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On the Density of Cyclic Quartic Fields

Zhiming M. Ou and Kenneth S. Williams

Abstract. An asymptotic formula is obtained for the number of cyclic quartic fields over Q with dis-
criminant≤ x.

1 Introduction

Let h(n) denote the number of cyclic quartic fields over the rational number field Q
with discriminant n. We consider

N(x) =
∑
n≤x

h(n).

In [1, Theorem 9] Baily proved

N(x) ∼
3

π2

{
25

24

∏
p≡1 (mod 4)

(
1 +

2

(p + 1)
√

p

)
− 1

}
x1/2,(1.1)

where p runs through primes p ≡ 1 (mod 4). Unfortunately Baily’s generating
function f (s) =

∑∞
n=1

h(n)
ns is given incorrectly, and so the constant in (1.1) is wrong.

In giving the Euler product for f (s), Baily [1, p. 209] overlooks that the discriminant
is 1

2 f 3
4 f 2

2 in one case rather than f 3
4 f 2

2 and so his term 4 · 16−3s = 4 · 2−12s should be
replaced by 4 · 2−11s.

In this paper, using the representation of a cyclic quartic field given by Hardy,
Hudson, Richman, Williams and Holtz [2], see also [3], and an elementary method,
we correct Baily’s result and at the same time give an estimate for the error term. We
prove

Theorem

N(x) =
3

π2

{
24 +

√
2

24

∏
p≡1 (mod 4)

(
1 +

2

(p + 1)
√

p

)
− 1

}
x1/2 + O(x1/3 log3 x).

(1.2)
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2 Representation of a Cyclic Quartic Field

In [2] the authors show that a cyclic quartic extension K of the rational number field
Q can be expressed uniquely in the form

K = Q
(√

A(D + B
√

D)
)
,(2.1)

where A, B, D are integers such that




A is squarefree and odd,

B ≥ 1, D ≥ 2,

D is squarefree and D− B2 is a square,

(A,D) = 1,

(2.2)

where (A,D) denotes the gcd of A and D. The discriminant d(K) of K is given by

d(K) =




28A2D3, if D ≡ 0 (mod 2),

26A2D3, if D ≡ 1 (mod 2), B ≡ 1 (mod 2),

24A2D3, if D ≡ 1 (mod 2), B ≡ 0 (mod 2), A + B ≡ 3 (mod 4),

A2D3, if D ≡ 1 (mod 2), B ≡ 0 (mod 2), A + B ≡ 1 (mod 4).

(2.3)

3 Proof of the Theorem

Let K be a cyclic quartic extension of Q. From (2.1)–(2.3) we see that the discriminant
d(K) of K is of the form

d(K) = 2α(p1 · · · pm)2(q1 · · · qr)
3,(3.1)

where α = 0, 4, 6 or 11 and p1, . . . , pm, q1, . . . , qr are distinct odd primes with m ≥
0, r ≥ 1 if α = 0, 4, 6, r ≥ 0 if α = 11, and q j ≡ 1 (mod 4), j = 1, . . . , r. We set

A = p1 · · · pm, D = q1 · · · qr.(3.2)

We note that A and D defined in (3.2) are slightly different from the A and D in
Section 2.

If α = 0 then n = d(K) = A2D3 and K = Q
(√
εA(D + B

√
D)
)

for some ε = ±1
and some positive integer B such that

B ≡ 0 (mod 2), B ≡ 1− εp1 · · · pm (mod 4), D− B2 = square.
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Moreover distinct pairs (ε,B) give different fields K. Thus

h(n) =
∑
ε=−1,+1

∑
B>0,2|B

B≡1−εp1···pm (mod 4)
D−B2=�

1 =
∑

B>0,2|B
D−B2=�

1

=
∑

C>0,2�C
D−C2=�

1 =
1

2

∑
B>0

D−B2=�

1 =
1

2

∑
B<0

D−B2=�

1

=
1

4

∑
B�=0

D−B2=�

=
1

4

∑
B

D−B2=�

1 =
1

8

∑
B,C

D=B2+C2

1 =
1

8
r2(D)

=
1

8
2r+2 = 2r−1 =

1

2
d(D),

where r2(k) denotes the number of representations of the positive integer k as the
sum of two squares and d(k) denotes the number of positive divisors of k.

If α = 4 then n = d(K) = 24A2D3 and K = Q
(√
εA(D + B

√
D)
)

for some
ε = ±1 and some positive integer B such that

B ≡ 0 (mod 2), B ≡ 3− εp1 · · · pm (mod 4),D− B2 = square.

Moreover distinct pairs (ε,B) give different fields K. Thus

h(n) =
∑
ε=−1,+1

∑
B>0,2|B

B≡3−εp1···pm (mod 4)
D−B2=�

1 =
∑

B>0,2|B
D−B2=�

1 =
1

2
d(D).

If α = 6 then n = d(K) = 26A2D3 and K = Q
(√
εA(D + B

√
D)
)

for some
ε = ±1 and some positive integer B such that

B ≡ 1 (mod 2), D− B2 = square.

Moreover distinct pairs (ε,B) give different fields K. Thus

h(n) = 2
∑

B>0,2�B
D−B2=�

1 = 2
∑

C>0,2|C
D−C2=�

1 = 2r = d(D).

If α = 11 then n = d(K) = 211A2D3 and K = Q
(√
εA(2D + B

√
2D)
)

for some
ε = ±1 and some positive integer B such that

2D− B2 = square.
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Moreover distinct pairs (ε,B) give different fields K. Thus

h(n) = 2
∑
B>0

2D−B2=�

1 = 2
∑
B<0

2D−B2=�

1 =
∑
B�=0

2D−B2=�

1

=
∑

B
2D−B2=�

1 =
1

2

∑
B,C

2D=B2+C2

1 =
1

2
r2(2D) =

1

2
2r+2 = 2r+1 = 2d(D).

Summarizing we have

h(n) =




2d(D), if n = 211A2D3,

d(D), if n = 26A2D3,
1
2 d(D), if n = 24A2D3 or A2D3.

(3.3)

Recalling that D = 1 can only occur when n = 211A2D3, we have∑
n≤x

h(n) = 2
∑

211A2≤x

1 + 2
∑

211A2D3≤x

d(D) +
∑

26A2D3≤x

d(D)

+
1

2

∑
24A2D3≤x

d(D) +
1

2

∑
A2D3≤x

d(D),

so that ∑
n≤x

h(n) = 2
∑

A≤(x/211)1/2

A squarefree
A odd

1 + 2S(2−11x) + S(2−6x) +
1

2
S(2−4x) +

1

2
S(x),(3.4)

where

S(x) =
∑

A2D3≤x

d(D)(3.5)

and the sum is over all positive integers A and D such that

A = p1 · · · pm (m ≥ 0), D = q1 · · · qr (r ≥ 1),(3.6)

where p1, . . . , pm, q1, . . . , qr are distinct odd primes with q j ≡ 1 (mod 4) ( j =
1, . . . , r). We set

P = {D | D = q1 · · · qr(r ≥ 1), q1, . . . , qr are distinct primes ≡ 1 (mod 4)},(3.7)

so that

S(x) =
∑

D≤x1/3

D∈P

d(D)
∑

1≤A≤
√

xD−3

A squarefree
(A,2D)=1

1.(3.8)
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Note that 1 /∈ P.

We first estimate
∑

A≤y
A squarefree

A odd

1, where y = (x/211)1/2. We have

∑
A≤y

A squarefree
A odd

1 =
∑
A≤y
A odd

∑
d2|A

µ(d)

=
∑

d≤y1/2

d odd

µ(d)
∑

a≤y/d2

a odd

1

=
∑

d≤y1/2

d odd

µ(d)
( y

2d2
+ O(1)

)

=
y

2

∑
d≤y1/2

d odd

µ(d)

d2
+ O(y1/2)

=
y

2

∞∑
d=1

d odd

µ(d)

d2
+ O(y1/2)

=
y

2

∏
p �=2

(
1−

1

p2

)
+ O(y1/2)

=
y

2

(
1−

1

22

)−1∏
p

(
1−

1

p2

)
+ O(y1/2)

=
4

π2
y + O(y1/2)

=
x1/2

27/2π2
+ O(x1/4).

We now turn to the estimation of S(x). The inner sum in (3.8) is

∑
A≤
√

xD−3

(A,2D)=1

∑
d2|A

µ(d) =
∑

d≤(xD−3)1/4

(d,2D)=1

µ(d)
∑

a≤d−2
√

xD−3

(a,2D)=1

1

=
∑

d≤(xD−3)1/4

(d,2D)=1

µ(d)
∑
e|2D

µ(e)
∑

b≤e−1d−2
√

xD−3

1

=
∑
e|2D

µ(e)
∑

d≤(xD−3)1/4

(d,2D)=1

µ(d)

[√
xD−3

d2e

]
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=
√

xD−3
∑
e|2D

µ(e)

e

∑
d≤(xD−3)1/4

(d,2D)=1

µ(d)

d2
+ O

(
d(2D)

( x

D3

) 1/4
)

=
√

xD−3
∑
e|2D

µ(e)

e

∑
(d,2D)=1

µ(d)

d2
+ O

(
d(D)

( x

D3

) 1/4
)

+ O

(( x

D3

) 1/2∑
e|2D

1

e

( x

D3

)−1/4
)

=
√

xD−3
ϕ(2D)

2D

6

π2

(∏
p|2D

(
1−

1

p2

)−1
)

+ O

(
d(D)

( x

D3

) 1/4
)
,

since

∞∑
d=1

(d,2D)=1

µ(d)

d2
=

∏
(p,2D)=1

(
1−

1

p2

)
=
∏

p

(
1−

1

p2

) / ∏
p|2D

(
1−

1

p2

)

=
1

ζ(2)

∏
p|2D

(
1−

1

p2

)−1
=

6

π2

∏
p|2D

(
1−

1

p2

)−1

and Euler’s phi function ϕ(n) = n
∑

d|n
µ(d)

d . Thus

S(x) =
3

π2
x1/2

∑
D≤x1/3

D∈P

d(D)ϕ(D)D−5/2
∏
p|2D

(
1−

1

p2

)−1

+ O

(
x1/4

∑
D≤x1/3

D∈P

d2(D)D−3/4

)

=
4

π2
x1/2

∞∑
D=1
D∈P

d(D)ϕ(D)D−5/2
∏
p|D

(
1−

1

p2

)−1

+ O

(
x1/2

∑
D>x1/3

D∈P

d(D)ϕ(D)D−5/2

)
+ O
(

x1/4
∑

D≤x1/3

D∈P

d2(D)D−3/4
)
,

as ∏
p|D

(
1−

1

p2

)−1
=
π2

6

∏
p�D

(
1−

1

p2

)
<
π2

6
.

Clearly

∞∑
D=1
D∈P

d(D)ϕ(D)D−5/2
∏
p|D

(
1−

1

p2

)−1
=

∏
p≡1 (mod 4)

(
1 +

2

(p + 1)
√

p

)
− 1.
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It remains to estimate R1 =
∑

D≤x1/3

D∈P

d2(D)D−3/4 and R2 =
∑

D>x1/3

D∈P

d(D)ϕ(D)D−5/2.

Firstly

∑
D≤x
D∈P

d2(D) =
∑
D≤x
D∈P

d(D)
∑
a|D

1 =
∑
ab≤x

a,b∈P
(a,b)=1

d(ab) + 2
∑
D≤x
D∈P

d(D)

≤
∑
a≤x
a∈P

d(a)
∑

b≤x/a
b∈P

d(b) + 2
∑
D≤x
D∈P

d(D)

∑
D≤x
D∈P

d(D) =
∑
D≤x
D∈P

∑
a|D

1 ≤
∑
a≤x
a∈P

(
2 +

∑
b≤x/a
b∈P

1
)
 x log x,

so

∑
D≤x
D∈P

d2(D) x log x +
∑
a≤x
a∈P

d(a)
x

a
log

x

a

 x log x + x log x
∑
a≤x
a∈P

d(a)

a

 x log3 x.

By partial summation we have

R1 = x−
1
4

∑
D≤x1/3

D∈P

d2(D)−

∫ x1/3

1

(∑
D≤y
D∈P

d2(D)
)

d(y−3/4)

= O(x1/3−1/4 log3 x) = O(x1/12 log3 x)

and

R2 ≤
∑

D>x1/3

D∈P

d(D)D−3/2 = −

∫ ∞
x1/3

(∑
D≤y
D∈P

d(D)
)

d(y−3/2) = O(x−1/6 log x).

Therefore

S(x) =
4c0

π2
x1/2 + O(x1/3 log3 x),

where

c0 =
∏

p≡1 (mod 4)

(
1 +

2

(p + 1)
√

p

)
− 1,
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and

∑
n≤x

h(n) =
x1/2

25/2π2
+ O(x1/4)

+
4c0

π2

(
2 · 2−11/2 + 2−3 +

1

2
2−2 +

1

2

)
x1/2 + O(x1/3 log3 x)

=

(
(24 +

√
2)

8π2
c0 +

√
2

8π2

)
x1/2 + O(x1/3 log3 x)

=

(
24 +

√
2

8π2

∏
p≡1 (mod 4)

(
1 +

2

(p + 1)
√

p

)
−

24

8π2

)
x1/2 + O(x1/3 log3 x)

=
3

π2

{
24 +

√
2

24

∏
p≡1 (mod 4)

(
1 +

2

(p + 1)
√

p

)
− 1

}
x1/2 + O(x1/3 log3 x).

This completes the proof of (1.2).
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