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THE CUBIC CONGRUENCE x3 + Ax2 + Bx+ C ≡ 0 (mod p)
AND BINARY QUADRATIC FORMS II

BLAIR K. SPEARMAN and KENNETH S. WILLIAMS

Abstract

It is shown that the splitting modulo a prime p of a given monic, integral, irreducible cubic with non-
square discriminant is equivalent to p being represented by forms in a certain subgroup of index 3 in the
form class group of discriminant equal to the discriminant of the field defined by the cubic.

1. Introduction

Let A,B, C be integers such that x3 +Ax2 +Bx+C is irreducible in Z[x] with non-
square discriminant D. Throughout this paper p denotes a prime > 3 with (D/p) = 1.
Let H(∆) denote the group of classes of primitive, integral, binary quadratic forms
of discriminant ∆. In our paper [3], we proved the following.

Theorem A. There exists a unique subgroup J = J(A,B, C) of index 3 in H(D)
such that x3 + Ax2 + Bx + C ≡ 0 (mod p) has three solutions if and only if p is
represented by one of the forms in J(A,B, C).

Since the publication of this paper in 1992, a number of mathematicians have
asked us ‘can the polynomial discriminant D be replaced in the theorem by the field
discriminant d = d(C1) of the cubic field C1 = Q(θ), where θ3 +Aθ2 +Bθ+C = 0?’.
It is the purpose of this sequel to answer their question in the affirmative.

2. Proof of revised theorem

Let K be the quadratic fieldQ(
√
D). Let L be the splitting field of x3+Ax2+Bx+C .

Let f0 = f0(L/K) ∈ Z be the finite part of the conductor of the extension L/K .
We first prove the following.

Theorem 1. Let f be a positive integer with f0|f. Then there exists a unique sub-
group J = J(L,K, f) of index 3 in H(d(K)f2) with the property

x3+Ax2+Bx+C ≡ 0 (mod p) has three solutions ⇔ p is represented by a form in J.

Proof. Let F+
f (K) denote the strict ring class field of the order of conductor f in

K . As f0|f, by [1, Lemma 3.1.6], we have L ⊆ F+
f (K). Then, by [1, Theorem 3.1.3],

there exists a unique subgroup J = J(L,K, f) of index 3 in H(d(K)f2) such that
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x3 +Ax2 +Bx+C ≡ 0 (mod p) has three solutions if and only if p is represented by
one of the forms in J . q

We can now answer the question.

Theorem 2. There exists a unique subgroup J = J(L,K, f0) of index 3 in H(d)
such that

x3+Ax2+Bx+C ≡ 0 (mod p) has three solutions ⇔ p is represented by a form in J.

Proof. The theorem follows from Theorem 1 by taking f = f0 = f0(L/K) and
recalling that d(K)f2

0 = d(C1) = d; see for example [2, pp. 835–836; 1, Theorem
4.2.7]. q

3. Concluding remarks

We note that [3, Corollaries 1 and 2] are still true with D replaced by d; [3,
Corollaries 3 and 4] remain the same. We also note that in [3, Examples 1–4] the
corresponding values of d are −3159, −31, 321, −3299 and Theorem 2 explains why
subgroups of H(−3159), H(−31), H(321), H(−3299) can be used to characterize the
splitting of the cubics given in the examples.
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