CONDITIONS FOR THE INSOLVABILITY OF THE QUINTIC EQUATION \(x^5 + ax + b = 0 \)

BLAIR K. SPEARMAN and KENNETH S. WILLIAMS

Dedicated to the memory of Sarvadaman Chowla (1907-1995)

(Received October 21, 2000)

Submitted by K. K. Azad

Abstract

Simple congruence conditions are proved which ensure that the quintic equation \(x^5 + ax + b = 0 \), where \(a \) and \(b \) are nonzero integers, is not solvable by radicals. For example, it is shown that if \(a = 1 \pmod{2} \) and \(b = 2 \pmod{4} \), then \(x^5 + ax + b = 0 \) is not solvable by radicals.

Let \(a \) and \(b \) be nonzero integers such that \(x^5 + ax + b \in \mathbb{Z}[x] \) is irreducible. In this note we are concerned with the insolvability of the quintic equation

\[
x^5 + ax + b = 0
\]

(1)

by radicals. In 1942, Bhalotra and Chowla [2] [3, pp. 529-531] gave the following three theorems.

Theorem A. If \(a = b = 1 \pmod{2} \), then (1) is not solvable by radicals.

Theorem B. If \(a = 1 \pmod{2} \) and \(a \) is not divisible by any prime \(= 3 \pmod{4} \), then (1) is not solvable by radicals.

2000 Mathematics Subject Classification: 12E05, 12E10.

Key words and phrases: quintic equations, insolvability by radicals.
Theorem C. If \(a \) is a prime \(\equiv 1 \pmod{5} \) and \((a, b) = 1 \), then (1) is not solvable by radicals.

Theorem B is mentioned in the obituary of Chowla by Ayoub, Huard and Williams [1]. Unfortunately Theorem B is not correct [3, p. A3] as shown by the example

\[x^5 - 5x + 12 = 0, \]

which has the solution in radicals

\[x = \frac{1}{5} \left(R_{1,1}^{\frac{1}{5}} + R_{1,-1}^{\frac{1}{5}} + R_{-1,1}^{\frac{1}{5}} + R_{-1,-1}^{\frac{1}{5}} \right), \]

where \(R_{e, \delta} (e, \delta = \pm1) \) is given by

\[R_{e, \delta} = 625(-5 + 2e\sqrt{5}) + \delta \frac{375}{2} \left(2\sqrt{100 - e20\sqrt{5}} - e\sqrt{100 + e20\sqrt{5}} \right) \]

see [4, p. 399], [6, p. 990]. In this note we correct Theorem B (see Theorem 1) and prove three results similar to Theorems A, B, C (see Theorems 2, 3, 4). We make use of the following two results.

Proposition 1 ([2, p. 110], [3, p. 529], [4, p. 389], [6, p. 988]). The equation (1) is solvable by radicals if and only if the equation

\[x^6 + 8ax^5 + 40a^2x^4 + 160a^3x^3 + 400a^4x^2 + (512a^5 - 3125b^4)x + (256a^6 - 9375ab^4) = 0 \]

(2)

has an integral root.

Proposition 2 [6, p. 987]. The equation (1) is solvable by radicals if and only if there exist rational numbers \(\epsilon(= \pm1), \ c(> 0) \) and \(\epsilon(\neq 0) \) such that

\[a = \frac{5\epsilon^4(3 - 4\epsilon c)}{c^2 + 1}, \quad b = \frac{-4\epsilon^5(11\epsilon + 2c)}{c^2 + 1}. \]

(3)

We begin by correcting Theorem B.

Theorem 1. If

\[a > 0, \ a = 1 \pmod{2}, \ p \text{(prime)} | a \Rightarrow p \equiv 3 \pmod{4}, \]

then (1) is not solvable by radicals.
INSOLVABLE QUINTICS $x^5 + ax + b$

Proof. As a is odd and the primes dividing a are $\neq 3 \pmod{4}$, all the primes dividing a must be $1 \pmod{4}$. Hence

$$a = \pm(4t_1 + 1) \cdots (4t_n + 1),$$

where each $4t_i + 1$ is a prime. As $a > 0$ the $+$ sign must hold so that

$$a = (4t_1 + 1) \cdots (4t_n + 1) \quad (4)$$

and

$$a = 1 \pmod{4}. \quad (5)$$

Suppose that (1) is solvable by radicals. Then, by Proposition 1, there exists an integer r such that

$$(r + 2a)^4(r^2 + 16a^2) - 5^5b^4(r + 3a) = 0. \quad (6)$$

Set

$$z = r + 3a \in \mathbb{Z}. \quad (7)$$

From (6) and (7) we deduce that

$$z - a)^4((z - 3a)^2 + 16a^2) = 5^5b^4z. \quad (8)$$

Clearly from (8) we deduce that

$$z > 0. \quad (9)$$

Also from (8) we see that

$$z \mid 25a^6. \quad (10)$$

From (4) and (10) we conclude that z is odd and divisible only by primes $\equiv 1 \pmod{4}$. Thus, by (9), we have

$$z = 1 \pmod{4}. \quad (11)$$

Hence, by (5) and (11), we have

$$(z - 3a)^2 + 16a^2 = 4 \pmod{16}$$

so that

$$v_2((z - 3a)^2 + 16a^2) = 2. \quad (12)$$
From (8) we see that
\[4v_2(z - a) + v_2((z - 3a)^2 + 16a^2) = 4v_2(b) \]
so that
\[v_2((z - 3a)^2 + 16a^2) = 0 \pmod{4}, \]
which contradicts (12). Hence (1) is not solvable by radicals.

Our next result is an extension of Theorem A. Theorem A itself is actually very easy to prove using Galois theory. For \(a = b = 1 \pmod{2} \), we have
\[x^5 + ax + b = x^5 + x + 1 = (x^2 + x + 1)(x^3 + x^2 + 1) \pmod{2}, \]
and since \(x^2 + x + 1 \) and \(x^3 + x^2 + 1 \) are both irreducible \(\pmod{2} \) the Galois group of \(x^5 + ax + b \) is the symmetric group \(S_5 \), and so (1) is not solvable by radicals. To prove our extension of Theorem A, we make use of Proposition 2.

Theorem 2. If \(a = 1 \pmod{2} \) and \(b = 2 \pmod{4} \), then (1) is not solvable by radicals.

Proof. Suppose that (1) is solvable by radicals. Then, by Proposition 2, there exist rational numbers \(\varepsilon(= \pm 1) \), \(c(\geq 0) \) and \(\varepsilon(\neq 0) \) such that
\[
\begin{align*}
 a &= \frac{5\varepsilon^4(3 - 4\varepsilon c)}{c^2 + 1}, \\
 b &= \frac{-4\varepsilon^5(11\varepsilon + 2c)}{c^2 + 1}.
\end{align*}
\]

Set
\[
e = r/s, \quad c = m/n,
\]
where \(r, s, m, n \) are integers satisfying
\[r \neq 0, \quad s > 0, \quad (r, s) = 1, \]
and
\[m \geq 0, \quad n > 0, \quad (m, n) = 1. \]
INSOLVABLE QUINTICS \(x^5 + ax + b \)

Substituting (14) into (13), we obtain

\[
a = \frac{5r^4(3n - 4\epsilon m)n}{s^4(m^2 + n^2)}
\]

and

\[
b = \frac{-4r^5(11\epsilon n + 2m)n}{s^5(m^2 + n^2)}
\]

We note that \(3n - 4\epsilon m \neq 0\) as \(a \neq 0\) and \(11\epsilon n + 2m \neq 0\) as \(b \neq 0\). As \(a = 1 \pmod{2}\) and \(b = 2 \pmod{4}\) we obtain from (17) and (18)

\[
4v_2(r) + v_2(3n - 4\epsilon m) + v_2(n) - 4v_2(s) - v_2(m^2 + n^2) = 0,
\]

\[
2 + 5v_2(r) + v_2(11\epsilon n + 2m) + v_2(n) - 5v_2(s) - v_2(m^2 + n^2) = 1.
\]

We consider nine cases as follows:

<table>
<thead>
<tr>
<th>Case</th>
<th>(v_2(s))</th>
<th>(v_2(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(ii)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(iii)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(iv)</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>(v)</td>
<td>1</td>
<td>\geq 3</td>
</tr>
<tr>
<td>(vi)</td>
<td>\geq 2</td>
<td>0</td>
</tr>
<tr>
<td>(vii)</td>
<td>\geq 2</td>
<td>1</td>
</tr>
<tr>
<td>(viii)</td>
<td>\geq 2</td>
<td>2</td>
</tr>
<tr>
<td>(ix)</td>
<td>\geq 2</td>
<td>\geq 3</td>
</tr>
</tbody>
</table>

Case (i): In this case we have \(v_2(s) = 0\) so that (19) and (20) become

\[
4v_2(r) + v_2(3n - 4\epsilon m) + v_2(n) - v_2(m^2 + n^2) = 0,
\]

\[
5v_2(r) + v_2(11\epsilon n + 2m) + v_2(n) - v_2(m^2 + n^2) = -1.
\]
We consider three subcases.

Subcase (a): \(v_2(m) = v_2(n) = 0 \). Here \(v_2(3n - 4e_m) = 0 \) and \(v_2(m^2 + n^2) = 1 \), and (21) gives

\[
\text{(multiple of 4) } + 0 + 0 - 1 = 0,
\]
a contradiction.

Subcase (b): \(v_2(m) \geq 1 \), \(v_2(n) = 0 \). Here \(v_2(11e_n + 2m) = 0 \), \(v_2(m^2 + n^2) = 0 \) and (22) gives

\[
(\geq 0) + 0 + 0 - 0 = -1,
\]
a contradiction.

Subcase (c): \(v_2(m) = 0 \), \(v_2(n) \geq 1 \). Here \(v_2(3n - 4e_m) \geq 1 \), \(v_2(m^2 + n^2) = 0 \) and (21) gives

\[
(\geq 0) + (\geq 1) + (\geq 1) - 0 = 0,
\]
a contradiction.

Thus Case (i) cannot occur.

Case (ii): In this case we have

\[
v_2(s) = 1, \quad v_2(n) = 0, \quad v_2(r) = 0,
\]
\[v_2(3n - 4e_m) = 0, \quad v_2(m^2 + n^2) = 0 \text{ or } 1,
\]
and (19) becomes

\[
0 + 0 + 0 - 0 - 4 - (0 \text{ or } 1) = 0,
\]
which is impossible. Thus Case (ii) cannot occur.

Case (iii): In this case we have

\[
v_2(s) = 1, \quad v_2(n) = 1, \quad v_2(r) = 0, \quad v_2(m) = 0,
\]
\[v_2(3n - 4e_m) = 1, \quad v_2(m^2 + n^2) = 0,
\]
and (19) becomes

\[
0 + 1 + 1 - 4 - 0 = 0,
\]
which is impossible. Thus Case (iii) cannot occur.
Case (iv): In this case we have

\[v_2(s) = 1, \ v_2(n) = 2, \ v_2(r) = 0, \ v_2(m) = 0, \]
\[v_2(m^2 + n^2) = 0, \ v_2(3n - 4em) \geq 3, \]

and (19) gives

\[0 + (\geq 3) + 2 - 4 - 0 = 0, \]

which is impossible. Thus Case (iv) cannot occur.

Case (v): In this case we have

\[v_2(s) = 1, \ v_2(n) \geq 3, \ v_2(r) = 0, \ v_2(m) = 0, \]
\[v_2(m^2 + n^2) = 0, \ v_2(3n - 4em) = 2, \]

and (19) gives

\[0 + 2 + (\geq 3) - 4 - 0 = 0, \]

which is impossible. Thus Case (v) cannot occur.

Case (vi): In this case we have

\[v_2(s) \geq 2, \ v_2(n) = 0, \ v_2(r) = 0, \]
\[v_2(3n - 4em) = 0, \ v_2(m^2 + n^2) = 0 \text{ or } 1, \]

and (19) becomes

\[0 + 0 + 0 - (\geq 8) - (0 \text{ or } 1) = 0, \]

which is impossible. Thus Case (vi) cannot occur.

Case (vii): In this case we have

\[v_2(s) \geq 2, \ v_2(n) = 1, \ v_2(r) = 0, \ v_2(m) = 0, \]
\[v_2(3n - 4em) = 1, \ v_2(m^2 + n^2) = 0, \]

and (19) becomes

\[0 + 1 + 1 - (\geq 8) - 0 = 0, \]

which is impossible. Thus Case (vii) cannot occur.
Case (viii): In this case we have

\[v_2(s) \geq 2, \quad v_2(n) = 2, \quad v_2(r) = 0, \quad v_2(m) = 0, \]

\[v_2(11 \varepsilon_n + 2m) = 1, \quad v_2(m^2 + n^2) = 0, \]

and (20) becomes

\[2 + 0 + 1 + 2 - (\geq 10) - 0 = 1, \]

which is impossible. Thus Case (viii) cannot occur.

Case (ix): In this case we have

\[v_2(s) \geq 2, \quad v_2(n) \geq 3, \quad v_2(r) = 0, \quad v_2(m) = 0, \]

\[v_2(3n - 4 \varepsilon m) = 2, \quad v_2(11 \varepsilon n + 2m) = 1, \quad v_2(m^2 + n^2) = 0, \]

and (19) and (20) give

\[
\begin{align*}
0 + 2 + v_2(n) - 4v_2(s) - 0 &= 0, \\
2 + 0 + 1 + v_2(n) - 5v_2(s) - 0 &= 1,
\end{align*}
\]

so that

\[
\begin{align*}
v_2(n) - 4v_2(s) &= -2, \\
v_2(n) - 5v_2(s) &= -2.
\end{align*}
\]

Hence

\[v_2(n) = -2, \quad v_2(s) = 0, \]

contradicting

\[v_2(n) \geq 3, \quad v_2(s) \geq 2. \]

Hence all nine cases cannot occur and the theorem is proved.

Theorem 3. If \(p \) is a prime \(= 3 \pmod{4} \) such that

\[p \parallel a, \quad p^2 \parallel b \quad \text{or} \quad p^2 \parallel a, \quad p^3 \parallel b \quad \text{or} \quad p^3 \parallel a, \quad p^4 \parallel b, \]

then (1) is not solvable by radicals.
INSOLVABLE QUINTICS \(x^5 + ax + b \)

Proof. Suppose that (1) is solvable by radicals. Then, by Proposition 2, there exist rational numbers \(\varepsilon(= \pm 1), c(\geq 0), e(\neq 0), \) such that

\[
a = \frac{5\varepsilon^4(3 - 4\varepsilon c)}{c^2 + 1}, \quad b = \frac{-4\varepsilon^5(11\varepsilon + 2c)}{c^2 + 1}.
\]

(24)

If \(c = 0 \), then

\[
a = 15\varepsilon^4, \quad b = -44\varepsilon e^5.
\]

(25)

As \(a \) is an integer, from (25) we see that \(e \) must be an integer. Further, as \(a \neq 0 \), we must have \(e \neq 0 \). If \(p \mid e \), then \(v_p(a) \geq 4 \), contradicting \(v_p(a) = 1, 2 \) or 3. Hence \(p \nmid e \). Since \(p \mid a = 15\varepsilon^4 \) and \(p \mid e \), we must have \(p \mid 15 \). But \(p = 3 \) (mod 4) so \(p = 3 \). Thus \(v_p(a) = v_3(a) = 1 \) and so \(v_p(b) = v_3(b) \geq 2 \). Clearly \(3 \nmid b = -44\varepsilon e^5 \), a contradiction. Hence \(c \geq 1 \).

Set \(c = m/n \) and \(e = r/s \), where \(m, n, r, s \) are integers with \(m > 0, n > 0, r \neq 0, s > 0 \) and \((m, n) = (r, s) = 1 \). Thus

\[
v_p(m) = 0 \quad \text{or} \quad v_p(n) = 0
\]

and

\[
v_p(r) = 0 \quad \text{or} \quad v_p(s) = 0.
\]

From (24), we obtain

\[
(m^2 + n^2)as^4 = -5r^4(4\varepsilon m - 3n)n,
\]

(26)

\[
(m^2 + n^2)bs^5 = -4r^5(2\varepsilon m + 11n)n.
\]

(27)

Clearly from (26) and (27) we see that \(4\varepsilon m - 3n \neq 0 \) and \(2\varepsilon m + 11n \neq 0 \).

Now \(p = 3 \) (mod 4) and \(\gcd(m, n) = 1 \), so that

\[
v_p(m^2 + n^2) = 0.
\]

(28)

From (26)-(28), we obtain

\[
v_p(a) + 4v_p(s) = 4v_p(r) + v_p(4\varepsilon m - 3n) + v_p(n),
\]

(29)

\[
v_p(b) + 5v_p(s) = 5v_p(r) + v_p(2\varepsilon m + 11n) + v_p(n).
\]

(30)
We consider two cases:

(i) \(v_p(n) = 0, \)

(ii) \(v_p(m) = 0, v_p(n) \geq 1. \)

Case (i): In this case (29) and (30) become

\[
v_p(a) + 4v_p(s) = 4v_p(r) + v_p(4\epsilon m - 3n), \quad (31)
\]

\[
v_p(b) + 5v_p(s) = 5v_p(r) + v_p(2\epsilon m + 11n). \quad (32)
\]

If \(v_p(4\epsilon m - 3n) = 0, \) then (31) gives \(4 \mid v_p(a) \) contradicting \(v_p(a) = 1, 2 \) or 3. Thus \(v_p(4\epsilon m - 3n) \geq 1. \) From

\[
2(2\epsilon m + 11n) = (4\epsilon m - 3n) + 25n,
\]

we deduce that \(v_p(2\epsilon m + 11n) = 0. \) Hence (32) gives

\[
v_p(b) + 5v_p(s) = 5v_p(r).
\]

If \(v_p(r) = 0, \) then \(v_p(b) = 0, \) contradicting \(v_p(b) \geq 2. \) If \(v_p(r) \geq 1, \) then \(v_p(s) = 0 \) and (31) gives

\[
v_p(a) = 4v_p(r) + v_p(4\epsilon m - 3n) \geq (4 \times 1) + 1 = 5,
\]

contradicting \(v_p(a) = 1, 2 \) or 3.

Case (ii): In this case we have

\[
v_p(4\epsilon m - 3n) = v_p(2\epsilon m + 11n) = 0
\]

so that (29) and (30) become

\[
v_p(a) + 4v_p(s) = 4v_p(r) + v_p(n), \quad (33)
\]

\[
v_p(b) + 5v_p(s) = 5v_p(r) + v_p(n). \quad (34)
\]

If \(v_p(r) = v_p(s) = 0, \) then (33) and (34) give \(v_p(a) = v_p(b), \) a contradiction. If \(v_p(r) \geq 1, \) \(v_p(s) = 0, \) then (33) gives \(v_p(a) = 4v_p(r) + v_p(n) \geq (4 \times 1) + 1 = 5, \) a contradiction. If \(v_p(r) = 0, \) \(v_p(s) \geq 1, \) then (33) and (34) give
INSOLVABLE QUINTICS $x^5 + ax + b$

$$v_p(a) + 4v_p(s) = v_p(b) + 5v_p(s)$$

so

$$v_p(a) - v_p(b) = v_p(s) \geq 1$$

giving

$$v_p(a) > v_p(b),$$

a contradiction.

Hence neither Case (i) nor Case (ii) can occur and this completes the proof that (1) is not solvable by radicals.

Theorem 4. If $b \mid a$, then (1) is not solvable by radicals.

Proof. Suppose that (1) is solvable by radicals. Then, by Proposition 2, there exist rational numbers $e(= \pm 1)$, $c(> 0)$, and $e(\neq 0)$ such that

$$a = \frac{5e^4(3 - 4ec)}{c^2 + 1}, \quad b = \frac{-4e^5(11e + 2c)}{c^2 + 1}. \quad (35)$$

Set

$$c = m/n, \quad m \geq 0, \quad n > 0, \quad (m, n) = 1, \quad (36)$$

and

$$e = r/s, \quad r \neq 0, \quad s > 0, \quad (r, s) = 1. \quad (37)$$

Further, as $b \mid a$, we have

$$a = bk, \quad (38)$$

for some integer $k \neq 0$. From (35)-(38), we obtain

$$a = 5 \frac{r^4 (3n - 4em)}{s^4 m^2 + n^2} = -4k \frac{r^5 (11en + 2m)n}{s^5 m^2 + n^2}. \quad (39)$$

As $a \neq 0$, we have $3n - 4em \neq 0$ and $11en + 2m \neq 0$. Solving (39) for s, we obtain

$$s = -\frac{4}{5k^r} \frac{11en + 2m}{3n - 4em}. \quad (40)$$
Putting this value of s back into (39), we deduce
\[a = \frac{5^5(3n - 4\varepsilon m)^5 n}{2^5 k^4 (11\varepsilon n + 2m)^4 (m^2 + n^2)}. \] (41)

As
\[\frac{5^5(3n - 4\varepsilon m)^5 n}{2} = 2^7 ak^4 (11\varepsilon n + 2m)^4 (m^2 + n^2) \]
is an integer, we have $2 \mid 5^5(3n - 4\varepsilon m)^5 n$, so that
\[2 \mid n. \] (42)

Next we show that
\[(11\varepsilon n + 2m, 3n - 4\varepsilon m) = 2^\alpha 5^\beta, \] (43)
for nonnegative integers α and β. This follows from the identities
\[2\varepsilon(11\varepsilon n + 2m) + (3n - 4\varepsilon m) = 25n, \] (44)
\[3(11\varepsilon n + 2m) - 11\varepsilon(3n - 4\varepsilon m) = 50m, \] (45)
as $(m, n) = 1$.

Further, we show that
\[(m^2 + n^2, 3n - 4\varepsilon m) = 5^\gamma, \] (46)
for a nonnegative integer γ. This follows from the identities
\[9(m^2 + n^2) - (3n - 4\varepsilon m)(3n + 4\varepsilon m) = 25m^2, \] (47)
\[16(m^2 + n^2) + (3n - 4\varepsilon m)(3n + 4\varepsilon m) = 25n^2, \] (48)
as $(m, n) = 1$.

Moreover,
\[(m^2 + n^2, n) = 1 \] (49)
and
\[(11\varepsilon n + 2m, n) = 1 \text{ or } 2 \] (50)
as $(m, n) = 1$.

From (41) we see that
\[
\frac{5^5(3n - 4\varepsilon m)^5}{(11\varepsilon n + 2m)^4(m^2 + n^2)} = 2^5 k^4 a
\]
is an integer. Hence, in view of (43), (46), (49), (50), we must have
\[
|11\varepsilon n + 2m| = 2^u 5^v, \quad m^2 + n^2 = 5^w,
\]
for nonnegative integers \(u, v, w\). We now consider two cases:

(i) \(4v + w > 5\),

(ii) \(4v + w \leq 5\).

Case (i): \(4v + w > 5\). In this case at least one of \(v\) and \(w\) is positive so that either \(5 \mid 11\varepsilon n + 2m\) or \(5 \mid m^2 + n^2\). By (49) and (50) both possibilities imply that
\[
5 \mid n.
\]
Hence, as \(5^6 \mid (11\varepsilon n + 2m)^4(m^2 + n^2)\) (since \(4v + w \geq 6\)) and \(a\) is an integer, by (41) we must have
\[
5 \mid 3n - 4\varepsilon m.
\]
Then, by (45), we deduce that
\[
5 \mid 11\varepsilon n + 2m.
\]
Hence, by (51) and (54), we have
\[
v > 0.
\]
We show next that \(w \leq 3\). Suppose on the contrary that \(w > 3\), so that, by (51), we have \(5^4 \mid m^2 + n^2\). From the identity
\[
4(m^2 + n^2) + (11\varepsilon n + 2m)(11\varepsilon n - 2m) = 125n^2,
\]
we deduce that
\[
5^3 \mid (11\varepsilon n + 2m)(11\varepsilon n - 2m).
\]
As \((m, n) = 1\) and \(5 \mid 11\varepsilon n + 2m\), we have \(5 \mid 11\varepsilon n - 2m\), so that by (57), we have
\[
5^3 \parallel 11\varepsilon n + 2m,
\]
that is, by (51),
\[
v = 3.
\]
From (52), (58) and the identity
\[
(3n - 4\varepsilon m) + 2\varepsilon(11\varepsilon n + 2m) = 25n,
\]
we deduce that
\[
5^2 \parallel 3n - 4\varepsilon m.
\]
Then, by (41), (51), (52), (59), (60) we see that
\[
v_5(a) = 3 - w - 4v_5(k) \leq 3 - w < 0,
\]
as \(w \geq 4\), a contradiction. Hence \(w \leq 3\).

Case (ii): \(4v + w \leq 5\). In this case we have
\[
w \leq 4v + w \leq 5.
\]
Thus in both cases we have \(w \leq 5\). We examine the possibilities \(w = 0, 1, 2, 3, 4, 5\) individually.

\(w = 0\). Here \(m^2 + n^2 = 1\). As \(m \geq 0\) and \(2 \mid n\) we have \((m, n) = (1, 0)\), contradicting \(n > 0\).

\(w = 1\). Here \(m^2 + n^2 = 5\). As \(m \geq 0, n > 0\) and \(2 \mid n\) we have \((m, n) = (1, 2)\). Then, by (51), we have
\[
2^u 5^v = |11\varepsilon n + 2m| = |22\varepsilon + 2| = \begin{cases} 24, \text{ if } \varepsilon = 1, \\ 20, \text{ if } \varepsilon = -1, \end{cases}
\]
so that \(\varepsilon = -1, \ u = 2, \ v = 1\). Hence, from (41), we have \(a = \frac{5^5}{2^{10} k^4}\), which is not an integer for any integer \(k\), a contradiction.
\(w = 2 \). Here \(m^2 + n^2 = 5^2 \). In view of (36) and (42) we have \((m, n) = (3, 4)\). Then, by (51), we have

\[
2^u 5^v = |11e_n + 2m| = |44e + 6| = \begin{cases} 50, & \text{if } \varepsilon = 1, \\ 38, & \text{if } \varepsilon = -1, \end{cases}
\]

so that \(\varepsilon = 1, \ u = 1, \ v = 2 \). Thus \(3n - 4\varepsilon m = 0 \), so that \(a = 0 \), a contradiction.

\(w = 3 \). Here \(m^2 + n^2 = 5^3 \). In view of (36) and (42) we have \((m, n) = (11, 2)\). Then, by (51), we have

\[
2^u 5^v = |11e_n + 2m| = |22e + 22| = \begin{cases} 44, & \text{if } \varepsilon = 1, \\ 0, & \text{if } \varepsilon = -1, \end{cases}
\]
a contradiction.

\(w = 4 \). Here \(m^2 + n^2 = 5^4 \). In view of (36) and (42) we have \((m, n) = (7, 24)\). Then, by (51), we have

\[
2^u 5^v = |11e_n + 2m| = |264e + 14| = \begin{cases} 278, & \text{if } \varepsilon = 1, \\ 250, & \text{if } \varepsilon = -1, \end{cases}
\]

so that \(\varepsilon = -1, \ u = 1, \ v = 3 \). Then, by (41), we have \(a = \frac{2 \cdot 3}{5k^4} \), which is not an integer for any integer \(k \), a contradiction.

\(w = 5 \). Here \(m^2 + n^2 = 5^5 \). In view of (36) and (42) we have \((m, n) = (41, 38)\). Then, by (51), we have

\[
2^u 5^v = |11e_n + 2m| = |418e + 82| = \begin{cases} 500, & \text{if } \varepsilon = 1, \\ 336, & \text{if } \varepsilon = -1, \end{cases}
\]

so that \(\varepsilon = 1, \ u = 2, \ v = 3 \). Then, by (41), we have \(a = \frac{-19}{2^{10} 5^2 k^4} \), which is not an integer for any \(k \), a contradiction.

This completes the proof of Theorem 4.
We close with some examples. The second column of the Table indicates the theorem (Theorems 1, 2, 3 or 4), which applies to the polynomial $x^5 + ax + b$ in the first column to ensure that the equation $x^5 + ax + b = 0$ is insolvable by radicals. The third column gives the Galois group of the polynomial $x^5 + ax + b$.

Table. Quintic trinomials $x^5 + ax + b$ for which the quintic equation $x^5 + ax + b = 0$ is insolvable by radicals.

<table>
<thead>
<tr>
<th>$x^5 + ax + b$</th>
<th>Theorem</th>
<th>$Gal(x^5 + ax + b)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x^5 + 145x + 232$</td>
<td>Theorem 1</td>
<td>A_5</td>
</tr>
<tr>
<td>$x^5 + 239x + 956$</td>
<td>Theorem 1</td>
<td>A_5</td>
</tr>
<tr>
<td>$x^5 + 545x + 872$</td>
<td>Theorem 1</td>
<td>A_5</td>
</tr>
<tr>
<td>$x^5 + 5x + 1$</td>
<td>Theorem 1</td>
<td>S_5</td>
</tr>
<tr>
<td>$x^5 + 130x + 4$</td>
<td>Theorem 1</td>
<td>S_5</td>
</tr>
<tr>
<td>$x^5 + x + 10$</td>
<td>Theorem 2</td>
<td>S_5</td>
</tr>
<tr>
<td>$x^5 + 3x + 6$</td>
<td>Theorem 2</td>
<td>S_5</td>
</tr>
<tr>
<td>$x^5 + 3x + 9$</td>
<td>Theorem 3</td>
<td>S_5</td>
</tr>
<tr>
<td>$x^5 - 49x + 686$</td>
<td>Theorem 3</td>
<td>S_5</td>
</tr>
<tr>
<td>$x^5 - 54x + 162$</td>
<td>Theorem 3</td>
<td>S_5</td>
</tr>
<tr>
<td>$x^5 + 3x + 3$</td>
<td>Theorem 4</td>
<td>S_5</td>
</tr>
<tr>
<td>$x^5 + 72x - 36$</td>
<td>Theorem 4</td>
<td>S_5</td>
</tr>
</tbody>
</table>
References

Department of Mathematics and Statistics
Okanagan University College
Kelowna, B.C.
Canada V1V 1V7
e-mail: bkspear@okuc02.okanagan.bc.ca

Centre for Research in Algebra and Number Theory
School of Mathematics and Statistics
Carleton University
Ottawa, Ontario
Canada K1S 5B6
e-mail: williams@math.carleton.ca