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Pascal’s Triangle (mod 8)
JAMES G. HUARD, BLAIR K. SPEARMAN AND KENNETH S. WILLIAMS

Lucas' theorem gives a congruence for a binomial coefficient modulo a prime. Davis and Webb
(Europ. J. Combinatorics, 11 (1990), 229-233) extended Lucas theorem to a prime power modulus.
Making use of their result, we count the number of times each residue class occurs in the nth row of
Pascal’s triangle (mod 8). Our results correct and extend those of Granville (Amer. Math. Monthly,
99 (1992), 318-331).

(© 1998 Academic Press Limited

1. INTRODUCTION

Let n denote a nonnegative integer. The nth row of Pascal’s triangle consists of the n + 1
binomial coefficients (?) (r=0,1,...,n). For integerst and m with 0 <t < m, we denote
by Np(t, m) the number of integers in the nth row of Pascal’s triangle which are congruent
to t modulo m. Clearly if d is a positive integer dividing m then

(m/d)—1
3 Nn(jd+tm) =Nnt,d), 0<t=<d. 1.1)
j=0

When d = 1 the right-hand side of (1.1) is Nn(0, 1) = n+ 1. In 1899 Glaisher [3] showed
that Nn(1, 2) is aways a power of 2, see Theorem A. In 1991 Davis and Webb [2] determined
Nnh(t,4) fort = 0,1,2,3, see Theorem B. Their results show that Ny(1,4) is dways a
power of 2 and that N, (3, 4) is either O or a power of 2. These facts were also observed
by Granville [4] in 1992. In addition Granville found for odd t that Nn(t, 8) is either O or a
power of 2. Unfortunately some of Granville's results on the distribution of the odd binomial
coefficients modulo 8 in the nth row of Pascal’s triangle are incorrect. We label Granville's
five assertions following Figure 12 on p. 324 of [4] as («), (B), (¥), (8), and (¢). (Note that
in the wording describing Figure 12 the assertion ‘each uj > 2’ is not correct as the block
of 0'sin (n)2 furthermost to the right may contain just one zero, for example, n = 78 has
(n)2 = 1001110.) We comment on each of («), (y), (8), and (¢).

(o) This assertion is false. Take n = 3 so that (n); = 11. Thus t; = 2 and there are no
other tj’s. Hence n = 3 falls under (o). However, the third row of Pascal’s triangle is
1, 3, 3, 1 contradicting the assertion of («).

(y) This assertion is fase. Take n = 19 so that (n); = 10011. Thust; = 1, u; = 2,
and t = 2. Hence n = 19 fals under (y). However, the first half of the 19th
row of Pasca’s triangle modulo 8 is 1,3,3,1,4,4,4,4,6,2 so that Nig(1,8) = 4,
N19(7, 8) = 0O, contradicting Granville's claim that Nig(1, 8) = N1g(7, 8).

(8) This assertion does not tell the full story. Take n = 39 so that (n), = 100111. Thus
t1=1u; =2 to =3, and n = 39 falls under (§). Here N3g(t,8) =4 (t =1,3,5,7).
On the other hand if n = 156 then (n), = 10011100 so that t1 = 1, u; = 2, tp = 3,
up = 2, and n = 156 falls under (§). Here Nisg(1, 8) = Nis6(3,8) = 8, Nisg(5, 8) =
Nis6(7,8) = 0.

(¢) This assertion is false. If n = 3699 then (n)2 = 111001110011 so that t; = 3, uy = 2,
th = 3, up = 2, t3 = 2, and n = 3699 falls under (¢). However Nzggo(l, 8) =
N3gg9(3, 8) = 128, Nzggg(5, 8) = N3gg9(7, 8) = 0, contradicting Granville's claim that
N3s99(1, 8) = N3ega(3, 8) = N3gog(5, 8) = Nzpgg(7, 8).
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This article was motivated by the desire to find the correct evaluation of Nu(t, 8) when't is
odd (see Theorem C (third part)). In addition our method enables us to determine the value
of Np(t, 8) when t is even, a problem not considered by Granville, see Theorem C (first and
second parts). Our evaluation of Np(t, 8) involves the binary representation of n, namely

n=ag+ai2+ a2’ +---+a2,

where ¢ > 0, eachaj =0or 1, and a; = 1 unlessn = 0 in which case £ = 0 and ag = 0.

For brevity we write apa; . ..a, for the binary representation of n. Note that our notation
is the reverse of Granville's notation [4]. On occasion it is more convenient to consider
apay...ay asastring of 0's and 1's. The context will make it clear which interpretation is
being used. The length of theith block of O's (respectively 1's) in aga; . . . a; is denoted by v;
(respectively s). We consider n to begin with a block of 0's and to finish with a block of 1's.
Thus, the binary representation of n = 389743 is 1111011001001111101 and v1 = 0, 51 = 4,
r=199=2,13=2,3=1, wuyu=2,4=5v5=1s5=1

Throughout this article r denotes an arbitrary integer between 0 and n inclusive. The binary
representation of r is (with additional zeros at the right-hand end if necessary) r = bgbs .. . by.
The exact power of 2 dividing the binomial coefficient ([') is given by a specia case of
Kummer's theorem [5].

PrRoPOSITION 1 (KUMMER [5]). Let c(n, r) denote the number of carries when adding the
binary representations of r and n — r. Then

ocn.r) “ (n>
r

Consider now the addition of the binary representation bgbs ...b, of r to that of n —r to
obtain the binary representation aga; ...a; of n. If no carry occurs in the (i — 1)th position
then there is no carry in the ith position if bj < &, whereas there is a carry in the ith position
if bj > a;. This simple observation enables us to say when c(n,r) =0, 1 or 2.

PROPOSITION 2.

@ cinry=0&hb <a (=01,...,0.

(b) c(n,r) =1 and the carry occurs in the fth position (0 < f < ¢ —1) & asas41 = 01,
bibfi =10,and b <a (i # f, f +1).

(¢) c(n,r) = 2 and the carries occur in the fth and gth positions(0< f <g</¢-—1)

< afafgr = 01, bs bf+1 = 10, dgdg+1 = 01, bgbg+1 = 10, if g# f+1,
afafy1@f2 = 011, bibsyibsyp = 110, or
afafy1@fy2 =001, bibfiibsi2 = 1x0, ifg=f+1,

and
bi<a (#ff+199+1.
(* denotes 0 or 1.)
If S denotes a nonempty string of 0's and 1's, we denote by ns the number of occurrences

of Sin the string apay . ..a,. For example, if n = 1496 = 00011011101 then ng = 5, n1 = 6,
Noo = 2, No1 = 3, N30 = 2, N11 = 3, Npoo = 1, Noo1 = 1.
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Propositions 1 and 2(a) enable us to prove Glaisher’s formulae [3].

THEOREM A (GLAISHER[3]). Nn(0,2) =n+1—2", No(1,2) =2M,

ProoF. We have

n n ag,...,ay
NoL2= > 1= ) 1= } l=@+D @+lh=2"
r=0 r=0 bo,. ,b@:O
(P)El (mod 2) c(n,r)=0
The formula for N,(0, 2) now follows from (1.1) withd =1 and m = 2. O

Similarly we can prove Davis and Webb's formulae [2].

THEOREM B (FIRST PART, DAVIS AND WEBB [2]).

Nn(0,4) =n+1—2" —nyu2" 1 N2 4) = ng2™m L.

PROOF. Appealing to Propositions 1 and 2(b), we have

n -1 n -1 ag,...,af —1,af 42,..., &
Mea= Y 1=y Y 1= > o1
r=0 f=0 r=0 f=0 bo,...,.bf_1,bf42,... ,b,=0
(MH=2 (mod 4 c(n,r)=1 afaf;=01 bbb 1=10
carry in fth place
-1 14 -1
= [ @+v= > 2" t=nup2" "t
f=0 j=0 f=0
araf41=01 j#f, f+1 araf41=01

From (1.1) withm =4, d = 2, and t = 0, we have Np(0,4) + Nh(2,4) = Nu(0, 2), from
which the value of Np(0, 4) follows. O

Likewise we can use Propositions 1 and 2(c) to determine N, (0, 8) and N, (4, 8).

THEOREM C (FIRST PART).

Nn(0,8) =n+ 1 — (noox + 1)2™ — no112™ 2 — nog (Nog + 3)2"M 73,
Nn(4, 8) = Ngo12™ + Ng112™ 2 + Nz (Nox — 1)2™ 3,
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ProOOF. We have
n

Nn(4, 8) = Z 1= Xn: 1
r=0

(’r‘)zzlr ?n(lod 8) c(n,?):2
-2 ag,....af—1,af43,...,& -2 ag,....af—1,af43,...,&
S 3 1+ > > 1
f=0 bo,...,bf_1,bf43,...,b,=0 f=0 bo,...,bf_1,bf43,...,b,=0
afafgias =011 bsbf,1bs2=110 afar41af+2=001 bibsiibs2=1x0
(-3 -1 ag,...,af -1,af 42,... ,ag—1,3g42,... ,&¢

LEDIEEDY 2 1

f=0 g=f+42 bo,...,bf_l,bf+2,...,bg_l,bg+2,...,bg=0

araf;1=01 agag,1=01 btbf1=bgbg,1=10
-2 14 -2 4
D Y | IRCTEE I SR | GRS
f=0 j=0 f=0 j=0
arafyiaf42=011 j#f f4+1,f+2 afafyiaf42=001 j#f f4+1,f+2
£—3 -1 4
+ [I @+
f=0 g=f+2 j=0
arar41=01 agag41=01 j#f,f+1,9,0+1
-2 -2 (-3 (-1
DML I SN DD I
f=0 f=0 f=0 g=f+2
afaf+i1af42=011 afaf41as+2=001 arar4+1=01 agag;1=01
No1(No1 — 1
= np112™ 2 4 npg1 2™ + Nos(fox = 1) (;1 )2”1_2.
The value of N,(0, 8) follows from (1.1) withm=8,d =4, andt = 0. O

Although Kummer’s result (Proposition 1) enabled us to determine Np(1, 2), Np(2, 4), and
Nn(4, 8), it is clear that we need a more precise congruence for (?) to be able to determine
Nn(t,4) fort = 1,3 and Np(t,8) fort = 1,2, 3,5,6,7. The required congruences for ('r‘)
modulo 4 and modulo 8 are provided by the Davis-Webb congruence, which is the subject of
the next section.

It is understood throughout that an empty sum has the value 0, an empty product the value 1,

and
o — 1, if n=0,
0, if n>1.

2. THE DAVIS—WEBB CONGRUENCE

In order to state the Davis-Webb congruence for (?) modulo 2", we need the binary version of
the symbol () defined by Davis and Webb [1] for arbitrary nonnegative integers ¢ = coCz . .. Cs
andd = dpd; . . . ds (where additional zeros have been included at the right-hand of either c or d,
if necessary, to make their binary representations the same length). If coc1...¢ < dodz...d;

fori =0,1,...,s, we set
c
=251,
o

Otherwise we let u denote the largest integer between 0 and s inclusive for which cpcy ... ¢y >

dody ...dy, and set
C\ _ ,su(CoCL---Cuy
d/ dody...dy/"
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TABLE 1.
Values of [38].

Co

k=)
i

do
0
1

TABLE 2.
Values of [ Gt].

CoC1
dodg 00 10 01 11
00 1 1 1 1
10 1 1 1 3
01 1 1 1 3
11 1 1 1 1

Thus, for example, if ¢ = 26 = 010110 and d = 39 = 111001, we have s =5 and u = 4 so

that

26\ _ 5 401011 _ (26

39 11100 7))
The symbol (g) is an extension of the ordinary binomial coefficient since for 0 < d < c we
have u = s and so (5) = (g). The odd part of (j) is denoted by [J]. The values of [] for

s=0, 1, and 2 are given in Tables 1-3 respectively.
For our purposes it is aso convenient to set for s > 1

CoC1...Cs
<d0d1 .. d5>
<0001 e csl>'
dods ... ds 1

c /
[d] = odd part of

The values of []' for s = 1 and 2 are given in Tables 4 and 5 respectively. From Tables 1-5
we obtain the assertions of Lemma 1.

LEMMA 1.
[co
(@ _do] =
(b) [ cp c1 ] _ 1 (mod 4), if cocy # 11,
| do di | (=%t (mod 4), if cocp = 11.
© [cp c1 ] _ 1 (mod 8), if cocy # 11,
| do dp | (=1)%tdi5dtdi (mod 8), if cocy = 11.
@ [ co c1 | _ 1 (mod 4), if coc1 # 11,
| do a1 (—1)%+t (mod 4), if cocp = 11.
[co o 0 ] _
(e | o dz] =1
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TABLE 3.
CoC1C
Values of [dodidzz]-

CoC1C2
dodid», 000 100 010 110 001 101 011 111

000 1 1 1 1 1 1 1 1
100 1 1 1 3 1 5 3 7
010 1 1 1 3 3 5 15 21
110 1 1 1 1 1 5 5 35
001 1 1 1 1 1 5 15 35
101 1 1 1 3 1 1 3 21
011 1 1 1 3 1 1 1 7
111 1 1 1 1 1 1 1 1
TABLE 4.
i
Values of [gggi] )
CoC1
dpdgy 00 10 01 11
00 1 1 1 1
10 1 1 1 3
01 1 1 1 3
11 1 1 1 1
- /
O @ 7 g |=cnHe moda,ife=do
i 01 o /_ c
@1 ¢ q | =D modd.
™~ /
(h) gg dll d12 = (-D%+% (mod 4), if cp > do.
@) gg gi gz =1 (mod4), ifcicy+11andcy > dy.
1) dlo 8 d12 = 5%+d (mod 8).
® 8 dll dlz — (—1)%+% (mod 8).
C 101 1] L didardetd
() - do di d = (=1)%+%R5%+%2 (mod 8).
Ch C C _ ; ) (1 —
(m) do dy dp | = 1 (mod 8), if cpcicy # 101, 011, 111, and ¢ > di (i =0, 1, 2).

Let h be an integer with h > 2. When ¢ > h — 1, Davis and Webb [1] have given a
congruence for (7') (mod p") for any prime p. (Granville's Proposition 2 in [4] is the special
case of Davis and Webb's congruence when p ¢ (?)) When p = 2 their congruence can be
expressed using Proposition 1 in the form:

DAVIS-WEBB CONGRUENCE (mod 2"). For2<h<¢+1

{—h+1 ’
n apdy . ..ah-2 Qdj+1-..8i+h-1
= 2°<“’”[ ] [ + * } mod 2. 2.1
(f) boby .. . bh—2 il:!, bibit1...Bith-1 ( ) @D
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TABLE 5.
cociC’
Values of [dodidzz] .

CoC1C2
dodid, 000 100 010 110 001 101 011 111

000 1 1 1 1 1 1 1 1
100 1 1 1 1 1 5 3 73
010 1 1 1 1 3 5 15 7
110 1 1 1 1 1 5 5 35
001 1 1 1 1 1 5 15 35
101 1 1 1 1 1 1 3 7
011 1 1 1 1 1 1 1 7/3
111 1 1 1 1 1 1 1 1

Our next task is to make the Davis-Webb congruence (mod 2") explicit in certain cases
when h =2 and h = 3 by means of Lemma 1. It is convenient to set

-1 =2
Ei= Y (h+b). Ea= > (b+bi2).
i=0 i=0
& gj+1=11 8 gj+2=11
For an integer f withO < f < ¢ — 1 we also set

=1

Hi= Y (b +bi.
i=0
i£f—1f,f+1
aigj+1=11

DAvis—-WEBB CONGRUENCE (mod 4). For ¢ > 1 and c(n,r) = 0, we have

<?> = (-DE  (mod 4).

PrROOF. Taking h =2 and c(n,r) =0in (2.1), we obtain for ¢ > 1
-1 /
n ao & a1
= d 4).
(f) [bo} Il:!,[ bi b1 ] (mod
Appealing to Lemma 1(a)(d), we obtain

-1
> (b +bit1)

n -1 i=0

( ); [] pPHhs = (pyasa= =(-DE  (mod 4).

Ll
aiai|+1:11

DAvis-WEBB CONGRUENCE (mod 8). (a) For £ > 2 and c(n,r) = 0, we have
<:‘> = (-)E5E2  (mod 8),  if agay # 11,

(?) = (—)E1sP+btE2  (mod 8),  ifagay = 11.
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(b) For ¢ > 2and c(n,r) = 1, we have
(?) = 2(—ptrar-tanz i (mod 8),

where f (0 < f < £ — 1) isthe position of the carry when adding the binary represen-
tationsof r andn —r, and

ai=-1, a1 =0.
PrROOF. (&) Takingh =3 and c(n,r) =0in (2.1), we obtain for £ > 2

=2 ,
n _ aO a]_ al ai+1 ai-‘,—Z
(r> _[ bo by }n[ b biy1 biso } (mod 8).

i=0

By Proposition 2(a) wehaveb; < a fori =0, ..., £. Appeding to Lemma1(j)(k)(1)(m),
we obtain mod 8:

-2 -2
M| & & bi+bi _1)bisa+b
<r) _|: bo by :| 1_[ 5 +2 1_[ (—1)Pi+1tbis2

i=0 i=0
i 413 +2=101 i3 113 +2=011
-2
bj r1+bj oe=bi+biio
% l_[ (—1)Piratbisaghi+biy
i=0
& +18+2=111
a a -2 -2
= 1 bi +bj bi y1-+bi
= 5 i+2 —1Pi+1THi+2
[ bo b } H 1_[ =1
i=0 i=0
& gj+2=11 8 +18+2=11
a0 a -2 -1
= ghi+bi2 _1)bit+bis
[ bo bl] [1 [T D
i=0 i=1
g gj+2=11 g gj+1=11
-2 -1
> (bi+bito) > (bi+bita)
i=0 i=1
_| @ & 53 di+2=11 (—1)@a+1=1t
bo by

If agay # 11, then, by Lemma 1(c), we have (}') = (—1)F15F2 (mod 8). If agay = 11
then, by Lemma 1(c), we have

(I:) = (—1)PotbrigbotbigEe 1)Ea—(bo+by) — (_1)EigPotbitEe  (mod ).

(b) Takingh =3 and c(n,r) = 11in (2.1), we obtain for £ > 2
(n)=2 a0 a ﬁ a an a2 | e
r/ L bo br Jiol bi b1 big2 '

Welet f (0 < f < ¢ — 1) be the position of the carry so that by Proposition 2(b)
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afafy1 = 01, bsbsyig = 10, andax > by for k # f, f+1. Wehave, by Lemma1(h)(i)(1),

a a ﬁ a a1 a2 |
bo by L5 bi biy1 bij2

iAf—2f—1,f
-1 ' _ _ /
E[6\0 al] l—[ |:a+—1a|a|+1i|
bo bz ] bi—1 b b1
i£f-1f f+1
-1
Z (bi+bit1)
i£f— 1ff 1
E|: 30 ]( 1 8aj1= 1I
0
l
0 (b +bj+1)
i#£f—1,f. f+1
= (—1) @%=u = (=DM (mod 4).

We now consider four cases: (i) f =0; (i) f =1; (iii)2< f <¢—2,and (iv) f =¢—1
In each case we must determine

— i
a4 Qi+1 Q42
P— d 4).
1_[ [ bi b1 b2 } (mod 4)

—"O

fo 1

Case (i). f = 0. In this case we have

o1 a]_, ,a
P_[l 0 bz} = (—1D* (mod 4),

by Lemma 1(g), so that

(?) = 2(—Hf(—12 = 2(—ptar1taretHe  (med g).

Case (ii). f = 1. Here
/ /
P:[zg ‘f HH 0 32] = (DFRD® = (T (mod 4),
by Lemma 1(f)(g), so that

(?) = 2(—DHr (—1tteota = p(g)ltar-ataretHr - (mod g).

Case (iii). 2< f <¢—2. Here

ar—p af—1 01T a1 0 1 /[ 0 1 afy2 ] 1ar_1+a
= = (-1 f-1741+2 (mod 4),
[ b2 b1 ] [ bf-1 1 0 } 1 0 bty =1 ( )

by Lemma 1(e)(f)(g), so that

<?> = 2(_1)Hf (_1)1+af—1+af+2 = 2(_1)l+af—1+af+2+Hf (mod 8).
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Case (iv). f =¢— 1. Here

p_ a-3 a2 0T a> 01 /:(_1)1+3472 (mod 4)
“lbs beo 1 || by 10]|= ’

by Lemma 1(e)(f), so that
(?) = 2(—DHf (—ptHa-2 = p(—p)ttar-1taretHr - (mod g).
O

Our final task in this section is to give the mechanism whereby we can count the number
of integersr (0 < r < n) for which () isin a particular residue class (mod 4) or (mod 8).
This mechanism is provided by the next lemma.

LEMMA 2. Letc, ..., C; beintegers. Then
aoiae (_1)Zi[:00ibi _ 2Mm, if c =0 (mod 2) for eachi =0,1,...,¢witha =1,
by, =0 0, ifc =1 (mod 2) for somei (0 <i <¥¢) withg = 1.

ProoOF. We have

ap, ..., . 4 ] L 4
. omhen < (Sewmn) < [] (o) = [T v

bo, ... ,by=0 0 “bj=0 i=0 i=0
a:l aj:].
¢
I 2 if G =0 (mod 2) for each i with a = 1,
= I:O
a=
0, if ¢ =1 (mod 2) for somei with g = 1.

O

Inapplying Lemma2inthe evaluation of N, (t,4) (t = 1,3)and Ny(t,8) (t =1,2,3,5,6,7)
anumber of finite sumsinvolving E; and E; arise. These sums are evaluated in Lemmas 3-7.

LEMMA 3.
...,
> (=nF=om2m
bo,...,b@:O
PROOF. Set S = f)‘g by = _o(— DEL For j =0,1,....,¢ let Cj denote the number of
occurrences of bj in
-1
Ei= ) (b+bit),
i=0
gaj+1=11
so that S = Y P p_(— 1)XioGbi | |f np=0thenc =0(0 < j <¢ soS=2" by
Lemma 2. If nll = 0 Iet u be the least integer (0 < u < ¢ — 1) such that ayay+1 = 11. Then
cy=1and S=0by Lemma2. a
LEMMA 4.
ag,.... & i — —
Z (—1)E2 = 2m, !f Nio1 = N111 =0,
0, if N101 > Oor nq111 > 0.

bo,...,by;=0
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PROOF. Set S = Y (>~ I_((-1)F2. For j = 0,1,...,¢ let ¢ denote the number of
occurrences of bj in '
-2
Ex= Y (b +bi2).
i=0
8 gj12=11

If ngop =n111 =0thencj =0 (0 < j <¢) so, by Lemma 2, we have S= 2". If nyg; > 0
or n111 > O let s be the least integer such that asas;2 =11 (0<s<¢—2). Thencs =1 and
S=0by Lemma 2. O

Before stating the next lemma, we remind the reader that the length of the ith block of
0'sin apay ...ay is denoted by v; and the length of the ith block of 1's by 5. We consider
apay . .. ay to start with a block of 0's and finish with a block of 1's.

LEMMA 5. Forn>1

ao, ..., ar 0, if N101 > Oor ni111 > 0,
Z (-DEFE = 10, if n1o; = N1311 =0and some s = 2,
bo.....bg=0 2N, if Njo1 = N1111 = Oand eachs = 1 or 3.

PROOF. The lemma is easily checked for £ = 0, 1, 2 so we may suppose that £ > 3. Let
S = ho(-DETE2 For j =0,1,...,¢ let cj denote the number of occurrences
of bjin_

-1 -2 -2
Ei+Ex= Y (Gi+bio+ > Gi+b+ Y (bi+biyo).
i=0 i=0 i=0
g g+1=11 8 4+18j+2=101 8 118 42=111

Suppose first that n1g1 = n1111 = 0 and some § = 2, where i > 1. Hence there exists
an integer u (0 < u < ¢ — 1) such that ayay+1 = 11, ay—1 = 0if u > 1, and ay42 = O if
U< ¢ —2. Letu betheleast such integer. Then ¢y =1 and S= 0 by Lemma 2.

Suppose next that n1g1 = n1111 = 0andeachs =1 or 3. Let j (0 < j < ¢) be an integer
suchthat aj = 1. If j =0anda; =0, thenap =0andc; =0. If j =0andag = 1,
thenap =1andcj =2 If j=¢anda_1 =0,thena, > =0andc; =0. If j = ¢ and
a1 =1thena,_,=1andcj =2 Nowsuppose 1 < j < ¢ —1. If aj_1ajaj41 = 010
then c; = 0. If aj_1ajaj;1 = 110 then j > 2 and aj_»aj_1ajaj41 = 1110 so that ¢j = 2.
If aj_i1ajaj41 = 011 then j < £ — 2 and aj_13jaj18j42 = 0111 so that ¢j = 2. If
aj_1ajaj+1 = 111 then ¢j = 2. Hence c; is even for every j with aj = 1. Thus, by
Lemma 2, we have S = 2",

Now suppose that nig; > 0. Let s be the least integer such that asas1asi2 = 101. If s=0
thencs =1 Ifs>1landas.1 =0thencs=1. Ifs=1landag=1thencg=1. If s> 2,
as.1=1 andas_o=0thencs_1 =1 Ifs>2 as_1 =1, and as_» = 1 then cs = 3. Hence,
by Lemma 2, we have S= 0.

Finally suppose that n1117 > 0. Let w be the least integer such that a,,a, 118y +28,+3 =
1111. Then ¢, +1 = 3 and, by Lemma 2, we have S= 0. O

LEMMA 6. If aga; = 1 then

ao,-.-, &

Z (_1)bo+b1+ E2 _ ¢
bo,...,by;=0
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PROOF. Set S = Y ! _o(~1)%™1+E2. et ¢j (0 < | < ¢) denote the number of
occurrences of bj in '

=2

bo+bi+Ez=bo+bi+ Y (b +bis2).
i=0
8 gj42=11

Let k(1 < k < ¢) be the largest integer such that apa; ...ax = 11...1. Then ¢c_1 = 1
Hence, by Lemma 2, S= 0. O

LEMMA 7. If aga; = 11 then

0, if N101 > Oor Nni111 > 0,
ao,....a 0, if N1o1 = N1 = 0and some s = 2 withi > 2,
Z (—1PotbrtErtEr _ J o if N0 = N1171 = Oandeachs = 1 or 3,
bo-..- Br=0 2, ifner =N =0, =2,
andeachs = 1or 3withi > 2.
PROOF. Set S = Yo' (-1 F&t® For j = 0,1,... ¢, let ¢j denote the

number of occurrences of bj in

(-1 -2
bo+bi+ Y Bi+bi)+ Y (bi+bi2).
i=0 i=0
g g+1=11 8 gj4+2=11

Suppose first that n1p; > 0. Let s (0 < s < £—2) betheleast integer such that asas1as12 =
101. Asapa; = 11lwehaves> 1. Ifs=1thenag_i=a=1andc; =3. If s> 2 and
as—1 =0,thenas_p =0ands > 4,sothatcs =1 If s>2andas_» = as_1 = 1 then
cs=3 Ifs>2andas_2=0,as_1 =1, thens> 3 and as_3 = 0, so that cs_; = 1. Hence,
by Lemma 2, S=0.

Suppose next that ni197 > 0. Let s (0 < s < ¢ — 3) be the least integer such that
As8s+18s+28s+3 = 1111, If s=0thencp = 3. If s> 1thenas_1 = 0 and ¢s;1 = 3. Hence,
by Lemma 2, S=0.

Now suppose that nig; = n1111 = 0 and some § = 2 with i > 2, say asasy1 = 11. As
apa; = 11 and nip; = O we have s > 4. Clearly as_sas_1 = 00. Hence ¢s = 1, and, by
Lemma 2, we have S= 0.

Next suppose that n1o1 = n1111 = 0and each s = 1 or 3. Then, as aga; = 11, we must
have ap = 1. Thus ¢y = 3 and, by Lemma 2, we have S= 0.

Finaly suppose that nip1 = n1111 = 0, § = 2, and each 5(i > 2) = 1 or 3. Clearly
co=C=2¢ =0ifg_18841 =004 <i <¢-1),c¢c =0if ay_1a = 01, and
C-1=0C6 =¢C41=2ifg_1a4a4,1 =111 (5<i <¢—-1). Thusg iseven for al i with
a = 1 so that, by Lemma 2, we have S= 2", O

In Section 3 we use the Davis—Webb congruence (mod 4) to determine N (1, 4) and N (3, 4),
thereby reproving the formulae due to Davis and Webb [2] (see Theorem B (second part)).
In Sections 4 and 5 we employ the Davis-Webb congruence (mod 8) to determine Np(t, 8)
(t = 2,6) (see Theorem C (second part) in Section 4) and Np(t,8) (t = 1,3,5,7) (see
Theorem C (third part) in Section 5).

3. EVALUATION OF Np(1, 4) AND Np(3, 4)

In this section we illustrate our methods by re-establishing the formulae for Nn(1, 4) and
Nn(3, 4) due to Davis and Webb [2].
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THEOREM B (SECOND PART, DAVIS AND WEBB [2]).

N (L, 4) = 2 if ni1 =0, Nn (3. 4) — 0, ifni1 =0,
e 2n1—1’ ifniy >0, e 2n1—1, ifn;y > 0.

PROOF. It is easily checked that the formulae hold for n = 0, 1 so that we may take n > 2.
Thus ¢ > 1. Fort = 1 and 3, we have

n ag,...,ay
Not.4)= Y 1= > 1,
r=0 bo.... .by=0
(7=t (mod4) (—1)E1=t (mod4)

by Proposition 1, Proposition 2(a), and the Davis-Webb congruence (mod 4). Hence

ag,...,ay ap,...,ay

Nn(t, 4) = Z 1=:—2L Z (1+(_1)%(t—1)+E1)

bo.....be=0 bo.....be=0
Ei=1(t—1) (mod 2)

-1, 1 1t—1) o E:
=24 S (-1 Y, D
bo,...,b;=0
_ et rpiehan-t, if N1y =0,
2”1_1, if n11 > 0O,

by Lemma 3.

4. EVALUATION OF Np(2, 8) AND Nj(6, 8)
In this section we evaluate Np(2, 8) and Nn(6, 8).

THEOREM C (SECOND PART).

n012”1_1 — n0012”1‘1, ifniy =0,
Nn(2,8) = { ng12™~2 — ng112™~2 + ngo12M 2, ifny =1,
n012“1—2, if np > 2.
n0012”1‘1, if n11 =0,
Nn(6, 8) = { ng12" =2 + ng112M 2 — npg12™ 2, ifnyy =1,
n012"1—2, ifnyy > 2.

PROOF. It iseasily checked that the theorem holds for n = 0, 1, 2, 3 (equivalently ¢ = 0, 1).
Hence we may assume that ¢ > 2. For t = 2 and 6 we have, by Proposition 1,

n n

n -1
Np(t, 8) = Z 1= Z 1=Z Z 1.
f=0

r=0 r= r=0
()=t (mod 8) c(n,ry=1 c(n,r)=1
(H)=t (mod 8) carry in fth place

(?)st (mod 8)

Before continuing it is convenient to introduce some notation. Let S be a string of 0's and
T'sof lengthk. ForO<i <i+k—1<¢ we set

((aiai+l--~ai+k1>>: 1, if qai11...84k-1=S,
S 0, if gajy1...84k1#S
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Now, by the Davis-Webb congruence (mod 8), we have

n 1
(r)zt (m0d8)<=>Z(t+2)+af71+af+2+HfEO (mod 2).

Next, let
f—2 -1
E| = Z (b +biy1), Ef= Z (b + bit1),
i=0 i=f+2
aa+1=11 gaj41=11

so that E; + Ef = H¢. Hence the Davis-Webb congruence (mod 8) becomes

n 1
(r) =t (mod8) & Z(t+2)+af—1+af+2+ E1+E{ =0 (mod 2).

Hence
-1 a0, -+, Af —1,8f 42, , & 1 1 PR
Nnt,8) = > 2 S+ (-DatFRTaatan BT e,
f=0  bo,....bf_1.bf42,....0,=0
afaf4+1=01 bsbfi1=10
, 1 Lo -1 ap,...,af-1
_ ni— T 1yit+2 _1)@f-1taf42 _1E
= 0122 + 2(-1) > =D > D
f=0 bo,...,bs_1=0
araf4+1=01
af42,...,a¢
"
x Z (—1Fr.
bf+2,‘..,b[=0

Now, by Lemma 3,we have

ag,...,af -1 af42,...,8
’ / / n 1/ "
E (=1 E; — 0M12M E (=1 Bl — 0M12M
bo.....bf_1=0 bfy2,....0=0

where nj is the number of 1'sin agay ...af_1, ] isthe number of I'sinaf;2...ar, Nj; is
the number of occurrences of 11 in apay ... af—1, and nf; is the number of occurrences of 11
inasy2...a,. Hence

ag,....af_1 af42,....a On112n1—1’

ooEpE Y (DE =02 = !f afy2 =0,
_ _ On11—12n1—1’ if af+2 -1
bo,....bf_1=0 btyo,...,bp=0

Thus for n11 > 1 we have Ny (t, 8) = ng12™ 2. Next for n1; = 1 we have

-1
Nnt,8) = noi 272 4 Z(-DEGD YT et
f=0
afafyiaf+2=011
2 1t42 2 § 1
— n012n1— _ (_1)71(I+ ) oN1— (_1)af—
f=0

afaf41af42=011
_ 14—\ mni— ar a
=N 2" 2 4 (—1)at-22Mm 2(—(( %0 11 12 )) + Noo11 — 01011)

=noi2"m 2+ (—1)‘1‘“72)2”172(2”0011 — No11),
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as

(( %0 311 alz )) = No11 — Noo11 — N1011.
Hence

Nn(2, 8) = no12™ 2 + 2™ nggyy — 2™ 2ngyy
and

Nn (6, 8) = np12™ 2 — 2"~ 2ngoyq + 2"~ 2ngyy.
Finaly for ny; = 0 we have
Nnt8) = noi2 2 4 Z(-DEGD Y et

f=0
arafiiaf42=010

_ n—2 , ( \it+2on—2) a a1 & -2 -1
—roztrcvinzf((F 3 G )+ (% % 1))

-2

_ Q-2 -1 & _1\ai-1

(( 0 1))+ ijl (1) }
afaft+1ar4+2=010

Now as nj; = 0 we have

a; a;
(3% 5)=((3 %)= mnmon

-2 -1 &
(( 0 1 = Npo1 — Neo10 — Noo11 = Noo1 — Noo10,

0
(( ael_z ae(;l af )) = N101 — N1010 — N1011 = N101 — N1010,
(=2 -2 ‘2
Z (—1)3F-1 = Z 1- Z 1 = noo10 — N1o10,
f=1 f—1 —
afafqias2=010 af_iafafq1af+2=0010 af_jarafiaf2=1010
so that
(% A A )\ (&2 a1 & ) _(( a2 a1 &
0O 1 O 0 0 1 1 0 1
=2
* ) (=Dt = —ngy + 2ngoz.
f=1
afafiiaf+2=010
Hence

Nn(t, 8) = ng12™ 2 4 (=1)4®+ (—ngy + 2ngp)2M 2
n012”1—1 — n0012”1‘1, ift=2,
Noo12™ 1, if t = 6.
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5. EVALUATION OF Nux(t,8),t =1,3,5,7

In this section we carry out the evaluation of N (t, 8) fort = 1, 3, 5, 7 using the Davis-Webb
congruence (mod 8).

THEOREM C (THIRD PART).

Case [N1111 [N11 |Mo1 [N111 | va | S1|S (i = 2) |Nn(L, 8) [Nn(3,8) [Nn(5,8) [Nn(7,8)
No.

(I) # 0 2n1—2 2n1—2 2n1—2 2n1—2
(ii) 0l o] O 2Mm 0 0 0
(iii) #0 2m-1 0 2m-1 0
(iv) £0 [#£0 on1—2 on1—2 -2 on1—2
(v) 0] 00 2m-1 0 0 2m-1
(i) 0] 1 2m-1 0 0 2m-1
(vii) 2 [some=2|2m—2 |2m-2 | m-2 | pm-2
(viii) 2 [none=2| 2m-1 | 2m-1 0 0
(ix) #0| 0] 3 2m=2 | 2m=2 | pm-2 | om-2
(x) 1,2 [some=2 | 2m=2 | 2m-2 | pm-2 | pm-2
(xi) 1,2 [none=2 | 2m-1 | 2m-1 0 0
(xii) £0| some=2 |2m2 |2m-2 | om-2 | om-2
(xiii) none=2 |2m-1 | om-1 0 0

PROOF. It iseasily checked that the theorem holds for n = 0, 1, 2, 3 (equivaently ¢ = 0, 1).
Hence we may assume that ¢ > 2. Fort =1, 3,5, 7 we have

n n ap.....ar
Nn(t, 8) = Y11= >ooo1= > 1,
. _r:O r=0 bow-»gzzo
(f)=t (mod 8) c(n,r)=0 (DEL 5(bo+b1>((a‘1) 11))+E25t(m0d 8

(M=t (mod 8)
by Propositions 1 and 2(a), and part (a) of the Davis-Webb congruence (mod 8). Set
a®) =t-1/2. BB =t*-1/8
so that t = (—1)*®5® (mod 8). Hence
(—1)Er5®otO((P)+E2 — ¢ (mod 8)

o Er=at) (mod2), (b +by) << a_ff all )) L Ep; =8t (mod 2).

Nt 8)=7 5 (1+(—1)“<”<—1)E1>(1+(—1)ﬁ<‘>(—1><b°+bl)<(a‘1?1>>+E2)

bo.....by=0

(_1)ﬁ(t) aoiae (_1)(bo+b1)((aﬁl))+E2

bo.....by=0

t t) ao,...&
(DO 3 (—1)bob) (Y ) +Ea+Ez
4

bo.....by=0
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We treat the two cases aga; # 11 and apa; = 11 separately.
If agay # 11 then ((%§!)) = 0 and appealing to Lemmas 3, 4 and 5, we obtain

Ni(t, 8) :2”12+{ (=1O2m2, if ny =0 } { (—1FO2M-2 if nygy = nyyy = 0 }

0, if ny1 > 0 0, if N101 OF N111 > 0
(_1)a(t)+;‘3(t)2n172’ if Njop =nj111=0andeachs =1or3
+30, if ngo1 =N1111 =0

and some s = 2; or nig1 > O; or nq311 > 0.
Appealing to the case definitions given in the statement of the theorem we obtain the value of
Nn(t, 8).
Cases (i), (iv), (xii). Np(t,8) =224+ 0+040=2m"2,

Case (ii). Herenyy =0sothat each g = 1.

Nn(t, 8) = 2nm-2 (_l)a(t)2n1—2 + (_1)/3(02”1—2 + (_1)a(t)+ﬁ(t)2n1—2
_ 2, ift =1,
o ift=357.

2m-1 jft =1,5,

Case (iii). Np(t,8) = 22 (—1)«®2m—2 —
(- Fnll.9 e {o, ift=37

Cases (v), (vi). Herenip > 0, n111 = O implies that some 5 = 2.

o=l gt =17,

Np(t,8) =2m 2 4+ 0+ (—1)fWom-2 4 g —
n(t, 8) +0+ (-1 + 0. i35

Cases (vii), (viii), (iX). Here vy = 0 and 53 = 2 or 3 so that aga; = 11, contradicting
apas # 11. These cases cannot occur.

Case (X). Herevy =0and s = 1or 2. Asapa; # 11 we have s; = 1.

Np(t,8) =224+ 0+0+0=2M"2

Case (xi) (Herevi =0and s =1or 2. asapa; # 11 we have s; = 1.) and Case (xiii).

o=l jft=1,3,

N t’8 :2nl*2+o+0+ -1 a(t)+ﬁ(t)2n172:
n(t, &) =D 0, ift=5,7.

If aga; = 11, appealing to Lemmas 3, 6, and 7, we obtain

(=DO+HBOM=2 " if Ny = npy1p = 0,51 = 2,
Nn(t, 8) = 22 4 exchs(i>2 =1or3
0, otherwise.

Cases (i), (iv), (ix), (x). Np(t,8) = 212 4 0 = 2m~2,

Cases (ii), (iii). Here aga; = 11 implies n1; > 0 so these cases cannot occur.
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Case (v). Here apa; = 11 implies v1 = 0 so this case cannot occur.
Case (vi). Here apa; = 11 implies v; = 0 and s; > 2 so this case cannot occur.
Case (vii). Np(t,8) =2m~240=2m"72

Case (xi) (Hereapa; = 11 impliesv1 = 0 and s; > 2.) and Case (viii).

o=l jft=1,3,

N t7 8 — 2n172 _1 a(t)+ﬁ(t)2n172 —
9 D 0, ift=57

Cases (xii), (xiii). Here v1 > 0 contradicting aga; = 11. These cases cannot occur.
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