THE CUBIC CONGRUENCE $x^{3}+A x^{2}+B x+C \equiv 0(\bmod p)$ AND BINARY QUADRATIC FORMS II

BLAIR K. SPEARMAN and KENNETH S. WILLIAMS

Abstract

It is shown that the splitting modulo a prime p of a given monic, integral, irreducible cubic with nonsquare discriminant is equivalent to p being represented by forms in a certain subgroup of index 3 in the form class group of discriminant equal to the discriminant of the field defined by the cubic.

1. Introduction

Let A, B, C be integers such that $x^{3}+A x^{2}+B x+C$ is irreducible in $\mathbb{Z}[x]$ with nonsquare discriminant D. Throughout this paper p denotes a prime >3 with $(D / p)=1$. Let $H(\Delta)$ denote the group of classes of primitive, integral, binary quadratic forms of discriminant Δ. In our paper [3], we proved the following.

Theorem A. There exists a unique subgroup $J=J(A, B, C)$ of index 3 in $H(D)$ such that $x^{3}+A x^{2}+B x+C \equiv 0(\bmod p)$ has three solutions if and only if p is represented by one of the forms in $J(A, B, C)$.

Since the publication of this paper in 1992, a number of mathematicians have asked us 'can the polynomial discriminant D be replaced in the theorem by the field discriminant $d=d\left(C_{1}\right)$ of the cubic field $C_{1}=\mathbb{Q}(\theta)$, where $\theta^{3}+A \theta^{2}+B \theta+C=0$?'. It is the purpose of this sequel to answer their question in the affirmative.

2. Proof of revised theorem

Let K be the quadratic field $\mathbb{Q}(\sqrt{D})$. Let L be the splitting field of $x^{3}+A x^{2}+B x+C$. Let $f_{0}=f_{0}(L / K) \in \mathbb{Z}$ be the finite part of the conductor of the extension L / K.

We first prove the following.
Theorem 1. Let f be a positive integer with $f_{0} \mid f$. Then there exists a unique subgroup $J=J(L, K, f)$ of index 3 in $H\left(d(K) f^{2}\right)$ with the property $x^{3}+A x^{2}+B x+C \equiv 0(\bmod p)$ has three solutions $\Leftrightarrow p$ is represented by a form in J.

Proof. Let $F_{f}^{+}(K)$ denote the strict ring class field of the order of conductor f in K. As $f_{0} \mid f$, by [1, Lemma 3.1.6], we have $L \subseteq F_{f}^{+}(K)$. Then, by [1, Theorem 3.1.3], there exists a unique subgroup $J=J(L, K, f)$ of index 3 in $H\left(d(K) f^{2}\right)$ such that

[^0]$x^{3}+A x^{2}+B x+C \equiv 0(\bmod p)$ has three solutions if and only if p is represented by one of the forms in J.

We can now answer the question.
Theorem 2. There exists a unique subgroup $J=J\left(L, K, f_{0}\right)$ of index 3 in $H(d)$ such that
$x^{3}+A x^{2}+B x+C \equiv 0(\bmod p)$ has three solutions $\Leftrightarrow p$ is represented by a form in J.
Proof. The theorem follows from Theorem 1 by taking $f=f_{0}=f_{0}(L / K)$ and recalling that $d(K) f_{0}^{2}=d\left(C_{1}\right)=d$; see for example [2, pp. 835-836; 1, Theorem 4.2.7].

3. Concluding remarks

We note that [3, Corollaries 1 and 2] are still true with D replaced by d; [3, Corollaries 3 and 4] remain the same. We also note that in [3, Examples 1-4] the corresponding values of d are $-3159,-31,321,-3299$ and Theorem 2 explains why subgroups of $H(-3159), H(-31), H(321), H(-3299)$ can be used to characterize the splitting of the cubics given in the examples.

References

1. D. Liv, 'Dihedral polynomial congruences and binary quadratic forms: a class field theory approach', PhD Thesis, Carleton University, 1992.
2. D. C. Mayer, 'Multiplicities of dihedral discriminants', Math. Comp. 58 (1992) 831-847.
3. B. K. Spearman and K. S. Williams, 'The cubic congruence $x^{3}+A x^{2}+B x+C \equiv 0(\bmod p)$ and binary quadratic forms', J. London Math. Soc. 46 (1992) 397-410.

Department of Mathematics and Statistics
Okanagan University College
Kelowna
British Columbia V1V 1 V7
Canada
bkspearm@okuc02.okanagan.bc.ca

Centre for Research in Algebra and Number Theory
School of Mathematics and Statistics
Carleton University
Ottawa
Ontario K1S 5B6
Canada
williams@math.carleton.ca

[^0]: Received 9 January 2000.
 2000 Mathematics Subject Classification 11A07.
 Both authors were supported by Natural Sciences and Engineering Research Council of Canada grants.

