
The Fibonacci Quarterly 36 (1998), 158-170. 

THE FACTORIZATION OF xs f xu + n 
Blair K. Spearman 

D&t. of Math. and Statistics, 0kanag& university College. Kelowna, BC, Canada Vl V 1 V7 
e-mail: bkspcarm@okanagan.bc.ca 

Kenneth S. Williams 
Dept. of Math. and Statistics, Carleton Univasity. Ottawa. Ontario. Canada KlS 5B6 

e-mil: ~ 1 l i ~ t h . c a r l e t o n . c a  
(Submitted June 1996) 

1. INTRODUCTION 

Rabinowitz [5] has determined all integers n for which x5 f x + n  factors as a product of an 
irreducible quadratic and an irreducible cubic with integral coefficients. Using the properties of 
Fibonacci numbeklhe sliowed that, in fact, there are only ten such integers n. 

Theorem (Rabinowitz 151): The only integral n for which x5+x  + n  factors into the product of 
an irreducible quadratic and an irreducible cubic are n = f 1 and n = f 6 .  The factorizations are 

x 5 + x l l = ( x 2 + x f  1)(x3Tx2f l), 
x 5 + x f  6 = ( x 2 f  x+2)(x3Tx2-xf  3). 

The only integral n for which x5 - x + n  factors into the product of an irreducible quadratic 
and an irreducible'cubic are n = +15, n = f22,440, and n = f 2,759,640. The factorizations are 

' In this paper we investigate the corresponding question for the quintics x5 f xa + n ,  where 
a = 2,3, and 4. We show that for a = 2,3  the]:: are only finitely many n for which x5 f xa + n  
factors as a product of an irreducible quadratic and an irreducible cubic, whereas, for a = 4, rather 
surprisingly we show that there are infinitely many such n, which#can b e  parameterized.using the 
Fibonacki numbers. Our treatment of the polynomials x5 f xa + n  makes use of the following 
three results about Fibonacci numbers. 

Theorem (Cohn [I],  121): The only Fibonacci numbers Fk (k r 0) that are perfect squares are 
& = 0 2 ,  4 =& =12, and 4,= 1z2. 

Theorem (London and Finkelstein [3]): The only Fibonacci numbers F, (k r 0) that are perfect 
: C U b e ~ a r e ~ = d ,  .. . ~ ; = ~ , = l ~ , a n d F , = ~ ~ .  

Theorem (Wasteels 171, May 141): If x and y are nonzero integers such that x2 - xy - y2 = E, 
where E = f 1, then there exists a positive integer k such that 

X = F , + ~ ,  y = F , ,  E = ( - ) ~ ,  i fx>O,y>O,  

x = F,, y = -F,+,, E = (-l)k+l, if x > 0, y c 0, 
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We remark that the above formulation corrects, and makes more precise, May's extension of 
Wasteels' theorem. To see that May's result is not correct, take x = 13 and y = -8 in part (3)  of 
hkr theorem. Clearly 

y2-xy-x2+1=(-8)2-13(-8)-132+l=64+104-169+1=0, 

but there does not exist an integer n such that 13 = Fn-,, - 8 = -Fn, or 13 = -F,-,, - 8 = F,, since 
F_, =13, F,=-8, &=8,  and&= 13. 

We prove the following results. 

Theorem 1: The only integers n for which x5 + x2 + n  factors into the product of an irreducible 
quadratic and an irreducible cubic are n = -90, - 4,18, and 1 1466. The factorizations are 

The only integers n for which x5 - x2 + n factors into the product of an irreducible quadratic and 
an irreducible cubic are n = -1 1466, -18,4, and 90. The factorizations are 

x5 - x2 - 1 1466 = (x2 - 4x + 42)(x3 + 4xz - 26x - 273), 
..a 

x5-x2-18=(x2-x+3)(x3+x2-2x-6), 

x5-x2 +4 = (x2+x+2) (x3-x2-x+2) ,  

x5-x2 +90= (x2 -4x+6)(x3+4x2 +10x+15). 

Theorem 2: The only integers n for which x5 - x3 + n factors into the product of an irreducible 
quadratic and an irreducible cubic are n = +8. The factorizations are 

There are no integers n for which x5 + x3 +n  factors into the product of an irreducible quadratic 
and an irreducible cubic. 

Theorem 3: Apart from the factorizations 

x5+x4+1=(x2+x+1)(x3-x+l),  

x5-x4-1=(x2-x+1)(x3-x-l),  

all factorizations of x5 f x4 +n as a product of an irreducible quadratic and an irreducible cubic 
with n integral are given by 

+e(-ilk ~4 +e@-,~k4+,fi?+~ = ( X Z  + e ~ 5 - , 4 + ~ ~  + f i - , f i + , ~ k : ~ )  

x (x3 -6)Fkfi+,x2 - fi-'FkZ+,fi+2~ +6)Fk-,FkZ+,Fk:2) 
(1.1) 

and 
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where 19 = f 1 and k is an integer with k 2 2 and F, denotes the k'h Fibonacci number. 
Taking k = 2 and 3 in Theorem 3, we obtain the factorizations 

2. FACTORIZATION OF x5 f x2 + n 

Let m and n be integers with n f 0. Suppose that 

where a, b, c, d, and e are integers. Then, equating coefficients in (2. l), we obtain 

From (2.2), as n # 0, we deduce that 
b#O, e g o .  

We show next that a # 0. Suppose, on the contrary, that a = 0. From (2.3) we see that 
bd = 0. Hence, from (2.7), we have d = 0. Then, from (2.5), we deduce that b = 0, contradicting 
(2.7). Hence, we must have 

a g o .  (2.8) 

Next, we show that a2 - 2b # 0. For, if a2 - 2b = 0, then, from (2.3), (2.5.), and (2.6), we deduce 
that 

b = a 2 / 2 ,  c=-a,  d = a 2 / 2 ,  e= -a3 /4 .  (2.9) 

Then, from (2.2), (2.4), and (2.9), we have 

From (2. l), (2.9), and (2. lo), we obtain the factorization 

As -a3 I4  # +1, this factorization is not of the required type. Hence, we may suppose that 

a2-2bg0.  (2.12) 
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Equations (2.3), (2.4), and (2.5) can be written as three linear equations in the three unknowns c, 
d, and e: 

bc+ad+e  =m, 
(2.13) 

Solving the system (2.13) for c, d, and e, we have 

Putting these values into (2.6), we obtain 

Now let 
a4 - 3a2b + b2 = am. 

a = a,a,2, 

where a, is a squarefree integer and a, is a positive integer. Then (2.15) becomes 

afa; - 3a:a;b + b2 = alaim. (2.17) 

From (2.17), we see that a,ai 1b2, so that ala2 (b, say, 

where r is a nonzero integer. From (2.17) and (2.18), we deduce that 

a:a,6 - 3a:air + alr2 = m. 

We now suppose that m = f 1. From (2.19), we see that a, = 21. Hence, a: = 1 and (2.19) gives 

We define integers s (> 0) and t by 

From (2.20) and (2.21), we obtain 

First, we deal with the possibility t = 0. If a, = 1, then, from (2.21), we deduce that r = s  
and, fiom (2.22), that -s2 = m. Hence, m = -1 and r = s = +1. Then, by (2.2 l), we have a, = s = 
f 1. Hence, by (2.16) and (2.18), we have a = 1 and b = 1. Then, from (2.14), we get e = 0, con- 
tradicting (2.7). If a, = -1, then, fiom (2.21), we deduce that r = -2s and, from (2.22), that 
? = m .  Hence,m=l, s = + l ,  andr=T2.  Then,by(2.21),wehavea2=s=f1.  Next, by(2.16) 
and (2.18), we have a = -1 and b = 2 .  Then, from (2.2) and (2.14), we get c = 1, d = -1, e = -2, 
n = -4, and (2.1) becomes 

which is one of the factorizations listed in Theorem 1. 
Now we turn to the case t ;t 0. As t ;t 0 and s >  0, by the theorem of Wasteels and May, 

there is a positive integer k such that s = F, . Thus, by (2.21), we have F, = a;. Appealing to the 
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theorem of London and Finkelstein, we deduce that s = F, =a: = l3 or 23, so that a, = 1 or 2. 
We have eight cases to consider according as a, = 1 or - 1, a, = 1 or 2, m = 1 or - 1. In each case, 
we determine a from (2.16). Then we determine the possible values of r (if any) from the quadra- 
tic equation (2.20). Next, we determine b from (2.18). Then the values of c, d, and e are deter- 
mined from c = -a, d = -b -ac, and e = -bd la. Finally, n is determined using n = be. We 
obtain the following table: 

- - - - - 

These give the eight factorizations listed in the statement of Theorem 1. It is easy to check in 
each case that the quadratic and cubic factors are irreducible. 

a , a , m a  
1 2 1 4  

1 2 -1 
1 1 1 

1 1 - 1 1  

-1 2 1 
-1 2 -1 

-1 1 1 

-1 1 -1 

3. FACTORIZATION OF x5 f x3 + n 

r b c d e  n 
3 6 -4 10 -15 -90 

21 42 -4 -26 273 11466 
4 (none) 
1 0 0 (inadmissible as b # 0) 

3 3 - 1 -2 6 18 
1 1 -1 0 0 (inadmissible as e # 0) 
2 2 - 1 -1 2 4 

-4 (none) 
-4 -3 6 4 10 15 90 

-21 42 4 -26 -273 -1 1466 
-1 -1 1 1 0 0 (inadmissible as e + 0) 

-2 2 1 -1 -2 -4 
-1 0 0 (inadmissible as b $0) 

-3 3 1 -2 -6 -18 

Let m and n be integers with n # 0. Suppose that 

where a, b, c, d, and e are integers. Equating coefficients in (3. I), we obtain 

be = n, 
ae+bd = 0, 

ad+bc+e=O, 
b+ac+d =m, 

a+c=O.  
From (3.6), we obtain 

C = --u. 

As n z 0, we see from (3.2) that 
b#O, e z O .  

Suppose that a = 0. From (3.7), we have c = 0. Then, from (3.4), we deduce that e = 0, contra- 
dicting (3.8). Hence, we have 

a z 0. (3.9) 

Suppose next that b = a2.  Then, from (3.5) and (3.7), we deduce that d = m. Then, from (3.4), 
we obtain e = a3 -am. Next, (3.3) gives a = 0, contradicting (3.9). Thus, we have 
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b #a2. 
- Using (3.7) in (3.4), we obtain 

a d + e = a b .  

Solving (3.3) and (3.11) for d and e, we find that 

From (3.2) and (3.9, we deduce that 

We define the nonzero integer h by 
h=b-a2 .  

Then, from (3.7), (3.12), (3.13), and (3.14), we obtain 

These values of b, c, d, e, m, and n satisfL the equations (3.2)-(3.6). The equation for m can be 
rewritten as h2 - (a2 +m)h - a4 = 0. Solving this quadratic equation for h, we obtain 

where E = +1. Relation (3.15) shows that J(a2 +m)' + 4a4 is an integer, namely, ~ ( 2 h  - a2 - m) . 
Hence, there is an integer w such that 

From (3.9) and (3.16), we see that w # 0. As {a2 + m, 2a2, w) is a Pythagorean triple, there exist 
integers r, s, and t with gcd(r,s) = 1 such that 

We assume now that m = f 1. 
If (3.17) holds, then (r2-4rs-?)t =a2-2(a2+m)=-2m=f2,  so that t = + 1  or t  =K!. 

If t = +I, then r2 -4rs- ? = zk2, so that r2 - ? = 2 (mod 4), which is impossible, since r2 -? = 
0, 1,or 3 (mod 4). Hence, t = f 2  and 

r2-4rs-? = f l .  (3.19) 

From (3.19), we see that r + s  and r - s  are both odd integers so that, in particular, we have 
r + s # O  and r-s#O. Moreover, from (3.19), we have ( r + ~ ) ~ - ( r + s ) ( r - s ) - ( r - s 1 2  = + I .  
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Therefore, by the theorem of Wasteels and May, there are positive integers k and I such that 
J r + s ( = F k  and Ir-sl=F;. Now, by(3.17), wehave 

As Ir +sl and Ir -sI are both odd, and gcd(r, s) = 1, we have 

From (3.20) and (3.21), we deduce that each of ( r + s J  and )r -sl is a perfect square. Hence, 4 
and F; are both perfect squares so, by Cohn's theorem, we have (r + sJ = Fk = 1 or 144, Jr - sl = 
4 = 1 or 144. However, (r + s J  and Ir - sl are both odd, so (r + sl = 1 and Jr - s(= 1. Therefore, 
( r , s )=(f l ,O)or(O,+l) .  ~ e n c e , b ~ ( 3 . 1 7 ) , w e h a v e a ~ + m = 2 r s t = 0 , a n d , a s m = f l ,  wehave 
m = - 1 , a = 8 , w h e r e 8 = + 1 .  From(3.15),wededucethath=~;thus,a=8, b = l + ~ ,  c = - 8 ,  
d=-(I+&),  e=28(1+&),  m=-1, and n=48(1+&). Since b#O, wemust have & = I .  Thus, 
a = 8, b = 2, c = -8, d = -2, e = 48, m = -1, n = 88, which gives the factorization 

If (3.18) holds, then 

so that t = +I, r2 - rs - s2 = mt . If r or s = 0 ,  then, by (3.18), we have a = 0, contradicting (3.9). 
Hence, r # 0 and s # 0. Then, by the theorem of Wasteels and May, we have Ir I =  Fk, Jsl= 4 ,  for 
positive integers k and I. Now 

so each of Irl and Is1 is a perfect square. Thus, both Fk and 4 are perfect squares. Hence, by 
Cohn's theorem, we have (rl= 4 = 1 or 144 and JsJ= 4 = 1 or 144. Therefore, r = f 1, +I44 and 
s = + l ,  +144. 

From r2 - rs - ? = mt , we deduce that 

(a) r = 1 ,  s = l ,  mt=-1, or 

(p) r = l , s = - l , m t = l , o r  

(y) r = - l , s = l , m t = l , o r  

(6) r = - l , s = - l , m t = - 1 .  

Then, from a2 = rst we deduce that 

(a) t = l , m = - 1 , a = 8 ,  

(p) t=-1, m=-1, a = @ ,  

(y) t =-1, m=-1, a =  8, 
(6) t = l , m = - 1 , a = 8 ,  

where 8 = f l .  Inall fourcases, a 2 + m = 0  sothat, by(3.15), h = & .  Thus, b = a 2 + h = 1 + & .  
But b # 0, so E # -1, that is, E = 1. Hence, a = 8, b = 2, c = -8, d = -2, e = 48, m = -1, n = 88, 
which gives the same factorization as before. Since x2 +Ox+ 2 and x3 - Ox2 - 2x + 4 8  are both 
irreducible, this completes the proof of Theorem 2. 
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4. FACTORIZATION OF xS + x 4  + n 

Let m and n be integers with n # 0. Suppose that 

where a, b, c, d, and e are integers. Equating coefficients in (4. l), we obtain 

As n # 0 we have, from (4.2), 

We show next that a # 0. Suppose a = 0. Then, by (4.3) and (4.7), we have d = 0. From ( 4 3 ,  
we deduce that b = 0, contradicting (4.7). Hence, 

Suppose next that b = a2 / 2. Then, from (4.3) and (4.8) we obtain e = -ad / 2. Next, from (4.4) 
and (4.8), we deduce that d = -ac. Then (4.5) gives b = 0, contradicting (4.7). Hence, 

If a = m then, from (4.6), we have c = 0. Then (4.5) gives d = -b. Next, (4.4) gives e = bm. 
Now (4.3) and (4.7) give b = m2, so that e = m3 and d = -m2. Finally, from (4.2), we obtain 
n = d. Thus, (4.1) becomes 

With m = f 1 we have 
~ ~ + m x ~ + m = ( x ~ + m x + l ) ( x ~ - x + m ) .  

It is easy to check that x2 +mx + 1 and x3 - x +m are irreducible for m = + I .  
Thus, we may suppose from now on that a # m. Replacing x by -x in (4. I), we obtain the 

factorization 
x5-mx4-n =(x2 -m+b)(x3 -ex2 +&-e). 

Thus, in view of (4.8), we may suppose without loss of generality that a > 0. Solving (4.3), (4.4), 
and (4.5) for c, d, and e, we obtain 

Then, from (4.6) and (4.2), we deduce that 
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Assume now that m = +I. Writing the equation for m in (4.13) as a quadratic equation in b, we 
have 

b2 +a(2m-3a)b+a3(a-m) = 0. 

Solving for b, we find that 

where E = f 1. The equation (4.14) shows that z = +&u2 - 8ma + 4 is a nonnegative rational 
number. As a and m are integers, z must be a nonnegative integer such that 5a2 - 8ma + 4  = z2, 
that is, 

a2 + (2a - 2m)2 = z2 

As a # 0 and a ;c m, we have z 2 2, and there exist nonzero integers r, s, and t with gcd(r, s) = 1 
such that 

a=(r2-?)I ,  2a-2m=2rst, z=( r2+?) t  (4.1 6) 
or 

Clearly, as z > 0,  we have t > 0. Replacing (r, s) by (-r, - s), if necessary, we may suppose that 
r>O .  

We suppose first that (4.16) holds. Then 

Now m = f 1, so t = 1 and r2 -rs- ? = m. Appealing to the theorem of Wasteels and May, we 
have 

r = 4 + I ,  s = & ,  m=(-ilk, ifs>O, 

r = 4 ,  s = m = (-l)k+l, if s < 0, 

for some positive integer k. Then, from (4.16), we obtain 

As a > O, we must have s > O so that r = &+,, s = 4 ,  m = ( - I )~ and 

a = F,-,F,+, . 
Further, from (4.16), we have 

z = r2 +? = h2 = 4&+2 + 
and 
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Also, as a > 0, we have Fk-, # 0 so k # 1 and thus k 2 2. From (4.14), we have 

Thus, 

2 1 4?&?+2 - 24-14+14:2 = - 4 - 1 4 ? + 2 ,  if E = 1, 
a -2b= 

I ~ ? , F ~ Z , ~  - 2 c 1 4 4 + 2  = el&+2, if E = - 1, 
and 

2 1 - 4-14+IFkZ+Z = -4-14FkZ+2, if E = 1, 
a - b =  

- 4?144+2 = 4t14+l&+2, if E = -1. 

Then, from (4.10), (4.1 1), and (4.12), we obtain 

4-IFk:IFkZ+2, if E = 1, 

-F,Z_,43F,+,, if E = - 1. 
From (4.13), we get 

F,Z_,F,4,,4t2, if E = I, 

-4!144FkZ+2, if E = - 1. 

Then (4.1) gives the factorizations 

and two more obtained by changing x to -x.  These are the factorizations given in the statement 
of Theorem 3. 

We now suppose that (4.17) holds. Then 
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Hence, r = r2 E s2 = s (mod 2). But gcd(r, s) = 1, so r = s = 1 (mod 2). Then r2 - d = 0 (mod 
4), which contradicts (4.21). Therefore, we must have 1 = 2, in which case r2 - 4rs- d = -m, so 
that 

(2r)2 - (2r)(r + s) - (r + s ) ~  = -m . 

As a > 0, r > 0, and 1 > 0, we see from (4.17) that s > 0. Thus, 2r and r + s are positive integers, 
and so, by the theorem of Wasteels and May, we have 

for some positive integer k. Thus, 

As s # 0, we see that k # 2. Now 21 F, a 3 1h (see [6] ,  p. 32), so as r and s are integers, we have 

for some integer 1 2  1. Hence, by (4.17), we have 

a = F,lF,1+39 

and 

Comparing (4.22), (4.23), and (4.24) to (4.18), (4.19), and (4.20), respectively, we see that the 
possibility (4.17) just leads to a special case k = 31 + 1 (1 2 1) of the previous case and, therefore, 
does not lead to any new factorizations. 

The discriminant of x2 + BF,-,F,+,X + F,-,F,+,~, is 

which is negktive for k 2 2. Hence, x2 + 19F,-,&+~x + 4-,4+,~,  is irreducible. Similarly, the 
discriminant of x2 + BF,-,F,+~X + $,44+, is 

which is negative for k 2 2. Thus, x2 +B&-,&+2x + C , ~ F , , ,  is irreducible. To complete the 
proof of Theorem 3, it remains to show that the cubic polynomials 

x3 - e&4+,x2 - 4 - 1 4 ~ 1 4 + 2 ~  + 6)4-1&~14?+~ 
and 
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are irreducible over the rational field Q for k 2 2 and 6 = +I. This is done in the next section. It 
clearly suffices to treat only the case 6 = 1. 

5. JRREDUCIBILITY OF TWO CUBIC POLYNOMIALS 

In this section we prove that the two cubic polynomials 

f ( x >  = x3 - h&+,xZ - &-,FAl&+zx + &-,ci,Fkz (5.1) 
and 

g(x) = x3 - &F,+I~Z 4 &-I&z&+Z~ - F2-I&3F,+z (5.2) 

are irreducible over the rationals for k 2 2. Before proving this (see Theorem 4 below), we prove 
three lemmas. 

Lemma 1: If N is a nonzero integer, then the quintic equation xS +x4 + N = 0 has exactly one 
real root. 

Proofi The fbnction F(x) = x5 + x4 + N has a local maximum at x = -4 15 and a local mini- 
mum at x = 0. There are no other local maxima or local minima. Clearly, F(-4 / 5) = N + 44 / 5' 
and F(0) = N. As N is a nonzero integer, we cannot have N I 0 < N + 44 15'. Hence, either 
N > 0 or N + 44 15' < 0. If N > 0, the curve y = F(x) meets the x-axis at exactly one point x, 
(x, < -4 15). If N + 44 1 55 < 0, the curve y = F(x) meets the x-axis at exactly one point x, 

- (x, > 0). Hence, F(x) = 0 has exactly one real root. 

: Lemma 2: For k 2 2, each of the quintic polynomials 

A(X) = xS + (- 11kx4 + &:,&:l~z 

and 
B(X) = xs + (- 11kx4 - &:,F;&;~ 

has exactly one real root. 

Proofi As k 22 ,  ( - I ) ~ ~ , ~ , ~ ,  is a nonzero integer. Hence, by Lemma 1, the quintic 
polynomial Q(y) = yS + y4 + ( - l ) k F k Z _ , ~ , ~ z  has exactly one real root. Thus, the quintic poly- 
nomial A(x) = (-l)k~((-l)kx) has exactly one real root. The quintic polynomial B(x) can be 
treated similarly. 

Lemma 3: For k 2 2, each of the cubic polynomials f (x) and g(x) has exactly one real root. 

Proofi From (1. I), (1.2), (5. l), (5.2), (5.3), and (5.4), we have 

Since the two quadratics have no real roots, the result follows from Lemma 2. 

Theorem 4: For k 2 2 the cubic polynomials f (x) and g(x) are irreducible over the rationals. 

Proofi Suppose f (x) is reducible over the rationals. Then, by Lemma 3, f (x) has exactly 
one real root, which must be rational and, in fact, an integer. Thus, 
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I .  

: has exactly one real root, which must be an integer. Hence, 

has exactly one real root r, which must be an integer. If k is even, then j,(O) = F,+, > 0 and 

so -1 < r < 0, which is impossible. Ifk is odd, then f,(O) = -Fk+2 < 0 and 

so 0 < r < 1, which is impossible. Hence, f (x) is irreducible over Q. 
We now turn to g(x). Suppose g(x) is reducible over Q. Then, by Lemma 3, g(x) has 

exactly one real root, which must be rational and, in fact, integral. Thus, 

has exactly one real root, which must be an integer. Therefore, 

has exactly one real root s, which must be an integer. If k is even, then g2(0) = -Fk-, < 0 and 

g2(1) = 1 + 4 + 4-, + hk-, - 4-, 
2 1 + Fk-2 + 4 k - i  > 0, 

so that 0 < s < 1, which is impossible. If k is odd, then g2(0) = 4-, > 0 and 

g2(-I)=-l+F,+F,-, -F,,-,+F,-, 
= -1 + 2 4  - 2hk-, - F,,-, 
<-1-2(hk-3-Fk)<-1<o, 

so that -1 < s < 0, which is impossible. Hence, g(x) is irreducible over Q. 
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