CUBIC FIELDS WITH A POWER BASIS

BLAIR K. SPEARMAN AND KENNETH S. WILLIAMS

Abstract

It is shown that there exist infinitely many cubic fields L with a power basis such that the splitting field M of L contains a given quadratic field K.

1. Introduction. We prove the following result, which answers a question posed to the authors by James G. Huard.

Theorem. Let K be a fixed quadratic field. Then there exist infinitely many cubic fields L with a power basis such that the splitting field M of L contains K.

We remark that Dummit and Kisilevsky [2] have shown that there exist infinitely many cyclic cubic fields with a power basis.
2. Squarefree values of quadratic polynomials. The following result is due to Nagel [5]. We quote it in the form given by Huard [3].

Proposition 2.1. Let $f(x)$ be a polynomial with integer coefficients such that
(i) the degree of $f(x)=k$,
(ii) the discriminant of $f(x)$ is not equal to zero,
(iii) $f(x)$ is primitive,
(iv) $f(x)$ has no fixed divisors which are k th powers of primes.

Then infinitely many of $f(1), f(2), f(3), \ldots$ are k th power free.

We recall that a positive integer $d>1$ is called a fixed divisor of the primitive polynomial $f(x) \in \mathbf{Z}[x]$ if $f(k) \equiv 0(\bmod d)$ for all

[^0]Key words and phrases. Cubic fields, power bases.
Received by the editors on March 3, 2000, and in revised form on June 21, 2000.
$k \in \mathbf{Z}$. Thus, for example, 2 is a fixed divisor of $x^{2}+x$. Since the only possible fixed divisor of a primitive quadratic polynomial with integer coefficients is 2 , the case $k=2$ of Proposition 2.1 gives

Proposition 2.2. Let a, b, c be integers such that

$$
a \neq 0, b^{2}-4 a c \neq 0, \operatorname{gcd}(a, b, c)=1
$$

Then

$$
\left\{k \in \mathbf{Z}^{+}: a k^{2}+b k+c \text { is squarefree }\right\}
$$

is an infinite set.

If $a>0$, then $a k^{2}+b k+c \leq 1$ holds for only finitely many integers k so that Proposition 2.2 gives

Proposition 2.3. Let a, b, c be integers such that

$$
a>0, b^{2}-4 a c \neq 0, \operatorname{gcd}(a, b, c)=1
$$

Then

$$
\left\{k \in \mathbf{Z}^{+}: a k^{2}+b k+c \text { is squarefree and }>1\right\}
$$

is an infinite set.
3. The discriminant of a cubic field. Throughout this paper p denotes a prime. If m is a nonzero integer such that $p^{k} \mid m, p^{k+1} \nmid m$, we write $p^{k} \| m$ and set $v_{p}(m)=k$. The following result is due to Llorente and Nart [4], see also Alaca [1].

Proposition 3.1. Let a and b be integers such that the cubic polynomial $x^{3}-a x+b$ is irreducible and such that either $v_{p}(a)<2$ or $v_{p}(b)<3$ for all primes p. Let θ be a root of $x^{3}-a x+b$, and set $K=\mathbf{Q}(\theta)$ so that $[K: \mathbf{Q}]=3$. Let $s_{p}=v_{p}\left(4 a^{3}-27 b^{2}\right)$ and $\Delta_{p}=\left(4 a^{3}-27 b^{2}\right) / p^{s_{p}}$. Then the discriminant $d(K)$ of the cubic field K is given by

$$
d(K)=\operatorname{sgn}\left(4 a^{3}-27 b^{2}\right) 2^{\alpha} 3^{\beta} \prod_{\substack{p>3 \\ s_{p} \equiv 1(\bmod 2)}} p \prod_{\substack{p>3 \\ 1 \leq v_{p}(b) \leq v_{p}(a)}} p^{2}
$$

where

$$
\begin{aligned}
& \alpha= \begin{cases}3, & \text { if } s_{2} \equiv 1(\bmod 2), \\
2, & \text { if } 1 \leq v_{2}(b) \leq v_{2}(a), \text { or } \\
s_{2} \equiv 0(\bmod 2) \text { and } \Delta_{2} \equiv 3(\bmod 4), \\
0, & \text { otherwise, }\end{cases} \\
& \beta= \begin{cases}5, & \text { if } 1 \leq v_{3}(b)<v_{3}(a), \\
4, & \text { if } v_{3}(a)=v_{3}(b)=2, \text { or } \\
a \equiv 3(\bmod 9), 3 \nmid b, b^{2} \not \equiv 4(\bmod 9), \\
3, & \text { if } v_{3}(a)=v_{3}(b)=1, \text { or } \\
3 \mid a, 3 \nmid b, a \not \equiv 3(\bmod 9), b^{2} \not \equiv a+1(\bmod 9), \text { or } \\
1, & \text { if } 1=v_{3}(a)<v_{3}(b), \text { or } \\
3 \mid a, a \neq 3(\bmod 9), b^{2} \equiv a+1(\bmod 9), \text { or } 9\end{cases} \\
& 0, \begin{array}{l}
a \equiv 3(\bmod 9), b^{2} \equiv a+1(\bmod 27), s_{3} \equiv 1(\bmod 2), \\
0, \\
\text { if } 3 \nmid a, \text { or } \\
a \equiv 3(\bmod 9), b^{2} \equiv a+1(\bmod 27), s_{3} \equiv 0(\bmod 2) .
\end{array}
\end{aligned}
$$

4. Proof of theorem. Let K be a quadratic field so that $K=\mathbf{Q}(\sqrt{d})$ for a unique squarefree integer $d \neq 1$. (We remark that our proof is also valid when $d=1$ giving another proof that there are infinitely many cyclic cubic fields with a power basis, see Dummit and Kisilevsky [2].) We now describe briefly how our theorem is proved. We construct infinitely many cubic polynomials $\left\{f_{k}(x): k \in S\right\}$ in such a way that the corresponding cubic fields $\left\{L_{k}=\mathbf{Q}\left(\theta_{k}\right): k \in S\right\}$, where θ_{k} is a root of $f_{k}(x)$, are all distinct and satisfy $d\left(L_{k}\right)=\operatorname{disc}\left(f_{k}(x)\right)$ and $d\left(L_{k}\right) / d=$ square. Thus $\left\{L_{k}: k \in S\right\}$ is an infinite set of cubic fields containing $Q(\sqrt{d})$, each of which has a power basis.

We consider the following ten cases:

$$
\begin{array}{lll}
\text { Case } 1: & d \equiv 2(\bmod 4), & d \not \equiv 0(\bmod 3) \\
\text { Case } 2: & d \equiv 2(\bmod 4), & d \equiv 0(\bmod 3) \\
\text { Case } 3: & d \equiv 3(\bmod 4), & d \not \equiv 0(\bmod 3) \\
\text { Case } 4: & d \equiv 3(\bmod 4), & d \equiv 0(\bmod 3) \\
\text { Case } 5: & d \equiv 1(\bmod 8), & d \not \equiv 0(\bmod 3) \\
\text { Case } 6: & d \equiv 1(\bmod 8), & d \equiv 0(\bmod 3) . \\
\text { Case } 7: & d \equiv 5(\bmod 16), & d \not \equiv 0(\bmod 3) \\
\text { Case } 8: & d \equiv 5(\bmod 16), & d \equiv 0(\bmod 3) \\
\text { Case } 9: & d \equiv 13(\bmod 16), & d \not \equiv 0(\bmod 3) \\
\text { Case 10 }: & d \equiv 13(\bmod 16), & d \equiv 0(\bmod 3) .
\end{array}
$$

In cases 7 and 8 we let q be a prime such that

$$
q \equiv 11 \quad(\bmod 16), \quad q \nmid d .
$$

We define

$$
p(k)= \begin{cases}36 d^{2} k^{2}+12 d k+(3 d+1), & \text { case } 1, \\ 81 d^{2} k^{2}+54 d k+(9+(d / 3)), & \text { case } 2, \\ 36 d^{2} k^{2}+24 d k+(4+3 d), & \text { case } 3, \\ 324 d^{2} k^{2}+216 d k+(36+(d / 3)), & \text { case } 4, \\ 36 d^{2} k^{2}+6 d k+((1+3 d) / 4), & \text { case } 5, \\ 324 d^{2} k^{2}+54 d k+((27+d) / 12), & \text { case } 6, \\ 648 d^{2} k^{2}+18 q d k+\left(\left(q^{2}+3 d\right) / 8\right), & \text { case } 7, \\ 72 d^{2} k^{2}+18 q d k+\left(\left(27 q^{2}+d\right) / 24\right), & \text { case } 8 \\ 72 d^{2} k^{2}+6 d k+((1+3 d) / 8), & \text { case } 9 \\ 648 d^{2} k^{2}+54 d k+((27+d) / 24) . & \text { case } 10\end{cases}
$$

It is easily checked that in all cases the coefficients of $p(k)$ are integers so that $p(k) \in \mathbf{Z}$ for all $k \in \mathbf{Z}$. Moreover,

$$
\operatorname{gcd}(p(k), 6 d)=1 \quad \text { for all } k \in \mathbf{Z}
$$

Further, the conditions stated in Proposition 2.3 are satisfied by the coefficients of $p(k)$ in every case. Thus, by Proposition 2.3 , the set

$$
S=\left\{k \in \mathbf{Z}^{+}: p(k) \text { is squarefree and }>1\right\}
$$

is infinite. Moreover, no two distinct values of k in S can give the same value to $p(k)$.

For $k \in S$, we set

$$
f_{k}(x)=x^{3}-a x+b
$$

where

$$
(a, b)=(a(k), b(k))= \begin{cases}(3 p(k), 2(6 d k+1) p(k)), & \text { case } 1, \\ (3 p(k), 2(9 d k+3) p(k)), & \text { case } 2, \\ (3 p(k), 2(6 d k+2) p(k)), & \text { case 3, } \\ (3 p(k), 2(18 d k+6) p(k)), & \text { case 4, } \\ (3 p(k),(12 d k+1) p(k)), & \text { case 5, } \\ (3 p(k),(36 d k+3) p(k)), & \text { case } 6, \\ (6 p(k), 2(72 d k+q) p(k)), & \text { case 7, } \\ (6 p(k), 6(8 d k+q) p(k)), & \text { case 8, } \\ (6 p(k), 2(24 d k+1) p(k)), & \text { case } 9 \\ (6 p(k), 2(72 d k+3) p(k)), & \text { case } 10\end{cases}
$$

It is easy to check that $\operatorname{gcd}(b(k) / p(k), p(k))=1$ in all cases so that $f_{k}(x)$ is p-Eisenstein for every prime $p \mid p(k)$. Thus $f_{k}(x)$ is irreducible. Let θ_{k} be a root of $f_{k}(x)$, and set $L_{k}=\mathbf{Q}\left(\theta_{k}\right)$ so that $\left[L_{k}: \mathbf{Q}\right]=3$. Clearly there does not exist a prime p such that $v_{p}(a) \geq 2$ so that we can apply Proposition 3.1 to determine the discriminant $d\left(L_{k}\right)$ of the cubic field L_{k}. We note that

$$
\operatorname{disc}\left(f_{k}(x)\right)=4 a^{3}-27 b^{2}=\left\{\begin{aligned}
2^{2} \cdot 3^{4} p(k)^{2} d, & \text { case } 1, \\
2^{2} \cdot 3^{2} p(k)^{2} d, & \text { case } 2, \\
2^{2} \cdot 3^{4} p(k)^{2} d, & \text { case } 3, \\
2^{2} \cdot 3^{2} p(k)^{2} d, & \text { case } 4, \\
3^{4} p(k)^{2} d, & \text { case } 5, \\
3^{2} p(k)^{2} d, & \text { case } 6, \\
2^{2} \cdot 3^{4} p(k)^{2} d, & \text { case } 7, \\
2^{2} \cdot 3^{2} p(k)^{2} d, & \text { case } 8, \\
2^{2} \cdot 3^{4} p(k)^{2} d, & \text { case } 9, \\
2^{2} \cdot 3^{2} p(k)^{2} d, & \text { case } 10 .
\end{aligned}\right.
$$

We have

$$
\begin{aligned}
s_{2} & =3, & & \text { cases } 1,2 \\
a & \equiv 3(\bmod 4), b \equiv 0(\bmod 4), & & \text { cases } 3,4 \\
b & \equiv 1(\bmod 2), & & \text { cases } 5,6 \\
a & \equiv 0(\bmod 2), b \equiv 2(\bmod 4), & & \text { cases } 7,8,9,10
\end{aligned}
$$

so that, by Proposition 3.1, we have

$$
v_{2}\left(d\left(L_{k}\right)\right)= \begin{cases}3, & \text { cases } 1,2 \\ 2, & \text { cases } 3,4,7,8,9,10 \\ 0, & \text { cases } 5,6\end{cases}
$$

Next,
$a \equiv 3(\bmod 9), b \not \equiv 0(\bmod 3)$,
$b \equiv 2-3 d(\bmod 9), b^{2} \equiv 4-3 d \not \equiv 4(\bmod 9), \quad$ case 1,
$v_{3}(a)=v_{3}(b)=1$,
cases $2,4,6,8,10$,
$a \equiv 3(\bmod 9), b \not \equiv 0(\bmod 3)$,
$b \equiv 3 d-2(\bmod 9), b^{2} \equiv 4-3 d \not \equiv 4(\bmod 9), \quad$ cases $3,5,9$,
$a \equiv 3(\bmod 9), b \not \equiv 0(\bmod 3)$,
$b \equiv 3 q d-2 q^{3}(\bmod 9), b^{2} \equiv 4-3 d \not \equiv 4(\bmod 9), \quad$ case 7,
so that, by Proposition 3.1, we have

$$
v_{3}\left(d\left(L_{k}\right)\right)= \begin{cases}4, & \text { cases } 1,3,5,7,9 \\ 3, & \text { cases } 2,4,6,8,10\end{cases}
$$

Easy calculations show that in all cases

$$
\prod_{\substack{p>3 \\ 1 \leq v_{p}(b) \leq v_{p}(a)}} p^{2}=p(k)^{2}
$$

and

$$
\operatorname{sgn}\left(4 a^{3}-27 b^{2}\right) \prod_{\substack{p>3 \\ s_{p} \equiv 1(\bmod 2)}} p=\frac{d}{\operatorname{gcd}(d, 6)} .
$$

Hence, by Proposition 3.1, we deduce that

$$
d\left(L_{k}\right)=\operatorname{disc}\left(f_{k}(x)\right), \quad \text { for all } k \in S
$$

Thus, L_{k} has a power basis for each $k \in S$. For $k_{1}, k_{2} \in S$ with $k_{1} \neq k_{2}$ we have $p\left(k_{1}\right) \neq p\left(k_{2}\right)$ and $p\left(k_{1}\right)>1, p\left(k_{2}\right)>1$, so that $p\left(k_{1}\right)^{2} \neq p\left(k_{2}\right)^{2}$, and thus $d\left(L_{k_{1}}\right) \neq d\left(L_{k_{2}}\right)$ proving that $L_{k_{1}} \neq L_{k_{2}}$. Thus, $\left\{L_{k}: k \in S\right\}$ is an infinite set of distinct cubic fields, each with a power basis. Since each $d\left(L_{k}\right) / d$ is a square, the splitting field M_{k} of L_{k} contains $Q(\sqrt{d})$.

REFERENCES

1. S. Alaca, p-integral bases of algebraic number fields, Ph.D. Thesis, Carleton University, 1994.
2. D.S. Dummit and H. Kisilevsky, Indices in cyclic cubic fields, Number theory and algebra, collected papers dedicated to Henry B. Mann, Arnold E. Ross and Olga Taussky-Todd (Hans Zassenhaus, ed.), Academic Press, New York, 1977, pp. 29-42.
3. J.G. Huard, Index forms and power bases for cyclic cubic fields, Ph.D. Thesis, Pennsylvania State University, 1978.
4. P. Llorente and E. Nart, Effective determination of the decomposition of the rational primes in a cubic field, Proc. Amer. Math. Soc. 87 (1983), 579-585.
5. T. Nagel, Zur Arithmetik der Polynome, Abh. Math. Sem. Univ. Hamburg 1 (1922), 179-194.

Department of Mathematics and Statistics, Okanagan University College, Kelowna, B.C. Canada V1V 1V7
E-mail address: bkspearm@okuc02.okanagan.bc.ca
School of Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada K1S 5B6
E-mail address: williams@math.carleton.ca

[^0]: 1991 AMS Mathematics Subject Classification. Primary 11R16.

