), 367–373.
- [3] D. A. Marcus, Number Fields. Springer-Verlag, New York-Heidelberg-Berlin, 1977.
- [4] G. Roland, N. Yui and D. Zagier, A parametric family of quintic polynomials with Galois group D₅.
 J. Number Theory 15(1982), 137–142.

Department of Mathematics and Statistics Okanagan University College Kelowna, BC V1V 1V7

email: bkspearm@okuc02.okanagan.bc.ca

Centre for Research in Algebra and Number Theory School of Mathematics and Statistics Carleton University Ottawa, Ontario K1S 5B6

email: williams@math.carleton.ca