# THE FACTORIZATION OF $x^{5} \pm x^{a}+n$ 

Blair K. Spearman<br>Dept. of Math. and Statistics, Okanagan University College, Kelowna, BC, Canada VIV IV7<br>e-mail: bkspearm@okanagan.bc.ca

## Kenneth S. Williams

Dept. of Math. and Statistics, Carleton University, Ottawa, Ontario, Canada K1S 5B6
e-mail: williams@math.carletonica
(Submitted June 1996)

## 1. INTRODUCTION

Rabinowitz [5] has determined all integers $n$ for which $x^{5} \pm x+n$ factors as a product of an irreducible quadratic and an irreducible cubic with integral coefficients. Using the properties of Fibonacci numbefs, he showed that, in fact, there are only ten such integers $n$.

Theorem (Rabinowitz [5]): The only integral $n$ for which $x^{5}+x+n$ factors into the product of an irreducible quadratic and an irreducible cubic are $n= \pm 1$ and $n= \pm 6$. The factorizations are

$$
\begin{aligned}
& x^{5}+x \pm 1=\left(x^{2} \pm x \pm 1\right)\left(x^{3} \mp x^{2} \pm 1\right) \\
& x^{5}+x \pm 6=\left(x^{2} \pm x+2\right)\left(x^{3} \mp x^{2}-x \pm 3\right)
\end{aligned}
$$

The only integral $n$ for which $x^{5}-x+n$ factors into the product of an irreducible quadratic and an irreducible cubic are $n= \pm 15, n= \pm 22,440$, and $n= \pm 2,759,640$. The factorizations are

$$
\begin{aligned}
x^{5}-x \pm 15 & =\left(x^{2} \pm x+3\right)\left(x^{3} \mp x^{2}-2 x \pm 5\right), \\
x^{5}-x \pm 22440 & =\left(x^{2} \mp 12 x+55\right)\left(x^{3} \pm 12 x^{2}+89 x \pm 408\right), \\
x^{5}-x \pm 2759640 & =\left(x^{2} \pm 12 x+377\right)\left(x^{3} \mp 12 x^{2}-233 x \pm 7320\right)
\end{aligned}
$$

In this paper we investigate the corresponding question for the quintics $x^{5} \pm x^{a}+n$, where $a=2,3$, and 4. We show that for $a=2,3$ theie are only finitely many $n$ for which $x^{5} \pm x^{a}+n$ factors as a product of an irreducible quadratic and an irreducible cubic, whereas, for $a=4$, rather surprisingly we show that there are infinitely many such $n$, which can be parameterized using the Fibonacci numbers. Our treatment of the polynomials $x^{5} \pm x^{a}+n$ makes use of the following three results about Fibonacci numbers.

Theorem (Cohn [1], [2]): The only Fibonacci numbers $F_{k}(k \geq 0)$ that are perfect squares are $F_{0}=0^{2}, F_{1}=F_{2}=1^{2}$, and $F_{12}=12^{2}$.

Theorem (London and Finkelstein [3]): The only Fibonacci numbers $F_{k}(k \geq 0)$ that are perfect cubes are $F_{0}=0^{3}, F_{1}=F_{2}=1^{3}$, and $F_{6}=2^{3}$.

Theorem (Wasteels [7], May [4]): If $x$ and $y$ are nonzero integers such that $x^{2}-x y-y^{2}=\varepsilon$, where $\varepsilon= \pm 1$, then there exists a positive integer $k$ such that

$$
\begin{aligned}
& x=F_{k+1}, \quad y=F_{k}, \quad \varepsilon=(-1)^{k}, \quad \text { if } x>0, y>0, \\
& x=F_{k}, \quad y=-F_{k+1}, \quad \varepsilon=(-1)^{k+1}, \quad \text { if } x>0, y<0,
\end{aligned}
$$

$$
\begin{aligned}
& x=-F_{k}, \quad y=F_{k+1}, \quad \varepsilon=(-1)^{k+1}, \quad \text { if } x<0, y>0 \text {, } \\
& x=-F_{k+1}, y=-F_{k}, \quad \varepsilon=(-1)^{k}, \quad \text { if } x<0, y<0 .
\end{aligned}
$$

We remark that the above formulation corrects, and makes more precise, May's extension of Wasteels' theorem. To see that May's result is not correct, take $x=13$ and $y=-8$ in part (3) of her theorem. Clearly

$$
y^{2}-x y-x^{2}+1=(-8)^{2}-13(-8)-13^{2}+1=64+104-169+1=0
$$

but there does not exist an integer $n$ such that $13=F_{n-1},-8=-F_{n}$, or $13=-F_{n-1},-8=F_{n}$, since $F_{-7}=13, F_{-6}=-8, F_{6}=8$, and $F_{7}=13$.

We prove the following results.
Theorem 1: The only integers $n$ for which $x^{5}+x^{2}+n$ factors into the product of an irreducible quadratic and an irreducible cubic are $n=-90,-4,18$, and 11466. The factorizations are

$$
\begin{aligned}
x^{5}+x^{2}-90 & =\left(x^{2}+4 x+6\right)\left(x^{3}-4 x^{2}+10 x-15\right) \\
x^{5}+x^{2}-4 & =\left(x^{2}-x+2\right)\left(x^{3}+x^{2}-x-2\right), \\
x^{5}+x^{2}+18 & =\left(x^{2}+x+3\right)\left(x^{3}-x^{2}-2 x+6\right), \\
x^{5}+x^{2}+11466 & =\left(x^{2}+4 x+42\right)\left(x^{3}-4 x^{2}-26 x+273\right)
\end{aligned}
$$

The only integers $n$ for which $x^{5}-x^{2}+n$ factors into the product of an irreducible quadratic and an irreducible cubic are $n=-11466,-18,4$, and 90 . The factorizations are

$$
\begin{aligned}
x^{5}-x^{2}-11466 & =\left(x^{2}-4 x+42\right)\left(x^{3}+4 x^{2}-26 x-273\right), \\
x^{5}-x^{2}-18 & =\left(x^{2}-x+3\right)\left(x^{3}+x^{2}-2 x-6\right), \\
x^{5}-x^{2}+4 & =\left(x^{2}+x+2\right)\left(x^{3}-x^{2}-x+2\right), \\
x^{5}-x^{2}+90 & =\left(x^{2}-4 x+6\right)\left(x^{3}+4 x^{2}+10 x+15\right)
\end{aligned}
$$

Theorem 2: The only integers $n$ for which $x^{5}-x^{3}+n$ factors into the product of an irreducible quadratic and an irreducible cubic are $n= \pm 8$. The factorizations are

$$
x^{5}-x^{3} \pm 8=\left(x^{2} \pm x+2\right)\left(x^{3} \mp x^{2}-2 x \pm 4\right)
$$

There are no integers $n$ for which $x^{5}+x^{3}+n$ factors into the product of an irreducible quadratic and an irreducible cubic.

Theorem 3: Apart from the factorizations

$$
\begin{aligned}
& x^{5}+x^{4}+1=\left(x^{2}+x+1\right)\left(x^{3}-x+1\right) \\
& x^{5}-x^{4}-1=\left(x^{2}-x+1\right)\left(x^{3}-x-1\right)
\end{aligned}
$$

all factorizations of $x^{5} \pm x^{4}+n$ as a product of an irreducible quadratic and an irreducible cubic with $n$ integral are given by

$$
\begin{align*}
x^{5}+\theta(-1)^{k} x^{4}+\theta F_{k-1}^{2} F_{k+1}^{4} F_{k+2}^{4}= & \left(x^{2}+\theta F_{k-1} F_{k+2} x+F_{k-1} F_{k+1} F_{k+2}^{2}\right)  \tag{1.1}\\
& \times\left(x^{3}-\theta F_{k} F_{k+1} x^{2}-F_{k-1} F_{k+1}^{2} F_{k+2} x+\theta F_{k-1} F_{k+1}^{2} F_{k+2}^{2}\right)
\end{align*}
$$

and

$$
\begin{align*}
x^{5}+\theta(-1)^{k} x^{4}-\theta F_{k-1}^{4} F_{k}^{4} F_{k+2}^{2}= & \left(x^{2}+\theta F_{k-1} F_{k+2} x+F_{k-1}^{2} F_{k} F_{k+2}\right) \\
& \times\left(x^{3}-\theta F_{k} F_{k+1} x^{2}+F_{k-1} F_{k}^{2} F_{k+2} x-\theta F_{k-1}^{2} F_{k}^{3} F_{k+2}\right) \tag{1.2}
\end{align*}
$$

where $\theta= \pm 1$ and $k$ is an integer with $k \geq 2$ and $F_{k}$ denotes the $k^{\text {th }}$ Fibonacci number.
Taking $k=2$ and 3 in Theorem 3, we obtain the factorizations

$$
\begin{aligned}
x^{5} \pm x^{4} \pm 1296 & =\left(x^{2} \pm 3 x+18\right)\left(x^{3} \mp 2 x^{2}-12 x \pm 72\right) \\
x^{5} \pm x^{4} \mp 9 & =\left(x^{2} \pm 3 x+3\right)\left(x^{3} \mp 2 x^{2}+3 x \mp 3\right) \\
x^{5} \pm x^{4} \mp 50625 & =\left(x^{2} \mp 5 x+75\right)\left(x^{3} \pm 6 x^{2}-45 x \mp 675\right) \\
x^{5} \pm x^{4} \pm 400 & =\left(x^{2} \mp 5 x+10\right)\left(x^{3} \pm 6 x^{2}+20 x \pm 40\right)
\end{aligned}
$$

## 2. FACTORIZATION OF $x^{5} \pm x^{2}+n$

Let $m$ and $n$ be integers with $n \neq 0$. Suppose that

$$
\begin{equation*}
x^{3}+m x^{2}+n=\left(x^{2}+a x+b\right)\left(x^{3}+c x^{2}+d x+e\right) \tag{2.1}
\end{equation*}
$$

where $a, b, c, d$, and $e$ are integers. Then, equating coefficients in (2.1), we obtain

$$
\begin{gather*}
b e=n,  \tag{2.2}\\
a e+b d=0,  \tag{2.3}\\
a d+b c+e=m,  \tag{2.4}\\
b+a c+d=0  \tag{2.5}\\
a+c=0 \tag{2.6}
\end{gather*}
$$

From (2.2), as $n \neq 0$, we deduce that

$$
\begin{equation*}
b \neq 0, \quad e \neq 0 \tag{2.7}
\end{equation*}
$$

We show next that $a \neq 0$. Suppose, on the contrary, that $a=0$. From (2.3) we see that $b d=0$. Hence, from (2.7), we have $d=0$. Then, from (2.5), we deduce that $b=0$, contradicting (2.7). Hence, we must have

$$
\begin{equation*}
a \neq 0 \tag{2.8}
\end{equation*}
$$

Next, we show that $a^{2}-2 b \neq 0$. For, if $a^{2}-2 b=0$, then, from (2.3), (2.5), and (2.6), we deduce that

$$
\begin{equation*}
b=a^{2} / 2, \quad c=-a, \quad d=a^{2} / 2, \quad e=-a^{3} / 4 \tag{2.9}
\end{equation*}
$$

Then, from (2.2), (2.4), and (2.9), we have

$$
\begin{equation*}
m=-a^{3} / 4, \quad n=-a^{5} / 8 \tag{2.10}
\end{equation*}
$$

From (2.1), (2.9), and (2.10), we obtain the factorization

$$
\begin{equation*}
x^{5}-\frac{a^{3}}{4} x^{2}-\frac{a^{5}}{8}=\left(x^{2}+a x+\frac{a^{2}}{2}\right)\left(x^{3}-a x^{2}+\frac{a^{2}}{2} x-\frac{a^{3}}{4}\right) \tag{2.11}
\end{equation*}
$$

As $-a^{3} / 4 \neq \pm 1$, this factorization is not of the required type. Hence, we may suppose that

$$
\begin{equation*}
a^{2}-2 b \neq 0 \tag{2.12}
\end{equation*}
$$

Equations (2.3), (2.4), and (2.5) can be written as three linear equations in the three unknowns $c$, $d$, and $e$ :

$$
\begin{cases}b c+a d+e & =m  \tag{2.13}\\ a c+d & =-b \\ b d+a e & =0\end{cases}
$$

Solving the system (2.13) for $c, d$, and $e$, we have

$$
\begin{equation*}
c=\frac{-a m+b^{2}-a^{2} b}{a^{3}-2 a b}, \quad d=\frac{a^{2} m+a b^{2}}{a^{3}-2 a b}, \quad e=\frac{-a b m-b^{3}}{a^{3}-2 a b} . \tag{2.14}
\end{equation*}
$$

Putting these values into (2.6), we obtain

$$
\begin{equation*}
a^{4}-3 a^{2} b+b^{2}=a m \tag{2.15}
\end{equation*}
$$

Now let

$$
\begin{equation*}
a=a_{1} a_{2}^{2} \tag{2.16}
\end{equation*}
$$

where $a_{1}$ is a squarefree integer and $a_{2}$ is a positive integer. Then (2.15) becomes

$$
\begin{equation*}
a_{1}^{4} a_{2}^{8}-3 a_{1}^{2} a_{2}^{4} b+b^{2}=a_{1} a_{2}^{2} m \tag{2.17}
\end{equation*}
$$

From (2.17), we see that $a_{1} a_{2}^{2} \mid b^{2}$, so that $a_{1} a_{2} \mid b$, say,

$$
\begin{equation*}
b=a_{1} a_{2} r, \tag{2.18}
\end{equation*}
$$

where $r$ is a nonzero integer. From (2.17) and (2.18), we deduce that

$$
\begin{equation*}
a_{1}^{3} a_{2}^{6}-3 a_{1}^{2} a_{2}^{3} r+a_{1} r^{2}=m \tag{2.19}
\end{equation*}
$$

We now suppose that $m= \pm 1$. From (2.19), we see that $a_{1}= \pm 1$. Hence, $a_{1}^{2}=1$ and (2.19) gives

$$
\begin{equation*}
a_{2}^{6}-3 a_{1} a_{2}^{3} r+r^{2}=a_{1} m \tag{2.20}
\end{equation*}
$$

We define integers $s(>0)$ and $t$ by

$$
\begin{equation*}
s=a_{2}^{3}, \quad t=r-\frac{1}{2}\left(3 a_{1}-1\right) s . \tag{2.21}
\end{equation*}
$$

From (2.20) and (2.21), we obtain

$$
\begin{equation*}
t^{2}-s t-s^{2}=a_{1} m \tag{2.22}
\end{equation*}
$$

First, we deal with the possibility $t=0$. If $a_{1}=1$, then, from (2.21), we deduce that $r=s$ and, from (2.22), that $-s^{2}=m$. Hence, $m=-1$ and $r=s= \pm 1$. Then, by (2.21), we have $a_{2}=s=$ $\pm 1$. Hence, by (2.16) and (2.18), we have $a=1$ and $b=1$. Then, from (2.14), we get $e=0$, contradicting (2.7). If $a_{1}=-1$, then, from (2.21), we deduce that $r=-2 s$ and, from (2.22), that $s^{2}=m$. Hence, $m=1, s= \pm 1$, and $r=\mp 2$. Then, by (2.21), we have $a_{2}=s= \pm 1$. Next, by (2.16) and (2.18), we have $a=-1$ and $b=2$. Then, from (2.2) and (2.14), we get $c=1, d=-1, e=-2$, $n=-4$, and (2.1) becomes

$$
x^{5}+x^{2}-4=\left(x^{2}-x+2\right)\left(x^{3}+x^{2}-x-2\right),
$$

which is one of the factorizations listed in Theorem 1.
Now we turn to the case $t \neq 0$. As $t \neq 0$ and $s>0$, by the theorem of Wasteels and May, there is a positive integer $k$ such that $s=F_{k}$. Thus, by (2.21), we have $F_{k}=a_{2}^{3}$. Appealing to the
theorem of London and Finkelstein, we deduce that $s=F_{k}=a_{2}^{3}=1^{3}$ or $2^{3}$, so that $a_{2}=1$ or 2 . We have eight cases to consider according as $a_{1}=1$ or $-1, a_{2}=1$ or $2, m=1$ or -1 . In each case, we determine $a$ from (2.16). Then we determine the possible values of $r$ (if any) from the quadratic equation (2.20). Next, we determine $b$ from (2.18). Then the values of $c, d$, and $e$ are determined from $c=-a, d=-b-a c$, and $e=-b d / a$. Finally, $n$ is determined using $n=b e$. We obtain the following table:

| $a_{1}$ | $a_{2}$ | $m$ | $a$ | $r$ | $b$ | $c$ | $d$ | $e$ | $n$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 1 | 4 | 3 | 6 | -4 | 10 | -15 | -90 |
|  |  |  |  | 21 | 42 | -4 | -26 | 273 | 11466 |
| 1 | 2 | -1 | 4 | (none) |  |  |  |  |  |
| 1 | 1 | 1 | 1 | 0 | 0 | (inadmissible | as | $b \neq 0)$ |  |
|  |  |  |  | 3 | 3 | -1 | -2 | 6 | 18 |
| 1 | 1 | -1 | 1 | 1 | 1 | -1 | 0 | 0 | (inadmissible as $e \neq 0$ ) |
|  |  |  |  | 2 | 2 | -1 | -1 | 2 | 4 |
| -1 | 2 | 1 | -4 | (none) |  |  |  |  |  |
| -1 | 2 | -1 | -4 | -3 | 6 | 4 | 10 | 15 | 90 |
|  |  |  |  | -21 | 42 | 4 | -26 | -273 | -11466 |
| -1 | 1 | 1 | -1 | -1 | 1 | 1 | 0 | 0 | (inadmissible as $e \neq 0)$ |
|  |  |  |  | -2 | 2 | 1 | -1 | -2 | -4 |
| -1 | 1 | -1 | -1 | 0 | 0 | (inadmissible | as | $b \neq 0)$ |  |
|  |  |  | -3 | 3 | 1 | -2 | -6 | -18 |  |

These give the eight factorizations listed in the statement of Theorem 1. It is easy to check in each case that the quadratic and cubic factors are irreducible.

## 3. FACTORIZATION OF $x^{5} \pm x^{3}+n$

Let $m$ and $n$ be integers with $n \neq 0$. Suppose that

$$
\begin{equation*}
x^{5}+m x^{3}+n=\left(x^{2}+a x+b\right)\left(x^{3}+c x^{2}+d x+e\right) \tag{3.1}
\end{equation*}
$$

where $a, b, c, d$, and $e$ are integers. Equating coefficients in (3.1), we obtain

$$
\begin{gather*}
b e=n  \tag{3.2}\\
a e+b d=0  \tag{3.3}\\
a d+b c+e=0  \tag{3.4}\\
b+a c+d=m  \tag{3.5}\\
a+c=0 \tag{3.6}
\end{gather*}
$$

From (3.6), we obtain

$$
\begin{equation*}
c=-a \tag{3.7}
\end{equation*}
$$

As $n \neq 0$, we see from (3.2) that

$$
\begin{equation*}
b \neq 0, \quad e \neq 0 \tag{3.8}
\end{equation*}
$$

Suppose that $a=0$. From (3.7), we have $c=0$. Then, from (3.4), we deduce that $e=0$, contradicting (3.8). Hence, we have

$$
\begin{equation*}
a \neq 0 \tag{3.9}
\end{equation*}
$$

Suppose next that $b=a^{2}$. Then, from (3.5) and (3.7), we deduce that $d=m$. Then, from (3.4), we obtain $e=a^{3}$-am. Next, (3.3) gives $a=0$, contradicting (3.9). Thus, we have

$$
\begin{equation*}
b \neq a^{2} \tag{3.10}
\end{equation*}
$$

Using (3.7) in (3.4), we obtain

$$
\begin{equation*}
a d+e=a b \tag{3.11}
\end{equation*}
$$

Solving (3.3) and (3.11) for $d$ and $e$, we find that

$$
\begin{equation*}
d=\frac{-a^{2} b}{b-a^{2}}, \quad e=\frac{a b^{2}}{b-a^{2}} \tag{3.12}
\end{equation*}
$$

From (3.2) and (3.5), we deduce that

$$
\begin{equation*}
m=\frac{a^{4}-3 a^{2} b+b^{2}}{b-a^{2}}, \quad n=\frac{a b^{3}}{b-a^{2}} \tag{3.13}
\end{equation*}
$$

We define the nonzero integer $h$ by

$$
\begin{equation*}
h=b-a^{2} \tag{3.14}
\end{equation*}
$$

Then, from (3.7), (3.12), (3.13), and (3.14), we obtain

$$
\begin{array}{ll}
b=a^{2}+h, & e=\frac{a^{5}}{h}+2 a^{3}+a h, \\
c=-a, & m=-\frac{a^{4}}{h}-a^{2}+h, \\
d=-\frac{a^{4}}{h}-a^{2}, & n=\frac{a^{7}}{h}+3 a^{5}+3 a^{3} h+a h^{2} .
\end{array}
$$

These values of $b, c, d, e, m$, and $n$ satisfy the equations (3.2)-(3.6). The equation for $m$ can be rewritten as $h^{2}-\left(a^{2}+m\right) h-a^{4}=0$. Solving this quadratic equation for $h$, we obtain

$$
\begin{equation*}
h=\frac{1}{2}\left(a^{2}+m+\varepsilon \sqrt{\left(a^{2}+m\right)^{2}+4 a^{4}}\right), \tag{3.15}
\end{equation*}
$$

where $\varepsilon= \pm 1$. Relation (3.15) shows that $\sqrt{\left(a^{2}+m\right)^{2}+4 a^{4}}$ is an integer, namely, $\varepsilon\left(2 h-a^{2}-m\right)$. Hence, there is an integer $w$ such that

$$
\begin{equation*}
\left(a^{2}+m\right)^{2}+\left(2 a^{2}\right)^{2}=w^{2} \tag{3.16}
\end{equation*}
$$

From (3.9) and (3.16), we see that $w \neq 0$. As $\left\{a^{2}+m, 2 a^{2}, w\right\}$ is a Pythagorean triple, there exist integers $r, s$, and $t$ with $\operatorname{gcd}(r, s)=1$ such that

$$
\begin{equation*}
a^{2}+m=2 r s t, 2 a^{2}=\left(r^{2}-s^{2}\right) t, w=\left(r^{2}+s^{2}\right) t \tag{3.17}
\end{equation*}
$$

or

$$
\begin{equation*}
a^{2}+m=\left(r^{2}-s^{2}\right) t, 2 a^{2}=2 r s t, w=\left(r^{2}+s^{2}\right) t \tag{3.18}
\end{equation*}
$$

We assume now that $m= \pm 1$.
If (3.17) holds, then $\left(r^{2}-4 r s-s^{2}\right) t=2 a^{2}-2\left(a^{2}+m\right)=-2 m= \pm 2$, so that $t= \pm 1$ or $t= \pm 2$. If $t= \pm 1$, then $r^{2}-4 r s-s^{2}= \pm 2$, so that $r^{2}-s^{2} \equiv 2(\bmod 4)$, which is impossible, since $r^{2}-s^{2} \equiv$ 0,1 ,or $3(\bmod 4)$. Hence, $t= \pm 2$ and

$$
\begin{equation*}
r^{2}-4 r s-s^{2}= \pm 1 \tag{3.19}
\end{equation*}
$$

From (3.19), we see that $r+s$ and $r-s$ are both odd integers so that, in particular, we have $r+s \neq 0$ and $r-s \neq 0$. Moreover, from (3.19), we have $(r+s)^{2}-(r+s)(r-s)-(r-s)^{2}= \pm 1$.

Therefore, by the theorem of Wasteels and May, there are positive integers $k$ and $l$ such that $|r+s|=F_{k}$ and $|r-s|=F_{l}$. Now, by (3.17), we have

$$
\begin{equation*}
a^{2}=|r+s||r-s| . \tag{3.20}
\end{equation*}
$$

As $|r+s|$ and $|r-s|$ are both odd, and $\operatorname{gcd}(r, s)=1$, we have

$$
\begin{equation*}
\operatorname{gcd}(|r+s|,|r-s|)=1 \tag{3.21}
\end{equation*}
$$

From (3.20) and (3.21), we deduce that each of $|r+s|$ and $|r-s|$ is a perfect square. Hence, $F_{k}$ and $F_{l}$ are both perfect squares so, by Cohn's theorem, we have $|r+s|=F_{k}=1$ or $144,|r-s|=$ $F_{l}=1$ or 144. However, $|r+s|$ and $|r-s|$ are both odd, so $|r+s|=1$ and $|r-s|=1$. Therefore, $(r, s)=( \pm 1,0)$ or $(0, \pm 1)$. Hence, by (3.17), we have $a^{2}+m=2 r s t=0$, and, as $m= \pm 1$, we have $m=-1, a=\theta$, where $\theta= \pm 1$. From (3.15), we deduce that $h=\varepsilon$; thus, $a=\theta, b=1+\varepsilon, c=-\theta$, $d=-(1+\varepsilon), e=2 \theta(1+\varepsilon), m=-1$, and $n=4 \theta(1+\varepsilon)$. Since $b \neq 0$, we must have $\varepsilon=1$. Thus, $a=\theta, b=2, c=-\theta, d=-2, e=4 \theta, m=-1, n=8 \theta$, which gives the factorization

$$
x^{5}-x^{3}+8 \theta=\left(x^{2}+\theta x+2\right)\left(x^{3}-\theta x^{2}-2 x+4 \theta\right), \theta= \pm 1
$$

If (3.18) holds, then

$$
\left(r^{2}-r s-s^{2}\right) t=\left(r^{2}-s^{2}\right) t-r s t=\left(a^{2}+m\right)-a^{2}=m
$$

so that $t= \pm 1, r^{2}-r s-s^{2}=m t$. If $r$ or $s=0$, then, by (3.18), we have $a=0$, contradicting (3.9). Hence, $r \neq 0$ and $s \neq 0$. Then, by the theorem of Wasteels and May, we have $|r|=F_{k},|s|=F_{l}$, for positive integers $k$ and $l$. Now

$$
a^{2}=r s t=|r||s|, \operatorname{gcd}(|r|,|s|)=1,
$$

so each of $|r|$ and $|s|$ is a perfect square. Thus, both $F_{k}$ and $F_{l}$ are perfect squares. Hence, by Cohn's theorem, we have $|r|=F_{k}=1$ or 144 and $|s|=F_{l}=1$ or 144 . Therefore, $r= \pm 1, \pm 144$ and $s= \pm 1, \pm 144$.

From $r^{2}-r s-s^{2}=m t$, we deduce that
( $\alpha) \quad r=1, s=1, m t=-1$, or
( $\beta$ ) $r=1, s=-1, m t=1$, or
(V) $\quad r=-1, s=1, m t=1$, or
( $\delta) \quad r=-1, s=-1, m t=-1$.
Then, from $a^{2}=r s t$ we deduce that
(a) $t=1, m=-1, a=\theta$,
( $\beta$ ) $t=-1, m=-1, a=\theta$,
(y) $t=-1, m=-1, a=\theta$,
( $\delta) \quad t=1, m=-1, a=\theta$,
where $\theta= \pm 1$. In all four cases, $a^{2}+m=0$ so that, by (3.15), $h=\varepsilon$. Thus, $b=a^{2}+h=1+\varepsilon$. But $b \neq 0$, so $\varepsilon \neq-1$, that is, $\varepsilon=1$. Hence, $a=\theta, b=2, c=-\theta, d=-2, e=4 \theta, m=-1, n=8 \theta$, which gives the same factorization as before. Since $x^{2}+\theta x+2$ and $x^{3}-\theta x^{2}-2 x+4 \theta$ are both irreducible, this completes the proof of Theorem 2.

## 4. FACTORIZATION OF $x^{5} \pm x^{4}+n$

Let $m$ and $n$ be integers with $n \neq 0$. Suppose that

$$
\begin{equation*}
x^{5}+m x^{4}+n=\left(x^{2}+a x+b\right)\left(x^{3}+c x^{2}+d x+e\right) \tag{4.1}
\end{equation*}
$$

where $a, b, c, d$, and $e$ are integers. Equating coefficients in (4.1), we obtain

$$
\begin{gather*}
b e=n  \tag{4.2}\\
a e+b d=0  \tag{4.3}\\
a d+b c+e=0  \tag{4.4}\\
b+a c+d=0  \tag{4.5}\\
a+c=m \tag{4.6}
\end{gather*}
$$

As $n \neq 0$ we have, from (4.2),

$$
\begin{equation*}
b \neq 0, \quad e \neq 0 \tag{4.7}
\end{equation*}
$$

We show next that $a \neq 0$. Suppose $a=0$. Then, by (4.3) and (4.7), we have $d=0$. From (4.5), we deduce that $b=0$, contradicting (4.7). Hence,

$$
\begin{equation*}
a \neq 0 \tag{4.8}
\end{equation*}
$$

Suppose next that $b=a^{2} / 2$. Then, from (4.3) and (4.8) we obtain $e=-a d / 2$. Next, from (4.4) and (4.8), we deduce that $d=-a c$. Then (4.5) gives $b=0$, contradicting (4.7). Hence,

$$
\begin{equation*}
b \neq a^{2} / 2 \tag{4.9}
\end{equation*}
$$

If $a=m$ then, from (4.6), we have $c=0$. Then (4.5) gives $d=-b$. Next, (4.4) gives $e=b m$. Now (4.3) and (4.7) give $b=m^{2}$, so that $e=m^{3}$ and $d=-m^{2}$. Finally, from (4.2), we obtain $n=m^{5}$. Thus, (4.1) becomes

$$
x^{5}+m x^{4}+m^{5}=\left(x^{2}+m x+m^{2}\right)\left(x^{3}-m^{2} x+m^{3}\right)
$$

With $m= \pm 1$ we have

$$
x^{5}+m x^{4}+m=\left(x^{2}+m x+1\right)\left(x^{3}-x+m\right)
$$

It is easy to check that $x^{2}+m x+1$ and $x^{3}-x+m$ are irreducible for $m= \pm 1$.
Thus, we may suppose from now on that $a \neq m$. Replacing $x$ by $-x$ in (4.1), we obtain the factorization

$$
x^{5}-m x^{4}-n=\left(x^{2}-a x+b\right)\left(x^{3}-c x^{2}+d x-e\right)
$$

Thus, in view of (4.8), we may suppose without loss of generality that $a>0$. Solving (4.3), (4.4), and (4.5) for $c, d$, and $e$, we obtain

$$
\begin{align*}
& c=\frac{-b\left(a^{2}-b\right)}{a\left(a^{2}-2 b\right)}  \tag{4.10}\\
& d=\frac{b^{2}}{a^{2}-2 b}  \tag{4.11}\\
& e=\frac{-b^{3}}{a\left(a^{2}-2 b\right)} \tag{4.12}
\end{align*}
$$

Then, from (4.6) and (4.2), we deduce that

$$
\begin{equation*}
m=\frac{a^{4}-3 a^{2} b+b^{2}}{a\left(a^{2}-2 b\right)}, \quad n=\frac{-b^{4}}{a\left(a^{2}-2 b\right)} \tag{4.13}
\end{equation*}
$$

Assume now that $m= \pm 1$. Writing the equation for $m$ in (4.13) as a quadratic equation in $b$, we have

$$
b^{2}+a(2 m-3 a) b+a^{3}(a-m)=0
$$

Solving for $b$, we find that

$$
\begin{equation*}
b=\frac{a}{2}\left(3 a-2 m+\varepsilon \sqrt{5 a^{2}-8 m a+4}\right), \tag{4.14}
\end{equation*}
$$

where $\varepsilon= \pm 1$. The equation (4.14) shows that $z=+\sqrt{5 a^{2}-8 m a+4}$ is a nonnegative rational number. As $a$ and $m$ are integers, $z$ must be a nonnegative integer such that $5 a^{2}-8 m a+4=z^{2}$, that is,

$$
\begin{equation*}
a^{2}+(2 a-2 m)^{2}=z^{2} \tag{4.15}
\end{equation*}
$$

As $a \neq 0$ and $a \neq m$, we have $z \geq 2$, and there exist nonzero integers $r, s$, and $t$ with $\operatorname{gcd}(r, s)=1$ such that

$$
\begin{equation*}
a=\left(r^{2}-s^{2}\right) t, 2 a-2 m=2 r s t, z=\left(r^{2}+s^{2}\right) t \tag{4.16}
\end{equation*}
$$

or

$$
\begin{equation*}
a=2 r s t, 2 a-2 m=\left(r^{2}-s^{2}\right) t, z=\left(r^{2}+s^{2}\right) t \tag{4.17}
\end{equation*}
$$

Clearly, as $z>0$, we have $t>0$. Replacing $(r, s)$ by $(-r,-s)$, if necessary, we may suppose that $r>0$.

We suppose first that (4.16) holds. Then

$$
\left(r^{2}-r s-s^{2}\right) t=\left(r^{2}-s^{2}\right) t-r s t=a-(a-m)=m
$$

Now $m= \pm 1$, so $t=1$ and $r^{2}-r s-s^{2}=m$. Appealing to the theorem of Wasteels and May, we have

$$
\begin{array}{ll}
r=F_{k+1}, s=F_{k}, \quad m=(-1)^{k}, \quad \text { if } s>0, \\
r=F_{k}, \quad s=-F_{k+1}, \quad m=(-1)^{k+1}, \quad \text { if } s<0,
\end{array}
$$

for some positive integer $k$. Then, from (4.16), we obtain

$$
a=r^{2}-s^{2}= \begin{cases}F_{k+1}^{2}-F_{k}^{2}=F_{k-1} F_{k+2}, & \text { if } s>0 \\ F_{k}^{2}-F_{k+1}^{2}=-F_{k-1} F_{k+2}, & \text { if } s<0\end{cases}
$$

As $a>0$, we must have $s>0$ so that $r=F_{k+1}, s=F_{k}, m=(-1)^{k}$ and

$$
\begin{equation*}
a=F_{k-1} F_{k+2} \tag{4.18}
\end{equation*}
$$

Further, from (4.16), we have

$$
\begin{equation*}
z=r^{2}+s^{2}=F_{k}^{2}+F_{k+1}^{2}=F_{k} F_{k+2}+F_{k-1} F_{k+1} \tag{4.19}
\end{equation*}
$$

and

$$
\begin{equation*}
a-m=r s=F_{k} F_{k+1} . \tag{4.20}
\end{equation*}
$$

Also, as $a>0$, we have $F_{k-1} \neq 0$ so $k \neq 1$ and thus $k \geq 2$. From (4.14), we have

$$
\begin{aligned}
b & =\frac{a}{2}(a+2(a-m)+\varepsilon z) \\
& = \begin{cases}(1 / 2) F_{k-1} F_{k+2}\left(F_{k-1} F_{k+2}+2 F_{k} F_{k+1}+F_{k} F_{k+2}+F_{k-1} F_{k+1}\right), \text { if } \varepsilon=1, \\
(1 / 2) F_{k-1} F_{k+2}\left(F_{k-1} F_{k+2}+2 F_{k} F_{k+1}-F_{k} F_{k+2}-F_{k-1} F_{k+1}\right), \text { if } \varepsilon=-1,\end{cases} \\
& = \begin{cases}F_{k-1} F_{k+1} F_{k+2}^{2}, & \text { if } \varepsilon=1, \\
F_{k-1}^{2} F_{k} F_{k+2}, & \text { if } \varepsilon=-1 .\end{cases}
\end{aligned}
$$

Thus,

$$
a^{2}-2 b= \begin{cases}F_{k-1}^{2} F_{k+2}^{2}-2 F_{k-1} F_{k+1} F_{k+2}^{2}=-F_{k-1} F_{k+2}^{3}, & \text { if } \varepsilon=1, \\ F_{k-1}^{2} F_{k+2}^{2}-2 F_{k-1}^{2} F_{k} F_{k+2}=F_{k-1}^{3} F_{k+2}, & \text { if } \varepsilon=-1\end{cases}
$$

and

$$
a^{2}-b= \begin{cases}F_{k-1}^{2} F_{k+2}^{2}-F_{k-1} F_{k+1} F_{k+2}^{2}=-F_{k-1} F_{k} F_{k+2}^{2}, & \text { if } \varepsilon=1, \\ F_{k-1}^{2} F_{k+2}^{2}-F_{k-1}^{2} F_{k} F_{k+2}=F_{k-1}^{2} F_{k+1} F_{k+2}, & \text { if } \varepsilon=-1\end{cases}
$$

Then, from (4.10), (4.11), and (4.12), we obtain

$$
\begin{aligned}
& c=-F_{k} F_{k+1}, \quad \text { if } \varepsilon= \pm 1, \\
& d= \begin{cases}-F_{k-1} F_{k+1}^{2} F_{k+2}, & \text { if } \varepsilon=1, \\
F_{k-1} F_{k}^{2} F_{k+2}, & \text { if } \varepsilon=-1,\end{cases} \\
& e= \begin{cases}F_{k-1} F_{k+1}^{3} F_{k+2}^{2}, & \text { if } \varepsilon=1, \\
-F_{k-1}^{2} F_{k}^{3} F_{k+2}, & \text { if } \varepsilon=-1\end{cases}
\end{aligned}
$$

From (4.13), we get

$$
n= \begin{cases}F_{k-1}^{2} F_{k+1}^{4} F_{k+2}^{4}, & \text { if } \varepsilon=1 \\ -F_{k-1}^{4} F_{k}^{4} F_{k+2}^{2}, & \text { if } \varepsilon=-1\end{cases}
$$

Then (4.1) gives the factorizations

$$
\begin{aligned}
x^{5}+(-1)^{k} x^{4}+F_{k-1}^{2} F_{k+1}^{4} F_{k+2}^{4}= & \left(x^{2}+F_{k-1} F_{k+2} x+F_{k-1} F_{k+1} F_{k+2}^{2}\right) \\
& \times\left(x^{3}-F_{k} F_{k+1} x^{2}-F_{k-1}^{2} F_{k+1}^{2} F_{k+2} x+F_{k-1} F_{k+1}^{3} F_{k+2}^{2}\right), \\
x^{5}+(-1)^{k} x^{4}-F_{k-1}^{4} F_{k}^{4} F_{k+2}^{2}= & \left(x^{2}+F_{k-1} F_{k+2} x+F_{k-1}^{2} F_{k} F_{k+2}\right) \\
& \times\left(x^{3}-F_{k} F_{k+1} x^{2}+F_{k-1} F_{k}^{2} F_{k+2} x-F_{k-1}^{2} F_{k}^{3} F_{k+2}\right),
\end{aligned}
$$

and two more obtained by changing $x$ to $-x$. These are the factorizations given in the statement of Theorem 3.

We now suppose that (4.17) holds. Then

$$
\left(r^{2}-4 r s-s^{2}\right) t=\left(r^{2}-s^{2}\right) t-4 r s t=(2 a-2 m)-2 a=-2 m .
$$

As $m= \pm 1$ and $t>0$, we have $t=1$ or $t=2$. If $t=1$, then

$$
\begin{equation*}
r^{2}-4 r s-s^{2}=-2 m \tag{4.21}
\end{equation*}
$$

Hence, $r \equiv r^{2} \equiv s^{2} \equiv s(\bmod 2)$. But $\operatorname{gcd}(r, s)=1$, so $r \equiv s \equiv 1(\bmod 2)$. Then $r^{2}-s^{2} \equiv 0(\bmod$ 4), which contradicts (4.21). Therefore, we must have $t=2$, in which case $r^{2}-4 r s-s^{2}=-m$, so that

$$
(2 r)^{2}-(2 r)(r+s)-(r+s)^{2}=-m
$$

As $a>0, r>0$, and $t>0$, we see from (4.17) that $s>0$. Thus, $2 r$ and $r+s$ are positive integers, and so, by the theorem of Wasteels and May, we have

$$
2 r=F_{k+1}, \quad r+s=F_{k}, \quad-m=(-1)^{k},
$$

for some positive integer $k$. Thus,

$$
r=\frac{1}{2} F_{k+1}, \quad s=\frac{1}{2} F_{k-2}, \quad m=(-1)^{k+1}
$$

As $s \neq 0$, we see that $k \neq 2$. Now $2\left|F_{h} \Leftrightarrow 3\right| h$ (see [6], p. 32), so as $r$ and $s$ are integers, we have

$$
r=\frac{1}{2} F_{3 l+3}, \quad s=\frac{1}{2} F_{3 l}, \quad m=(-1)^{l+1}
$$

for some integer $l \geq 1$. Hence, by (4.17), we have

$$
\begin{gather*}
a=F_{3 l} F_{3 l+3}  \tag{4.22}\\
z=\frac{1}{2}\left(F_{3 l}^{2}+F_{3 l+3}^{2}\right)=F_{3 l+1} F_{3 l+3}+F_{3 l} F_{3 l+2} \tag{4.23}
\end{gather*}
$$

and

$$
\begin{equation*}
a-m=\frac{1}{4}\left(F_{3 l+3}^{2}-F_{3 l}^{2}\right)=F_{3 l+1} F_{3 l+2} \tag{4.24}
\end{equation*}
$$

Comparing (4.22), (4.23), and (4.24) to (4.18), (4.19), and (4.20), respectively, we see that the possibility (4.17) just leads to a special case $k=3 l+1(l \geq 1)$ of the previous case and, therefore, does not lead to any new factorizations.

The discriminant of $x^{2}+\theta F_{k-1} F_{k+2} x+F_{k-1} F_{k+1} F_{k+2}^{2}$ is

$$
\begin{aligned}
F_{k-1}^{2} F_{k+2}^{2}-4 F_{k-1} F_{k+1} F_{k+2}^{2} & =F_{k-1} F_{k+2}^{2}\left(F_{k-1}-4 F_{k+1}\right) \\
& =-F_{k-1} F_{k+2}^{2}\left(3 F_{k-1}+4 F_{k}\right)
\end{aligned}
$$

which is negative for $k \geq 2$. Hence, $x^{2}+\theta F_{k-1} F_{k+2} x+F_{k-1} F_{k+1} F_{k+2}^{2}$ is irreducible. Similarly, the discriminant of $x^{2}+\theta F_{k-1} F_{k+2} x+F_{k-1}^{2} F_{k} F_{k+2}$ is

$$
\begin{aligned}
F_{k-1}^{2} F_{k+2}^{2}-4 F_{k-1}^{2} F_{k} F_{k+2} & =F_{k-1}^{2} F_{k+2}\left(F_{k+2}-4 F_{k}\right) \\
& =F_{k-1}^{2} F_{k+2}\left(F_{k+1}-3 F_{k}\right) \\
& =F_{k-1}^{2} F_{k+2}\left(F_{k-1}-2 F_{k}\right) \\
& =-F_{k-1}^{2} F_{k+2}\left(F_{k-1}+2 F_{k-2}\right),
\end{aligned}
$$

which is negative for $k \geq 2$. Thus, $x^{2}+\theta F_{k-1} F_{k+2} x+F_{k-1}^{2} F_{k} F_{k+2}$ is irreducible. To complete the proof of Theorem 3, it remains to show that the cubic polynomials

$$
x^{3}-\theta F_{k} F_{k+1} x^{2}-F_{k-1} F_{k+1}^{2} F_{k+2} x+\theta F_{k-1} F_{k+1}^{3} F_{k+2}^{2}
$$

and

$$
x^{3}-\theta F_{k} F_{k+1} x^{2}+F_{k-1} F_{k}^{2} F_{k+2} x-\theta F_{k-1}^{2} F_{k}^{3} F_{k+2}
$$

are irreducible over the rational field $Q$ for $k \geq 2$ and $\theta= \pm 1$. This is done in the next section. It clearly suffices to treat only the case $\theta=1$.

## 5. IRREDUCIBILITY OF TWO CUBIC POLYNOMIALS

In this section we prove that the two cubic polynomials

$$
\begin{equation*}
f(x)=x^{3}-F_{k} F_{k+1} x^{2}-F_{k-1} F_{k+1}^{2} F_{k+2} x+F_{k-1} F_{k+1}^{3} F_{k+2}^{2} \tag{5.1}
\end{equation*}
$$

and

$$
\begin{equation*}
g(x)=x^{3}-F_{k} F_{k+1} x^{2}+F_{k-1} F_{k}^{2} F_{k+2} x-F_{k-1}^{2} F_{k}^{3} F_{k+2} \tag{5.2}
\end{equation*}
$$

are irreducible over the rationals for $k \geq 2$. Before proving this (see Theorem 4 below), we prove three lemmas.

Lemma 1: If $N$ is a nonzero integer, then the quintic equation $x^{5}+x^{4}+N=0$ has exactly one real root.

Proof: The function $F(x)=x^{5}+x^{4}+N$ has a local maximum at $x=-4 / 5$ and a local minimum at $x=0$. There are no other local maxima or local minima. Clearly, $F(-4 / 5)=N+4^{4} / 5^{5}$ and $F(0)=N$. As $N$ is a nonzero integer, we cannot have $N \leq 0 \leq N+4^{4} / 5^{5}$. Hence, either $N>0$ or $N+4^{4} / 5^{5}<0$. If $N>0$, the curve $y=F(x)$ meets the $x$-axis at exactly one point $x_{0}$ $\left(x_{0}<-4 / 5\right)$. If $N+4^{4} / 5^{5}<0$, the curve $y=F(x)$ meets the $x$-axis at exactly one point $x_{1}$ ( $x_{1}>0$ ). Hence, $F(x)=0$ has exactly one real root.

Lemma 2: For $k \geq 2$, each of the quintic polynomials

$$
\begin{equation*}
A(x)=x^{5}+(-1)^{k} x^{4}+F_{k-1}^{2} F_{k+1}^{4} F_{k+2}^{4} \tag{5.3}
\end{equation*}
$$

and

$$
\begin{equation*}
B(x)=x^{5}+(-1)^{k} x^{4}-F_{k-1}^{4} F_{k}^{4} F_{k+2}^{2} \tag{5.4}
\end{equation*}
$$

has exactly one real root.
Proof: As $k \geq 2,(-1)^{k} F_{k-1}^{2} F_{k+1}^{4} F_{k+2}^{4}$ is a nonzero integer. Hence, by Lemma 1, the quintic polynomial $Q(y)=y^{5}+y^{4}+(-1)^{k} F_{k-1}^{2} F_{k+1}^{4} F_{k+2}^{4}$ has exactly one real root. Thus, the quintic polynomial $A(x)=(-1)^{k} Q\left((-1)^{k} x\right)$ has exactly one real root. The quintic polynomial $B(x)$ can be treated similarly.

Lemma 3: For $k \geq 2$, each of the cubic polynomials $f(x)$ and $g(x)$ has exactly one real root.
Proof: From (1.1), (1.2), (5.1), (5.2), (5.3), and (5.4), we have

$$
A(x)=\left(x^{2}+F_{k-1} F_{k+2} x+F_{k-1} F_{k+1} F_{k+2}^{2}\right) f(x) \text { and } B(x)=\left(x^{2}+F_{k-1} F_{k+2} x+F_{k-1}^{2} F_{k} F_{k+2}\right) g(x)
$$

Since the two quadratics have no real roots, the result follows from Lemma 2.
Theorem 4: For $k \geq 2$ the cubic polynomials $f(x)$ and $g(x)$ are irreducible over the rationals.
Proof: Suppose $f(x)$ is reducible over the rationals. Then, by Lemma 3, $f(x)$ has exactly one real root, which must be rational and, in fact, an integer. Thus,

$$
f_{1}(x)=\frac{1}{F_{k+1}^{3}} f\left(F_{k+1} x\right)=x^{3}-F_{k} x^{2}-F_{k-1} F_{k+2} x+F_{k-1} F_{k+2}^{2}
$$

has exactly one real root, which must be an integer. Hence,

$$
f_{2}(x)=f_{1}\left(x-F_{k+1}\right)=x^{3}-\left(3 F_{k+1}+F_{k}\right) x^{2}+F_{2 k+3} x+(-1)^{k} F_{k+2}
$$

has exactly one real root $r$, which must be an integer. If $k$ is even, then $f_{2}(0)=F_{k+2}>0$ and

$$
f_{2}(-1)=-1-3 F_{k+1}-F_{k}-F_{2 k+3}+F_{k+2}<F_{k+2}-F_{2 k+3}<0,
$$

so $-1<r<0$, which is impossible. If $k$ is odd, then $f_{2}(0)=-F_{k+2}<0$ and

$$
\begin{aligned}
f_{2}(1) & =1-3 F_{k+1}-F_{k}+F_{2 k+3}-F_{k+2} \\
& =1+\left(F_{2 k+1}-F_{k+3}\right)+\left(F_{2 k+2}-F_{k+3}\right) \geq 1>0
\end{aligned}
$$

so $0<r<1$, which is impossible. Hence, $f(x)$ is irreducible over $Q$.
We now turn to $g(x)$. Suppose $g(x)$ is reducible over $Q$. Then, by Lemma 3, $g(x)$ has exactly one real root, which must be rational and, in fact, integral. Thus,

$$
g_{1}(x)=\frac{1}{F_{k}^{3}} g\left(F_{k} x\right)=x^{3}-F_{k+1} x^{2}+F_{k-1} F_{k+2} x-F_{k-1}^{2} F_{k+2}
$$

has exactly one real root, which must be an integer. Therefore,

$$
g_{2}(x)=g_{1}\left(x+F_{k}\right)=x^{3}+\left(F_{k}+F_{k-2}\right) x^{2}+F_{2 k-1} x+(-1)^{k-1} F_{k-1}
$$

has exactly one real root $s$, which must be an integer. If $k$ is even, then $g_{2}(0)=-F_{k-1}<0$ and

$$
\begin{aligned}
g_{2}(1) & =1+F_{k}+F_{k-2}+F_{2 k-1}-F_{k-1} \\
& \geq 1+F_{k-2}+F_{2 k-1}>0,
\end{aligned}
$$

so that $0<s<1$, which is impossible. If $k$ is odd, then $g_{2}(0)=F_{k-1}>0$ and

$$
\begin{aligned}
g_{2}(-1) & =-1+F_{k}+F_{k-2}-F_{2 k-1}+F_{k-1} \\
& =-1+2 F_{k}-2 F_{2 k-3}-F_{2 k-4} \\
& \leq-1-2\left(F_{2 k-3}-F_{k}\right) \leq-1<0
\end{aligned}
$$

so that $-1<s<0$, which is impossible. Hence, $g(x)$ is irreducible over $Q$.

## REFERENCES

1. J. H. E. Cohn. "Square Fibonacci Numbers, etc." The Fibonacci Quarterly 2.2 (1964):109113.
2. J. H. E. Cohn. "On Square Fibonacci Numbers." J. London Math. Soc. 39 (1964):537-40.
3. H. London \& R. Finkelstein. "On Fibonacci and Lucas Numbers which Are Perfect Powers." The Fibonacci Quarterly 7.5 (1969):476-81. [Errata, ibid. 8.3 (1970):248.]
4. D. B. May. "On a Characterization of the Fibonacci Sequence." The Fibonacci Quarterly 6.1 (1968):11-14.
5. S. Rabinowitz. "The Factorization of $x^{5} \pm x+n$." Math. Mag. 61 (1988):191-93.
6. N. N. Vorobev. Fibonacci Numbers. New York: Blaisdell, 1961.
7. M. J. Wasteels. "Quelques propriétés des nombres de Fibonacci." Mathesis (3) 2 (1902):6062.

AMS Classification Numbers: 11C08, 11B39, 12D05

