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Abstract 

For positive Integers 11 and k, we* let ~ ( n )  denote the number of 

representations of rt as the sum of k squares. I n  1987 Ewell used 

modular functions to give a formula for q6(n). In 1996 Milne used 

elliptic functions to glve a different formula for q6(n). In  this paper, we 

Dve elementary arithmehc proofs of both of these formulae. 

1. Introduction 

Let N denote the set of all positive integers, Z the set of all integers, 

and U the set of all rational numbers. For n E N U (0) and k E N we 

let ~ ( I L )  denote the number of representations of n as the sum of k 

squares, that is 

so that ~ ( 0 )  = 1. The following formulae for r2(n), r4(n) and r8(n) 

(n E N) are classical: 
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Each of (1.1), (1.2) and (1.3) can be proved by entirely elementary means, 

see for example [2], [ 5 ] ,  [6] and 171. For k E N and x E Q we define 

lo, 

and 

With this notation we can rewrite (1.2) and (1.3) as 

Formulae for r16(n) have been given by Ewell [I] and Milne [4, formula 

(2) and Theorem 1.41. Their proofs use modular functions and elliptic 

functions respectively and so are not elementary. 

Ewell's formula. Let lo E N. Define P(n) E N U {0} and y(n) E N by 

n = BP(") y (n), 2 1 y (n). 

Then 
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Milne's formula. Let n E N. Then 

where the latter two sums are over all positive integers a ,  b, x, y 
satisfying ax + by = n. 

In this paper, we show that both Ewell's formula (1.6) and Milne's 
formula (1.7) can be proved by entirely elementary means. The main tool 
used in doing this is the following recent identity due to Huard, Ou, 
Spearman and Williams [2, Theorem 11, the proof of which involves 
nothing more than the manipulation of finite sums. 

Proposition. Let f : x4 + C be such that 

for all integers a, b, x and y. Then 

where the surn olr the left hand side of (1.9) is over all positive integers a,  
b, x, y satisfying ax + by = n. 
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2. Elementary Lemmas 

In this section, we state without proof t h e e  easily-proved elementary 
lemmas. 

Lemma 1. Let n E N .  Then 

Lemma 2. Let e, n E N. Then 

Lemma 3. Let e, n e N. Then 

For e, f ,  n E N, we define 
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Clearly 

where m runs through the positive integers satisfying m < n/a. Also, for 

e, f ,  n E N, we define 

4, (n)  := C s ( m )  of (n - 2rn) = aebf ,  
mi1t/2 2ax+by=n 

where m runs through the positive integers satisfying m < n/2. We note 

that 

and 

1r-1 
n - a m  C u e  C o f ( T )  = A ~ ,  e(n). 

a=l nt<lz/a 

The next theorem is elementary and its proof omitted. It is a simple 
application of the mclusion-exclusion principle. 

Theorem 1. Let e, f ,  n E N .  Then 

(- l p a e b f  = 2 e + 1 ~ e ,  (n)  - Se, (n), 
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The sum (- can be treated in a similar fashion but 
aX+by=1, 

applying the inclusion-exclusion principle to it leads to sums of the type 

Some results concerning these sums are given in Section 6. 

The sums S,,f (n) can be evaluated in an elementary manner for 

e, f E N satisfying 

e E f = 1 (mod 2), e + f = 2, 4, 6, 8,12, 

by taking particular choices of f(a, by x, y) in the Proposition, see [2]. We 

need the values of Sl, 5(n) and S3, 3(n). 

Theorem 2. Let n E N. Then 

The values of AlV1(n), A1,3(lt) and A3,~(n) were derived in [2, 

Theorems 2 and 61 in an elementary manner from the Proposition. The 

values of A1, 5(n), A3, 3(n) and 4, 1 (n) are not known explicitly, however 

two linear relations between them were proved in [2, Theorem 151 in an 
elementary fashion from the Proposition. These relations are given in 
Theorem 3 in a slightly rearranged form. 

Theorem 3. For n E N, we have 
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and 

From Theorems 1, 2 and 3, we obtain the following evaluations in 

terms of A3, 3 (n). 

Theorem 4. Let n E X. Then 

I n  order to prove Milne's formula we express the last two sums in 
(1.7) in terms of A3,3(n) by means of the Proposition. 

Theorem 5. For n E N, we have 
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and 

Proof. To prove the fwst of the two equalities we take f(a, b, x ,  y) = 

(- l)a+b+x+~ ab5  in the Proposition, and to prove the second we take 

a+b+x+ya3b3. Both choices satisfy condition (1.8). We f(a, b, x ,  Y) = (- 1) 

just give the details in the first case. In this case, the first two terms on 
the left hand side of (1.9) give 

The third and fourth terms on the left hand side of (1.9) give by Theorem 

4, 
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The fifth and sixth terms on the left hand side of (1.9) give by Theorem 4, 

x (- llaty ((b - a )  - (a + b)) b5 
ar+by=n 

4 (3 - 2n) 1 1 16 
= - o7 (n)  + 

315 12 10 252 315 
q ( n )  - - 03(n) + - ~ ( n )  - - 07(%) 

The first two terms on the right hand side of (1.9) vanish. The third term 
yields by Lemma 3, 

d-1 
The fourth term is by Bernoulli's formula for the sum xk (k = 1, ..., 6 )  

x=l 

and Lemma 3, 
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The fifth term is by Lemmas 2 and 3, 

The sixth term is by Lemma 3 and Euler's formula for the sum 
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= (- l)l'ldd(; d5 - $ d4 + 5 d 2 )  - x (- i)"/dd 
d ln  

4 
din 

The first equality of the theorem now follows by the Proposition. 

Our final theorem of this section makes use of (1.5) and Theorem 2 to 
express r16(n) in terms of A3,3(n). 

Theorem 6. Let n E N. Then 

32 8192 
ria (n)  = - (- 1)" o7 (n)  + 512 (- 1r- l  o3 (n) + 15 (i) 15 15 

- 512 15 03(:) + 8192(- I ) ~ ' - ~ A ~ , ~ ( ~ ) .  

Proof. Clearly 

so that 

as r8(0) = 1. Hence, by (1.5), we have 
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qe(n) = 32(- 1)"-'03(n) + 5 l2(- 1lns(:) 

= 32(- 1)"" (n) + 5 12(- 1)~0~(:) 

The result now follows on appealing to Theorem 2 for the values of 

S3, 3(n) and s3, 3(;), and noting that (- l)noe(i) = oe(i). 

4. Elementary Proof of Milne's Formula 

By Theorem 5, we have 

By Lemma 3, we have 
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Hence 

= r16(n)9 

by Theorem 6. 

5. Elementary Proof of Ewell's Formula 

Appealing to Lemma 1, (3.2), (3.4), (3.5) and Theorem 2, we obtain 

~r-1  
n-kd 

= x(- 1pd3 (a3(" - kd)- q(T)) 
d=l ken d 
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Then, appealing to Lemma 1, we obtain as (- l)no, (;) )= %(;), 

Ewell's formula now follows by Theorem 6. 

6. The Sums Bl, 5 (n), B3, 3 (n) and B5, (n) 

The sum BlSl(n) is determined in [2, Theorem 41 in an  elementary 

way using the Proposition. A linear relation between 4, 3(n) and B3, (n) 

can also be deduced from the Proposition. The case when n is odd is 
treated in [3, formula (2.11)]. In this section, we obtain the rather 

surprising result that 4, 5(n) + 16B5, ,(n) and Bs, 3(n) can be expressed 

in terms of As, 3 (n) and A3, 3 . (8 
Similarly to Theorem 1, we can prove 
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Theorem 7. For e, f ,  n E N, we have 

+ 22(2e + 1 )  (2f + 1 )  se, (:) + ZetZ B ~ ,  (n)  .s 2f  + B ~ ,  ,(n) 

Proof. We make use of the identity 

Using this identity for (- l)a+b+x+y in the sum (- l)atbtxty a b ,  
ax+by=n 

we obtain sixteen sums. We just evaluate two of them. The rest can be 
done similarly. 

We have 
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and 
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This completes the proof. 

Appealing to Theorem 7 with (e, f )  = (1, 5) and (3,3), we obtain 

and 

- I I ~ z A ~ ,  3(;) - 36A, 3(n) + 64&, 3(n). 

Then, using Theorems 5, 2 and 3 and Lemma 2, we obtain the following 

evaluations in terms of As, 3(n) and A3, - . (3 
Theorem 8. For n E N, 

4 , 5 ( n )  + 16B5,1(n) 

= -- 1 1  
504 
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1 + - (- l)"c3(n) + - - - 
16 ( 2  2016 (- Q) c(n) + a?(:) 

11 11 + --- 
(16 8 n)05(:)-%a3(:)+&{i) 

and 

17 

97 -- 5 1 
640 "(i) + r n c 3 ( 5 )  + gA3,3(") + 18A3,3(;). 
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