Pascal's Triangle (mod 8)

James G. Huard, Blair K. Spearman and Kenneth S. Williams

Abstract

Lucas' theorem gives a congruence for a binomial coefficient modulo a prime. Davis and Webb (Europ. J. Combinatorics, 11 (1990), 229-233) extended Lucas' theorem to a prime power modulus. Making use of their result, we count the number of times each residue class occurs in the nth row of Pascal's triangle $(\bmod 8)$. Our results correct and extend those of Granville (Amer. Math. Monthly, 99 (1992), 318-331). © 1998 Academic Press Limited

1. Introduction

Let n denote a nonnegative integer. The nth row of Pascal's triangle consists of the $n+1$ binomial coefficients $\binom{n}{r}(r=0,1, \ldots, n)$. For integers t and m with $0 \leq t<m$, we denote by $N_{n}(t, m)$ the number of integers in the nth row of Pascal's triangle which are congruent to t modulo m. Clearly if d is a positive integer dividing m then

$$
\begin{equation*}
\sum_{j=0}^{(m / d)-1} N_{n}(j d+t, m)=N_{n}(t, d), \quad 0 \leq t<d \tag{1.1}
\end{equation*}
$$

When $d=1$ the right-hand side of (1.1) is $N_{n}(0,1)=n+1$. In 1899 Glaisher [3] showed that $N_{n}(1,2)$ is always a power of 2, see Theorem A. In 1991 Davis and Webb [2] determined $N_{n}(t, 4)$ for $t=0,1,2,3$, see Theorem B. Their results show that $N_{n}(1,4)$ is always a power of 2 and that $N_{n}(3,4)$ is either 0 or a power of 2 . These facts were also observed by Granville [4] in 1992. In addition Granville found for odd t that $N_{n}(t, 8)$ is either 0 or a power of 2 . Unfortunately some of Granville's results on the distribution of the odd binomial coefficients modulo 8 in the nth row of Pascal's triangle are incorrect. We label Granville's five assertions following Figure 12 on p. 324 of [4] as $(\alpha),(\beta),(\gamma),(\delta)$, and (ε). (Note that in the wording describing Figure 12 the assertion 'each $u_{j} \geq 2$ ' is not correct as the block of 0 's in $(n)_{2}$ furthermost to the right may contain just one zero, for example, $n=78$ has $(n)_{2}=1001110$.) We comment on each of $(\alpha),(\gamma),(\delta)$, and (ε).
(α) This assertion is false. Take $n=3$ so that $(n)_{2}=11$. Thus $t_{1}=2$ and there are no other t_{j} 's. Hence $n=3$ falls under (α). However, the third row of Pascal's triangle is $1,3,3,1$ contradicting the assertion of (α).
(γ) This assertion is false. Take $n=19$ so that $(n)_{2}=10011$. Thus $t_{1}=1, u_{1}=2$, and $t_{2}=2$. Hence $n=19$ falls under (γ). However, the first half of the 19th row of Pascal's triangle modulo 8 is $1,3,3,1,4,4,4,4,6,2$ so that $N_{19}(1,8)=4$, $N_{19}(7,8)=0$, contradicting Granville's claim that $N_{19}(1,8)=N_{19}(7,8)$.
(δ) This assertion does not tell the full story. Take $n=39$ so that $(n)_{2}=100111$. Thus $t_{1}=1, u_{1}=2, t_{2}=3$, and $n=39$ falls under (δ). Here $N_{39}(t, 8)=4(t=1,3,5,7)$. On the other hand if $n=156$ then $(n)_{2}=10011100$ so that $t_{1}=1, u_{1}=2, t_{2}=3$, $u_{2}=2$, and $n=156$ falls under (δ). Here $N_{156}(1,8)=N_{156}(3,8)=8, N_{156}(5,8)=$ $N_{156}(7,8)=0$.
(ε) This assertion is false. If $n=3699$ then $(n)_{2}=111001110011$ so that $t_{1}=3, u_{1}=2$, $t_{2}=3, u_{2}=2, t_{3}=2$, and $n=3699$ falls under (ε). However $N_{3699}(1,8)=$ $N_{3699}(3,8)=128, N_{3699}(5,8)=N_{3699}(7,8)=0$, contradicting Granville's claim that $N_{3699}(1,8)=N_{3699}(3,8)=N_{3699}(5,8)=N_{3699}(7,8)$.

This article was motivated by the desire to find the correct evaluation of $N_{n}(t, 8)$ when t is odd (see Theorem C (third part)). In addition our method enables us to determine the value of $N_{n}(t, 8)$ when t is even, a problem not considered by Granville, see Theorem C (first and second parts). Our evaluation of $N_{n}(t, 8)$ involves the binary representation of n, namely

$$
n=a_{0}+a_{1} 2+a_{2} 2^{2}+\cdots+a_{\ell} 2^{\ell}
$$

where $\ell \geq 0$, each $a_{i}=0$ or 1 , and $a_{\ell}=1$ unless $n=0$ in which case $\ell=0$ and $a_{0}=0$.
For brevity we write $a_{0} a_{1} \ldots a_{\ell}$ for the binary representation of n. Note that our notation is the reverse of Granville's notation [4]. On occasion it is more convenient to consider $a_{0} a_{1} \ldots a_{\ell}$ as a string of 0 's and 1 's. The context will make it clear which interpretation is being used. The length of the i th block of 0 's (respectively 1 's) in $a_{0} a_{1} \ldots a_{\ell}$ is denoted by v_{i} (respectively s_{i}). We consider n to begin with a block of 0 's and to finish with a block of 1 's. Thus, the binary representation of $n=389743$ is 1111011001001111101 and $v_{1}=0, s_{1}=4$, $v_{2}=1, s_{2}=2, v_{3}=2, s_{3}=1, v_{4}=2, s_{4}=5, v_{5}=1, s_{5}=1$.
Throughout this article r denotes an arbitrary integer between 0 and n inclusive. The binary representation of r is (with additional zeros at the right-hand end if necessary) $r=b_{0} b_{1} \ldots b_{\ell}$. The exact power of 2 dividing the binomial coefficient $\binom{n}{r}$ is given by a special case of Kummer's theorem [5].

Proposition 1 (Kummer [5]). Let $c(n, r)$ denote the number of carries when adding the binary representations of r and $n-r$. Then

$$
2^{c(n, r)} \|\binom{ n}{r}
$$

Consider now the addition of the binary representation $b_{0} b_{1} \ldots b_{\ell}$ of r to that of $n-r$ to obtain the binary representation $a_{0} a_{1} \ldots a_{\ell}$ of n. If no carry occurs in the $(i-1)$ th position then there is no carry in the i th position if $b_{i} \leq a_{i}$, whereas there is a carry in the i th position if $b_{i}>a_{i}$. This simple observation enables us to say when $c(n, r)=0,1$ or 2 .

PROPOSITION 2.

(a) $c(n, r)=0 \Leftrightarrow b_{i} \leq a_{i}(i=0,1, \ldots, \ell)$.
(b) $c(n, r)=1$ and the carry occurs in the fth position $(0 \leq f \leq \ell-1) \Leftrightarrow a_{f} a_{f+1}=01$, $b_{f} b_{f+1}=10$, and $b_{i} \leq a_{i}(i \neq f, f+1)$.
(c) $c(n, r)=2$ and the carries occur in the f th and gth positions $(0 \leq f<g \leq \ell-1)$

$$
\begin{aligned}
\Leftrightarrow & a_{f} a_{f+1}=01, \quad b_{f} b_{f+1}=10, \quad a_{g} a_{g+1}=01, \quad b_{g} b_{g+1}=10, \quad \text { if } g \neq f+1, \\
& a_{f} a_{f+1} a_{f+2}=011, \quad b_{f} b_{f+1} b_{f+2}=110, \quad \text { or } \\
& a_{f} a_{f+1} a_{f+2}=001, \quad b_{f} b_{f+1} b_{f+2}=1 * 0, \quad \text { if } g=f+1,
\end{aligned}
$$

and

$$
b_{i} \leq a_{i} \quad(i \neq f, f+1, g, g+1)
$$

(* denotes 0 or 1.)
If S denotes a nonempty string of 0 's and 1's, we denote by n_{S} the number of occurrences of S in the string $a_{0} a_{1} \ldots a_{\ell}$. For example, if $n=1496=00011011101$ then $n_{0}=5, n_{1}=6$, $n_{00}=2, n_{01}=3, n_{10}=2, n_{11}=3, n_{000}=1, n_{001}=1$.

Propositions 1 and 2(a) enable us to prove Glaisher's formulae [3].

THEOREM A (GLAISHER [3]). $N_{n}(0,2)=n+1-2^{n_{1}}, N_{n}(1,2)=2^{n_{1}}$.

Proof. We have

$$
N_{n}(1,2)=\sum_{\substack{r=0 \\
\left(\begin{array}{l}
n \\
r
\end{array}\right) \equiv 1(\bmod 2)}}^{n} 1=\sum_{\substack{r=0 \\
c(n, r)=0}}^{n} 1=\sum_{b_{0}, \ldots, b_{\ell}=0}^{a_{0}, \ldots, a_{\ell}} 1=\left(a_{0}+1\right) \cdots\left(a_{\ell}+1\right)=2^{n_{1}}
$$

The formula for $N_{n}(0,2)$ now follows from (1.1) with $d=1$ and $m=2$.

Similarly we can prove Davis and Webb's formulae [2].

Theorem B (first part, Davis and Webb [2]).

$$
N_{n}(0,4)=n+1-2^{n_{1}}-n_{01} 2^{n_{1}-1}, \quad N_{n}(2,4)=n_{01} 2^{n_{1}-1} .
$$

Proof. Appealing to Propositions 1 and 2(b), we have

$$
\begin{aligned}
N_{n}(2,4) & =\sum_{\substack{r=0 \\
\left(\begin{array}{l}
n \\
r
\end{array}\right) \equiv 2(\bmod 4)}}^{n} 1=\sum_{f=0}^{\ell-1} \sum_{\substack{r=0 \\
c(n, r)=1 \\
\text { carry in } f \text { th place }}}^{n} 1=\sum_{\substack{f=0 \\
a_{f} a_{f+1}=01}}^{\ell-1} \sum_{b_{0}, \ldots, b_{f-1}, b_{f+2}, \ldots, b_{\ell}=0}^{b_{f} b_{f+1}=10}
\end{aligned} a_{\substack{a_{0}, \ldots, a_{f-1}, a_{f+2}, \ldots, a_{\ell}}}^{\ell} 1
$$

From (1.1) with $m=4, d=2$, and $t=0$, we have $N_{n}(0,4)+N_{n}(2,4)=N_{n}(0,2)$, from which the value of $N_{n}(0,4)$ follows.

Likewise we can use Propositions 1 and 2(c) to determine $N_{n}(0,8)$ and $N_{n}(4,8)$.

THEOREM C (FIRST PART).

$$
\begin{aligned}
& N_{n}(0,8)=n+1-\left(n_{001}+1\right) 2^{n_{1}}-n_{011} 2^{n_{1}-2}-n_{01}\left(n_{01}+3\right) 2^{n_{1}-3} \\
& N_{n}(4,8)=n_{001} 2^{n_{1}}+n_{011} 2^{n_{1}-2}+n_{01}\left(n_{01}-1\right) 2^{n_{1}-3}
\end{aligned}
$$

Proof. We have

$$
\begin{aligned}
& N_{n}(4,8)=\sum_{\substack{r=0 \\
\left(\begin{array}{l}
n \\
r
\end{array}\right)=4(\bmod 8)}}^{n} 1=\sum_{\substack{r=0 \\
c(n, r)=2}}^{n} 1 \\
& =\sum_{\substack{f=0 \\
a_{f} a_{f+1} a_{f+2}=011}}^{\substack{\begin{subarray}{c}{b_{0}, \ldots, b_{f-1}, b_{f+3}, \ldots, b_{\ell}=0 \\
b_{f} b_{f+1} b_{f+2}=110} }}\end{subarray}} \sum_{\substack{a_{0}, \ldots, a_{f-1}, a_{f+3}, \ldots, a_{\ell}}}^{\ell-2} \sum_{\substack{a_{f} \\
a_{f+1} a_{f+2}=001}}^{a_{0}, \ldots, a_{f-1}, a_{f+3}, \ldots, a_{\ell}} \sum_{\substack{ \\
b_{0}, \ldots, b_{f-1}, b_{f+3}, \ldots, b_{\ell}=0 \\
b_{f} b_{f+1} b_{f+2}=1 * 0}} 1 \\
& +\sum_{\substack{f=0 \\
a_{f} a_{f+1}=01}}^{\substack{\begin{subarray}{c}{g=f+2 \\
a_{g} a_{g+1}=01} }}\end{subarray}} \sum_{\substack{\ell-1}}^{b_{0}, \ldots, b_{f-1}, b_{f+2}, \ldots, b_{g-1}, b_{g+2}, \ldots, b_{\ell}=0} \begin{array}{l}
a_{0}, \ldots, a_{f-1}, a_{f+2}, \ldots, a_{g-1}, a_{g+2}, \ldots, a_{\ell} \\
b_{f} b_{f+1}=b_{g} b_{g+1}=10
\end{array}, 1
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{\substack{f=0 \\
a_{f} a_{f+1}=01}}^{\substack{\begin{subarray}{c}{g=f+2 \\
a_{g} a_{g+1}=01} }}\end{subarray}} \prod_{\substack{j=0 \\
j \neq f, f+1, g, g+1}}^{\ell-1}\left(a_{j}+1\right) \\
& =\sum_{\substack{f=0 \\
a_{f} a_{f+1} a_{f+2}=011}}^{\ell-2} 2^{n_{1}-2}+2 \sum_{\substack{f=0 \\
a_{f} a_{f+1} a_{f+2}=001}}^{\ell-2} 2^{n_{1}-1}+\sum_{\substack{f=0 \\
a_{f} a_{f+1}=01}}^{\ell-3} \sum_{\substack{g=f+2 \\
a_{g} a_{g+1}=01}}^{\ell-1} 2^{n_{1}-2} \\
& =n_{011} 2^{n_{1}-2}+n_{001} 2^{n_{1}}+\frac{n_{01}\left(n_{01}-1\right)}{2} 2^{n_{1}-2} \text {. }
\end{aligned}
$$

The value of $N_{n}(0,8)$ follows from (1.1) with $m=8, d=4$, and $t=0$.
Although Kummer's result (Proposition 1) enabled us to determine $N_{n}(1,2), N_{n}(2,4)$, and $N_{n}(4,8)$, it is clear that we need a more precise congruence for $\binom{n}{r}$ to be able to determine $N_{n}(t, 4)$ for $t=1,3$ and $N_{n}(t, 8)$ for $t=1,2,3,5,6,7$. The required congruences for $\binom{n}{r}$ modulo 4 and modulo 8 are provided by the Davis-Webb congruence, which is the subject of the next section.
It is understood throughout that an empty sum has the value 0 , an empty product the value 1 , and

$$
0^{n}= \begin{cases}1, & \text { if } n=0 \\ 0, & \text { if } n \geq 1\end{cases}
$$

2. The Davis-Webb Congruence

In order to state the Davis-Webb congruence for $\binom{n}{r}$ modulo 2^{h}, we need the binary version of the symbol $\left\langle\begin{array}{l}c \\ d\end{array}\right\rangle$ defined by Davis and Webb [1] for arbitrary nonnegative integers $c=c_{0} c_{1} \ldots c_{s}$ and $d=d_{0} d_{1} \ldots d_{s}$ (where additional zeros have been included at the right-hand of either c or d, if necessary, to make their binary representations the same length). If $c_{0} c_{1} \ldots c_{i}<d_{0} d_{1} \ldots d_{i}$ for $i=0,1, \ldots, s$, we set

$$
\left\langle\begin{array}{l}
c \\
d
\end{array}\right\rangle=2^{s+1}
$$

Otherwise we let u denote the largest integer between 0 and s inclusive for which $c_{0} c_{1} \ldots c_{u} \geq$ $d_{0} d_{1} \ldots d_{u}$, and set

$$
\left\langle\begin{array}{l}
c \\
d
\end{array}\right\rangle=2^{s-u}\binom{c_{0} c_{1} \ldots c_{u}}{d_{0} d_{1} \ldots d_{u}}
$$

Table 1.
Values of $\left[\begin{array}{c}c_{0} \\ d_{0}\end{array}\right]$.

	c_{0}	
d_{0}	0	1
0	1	1
1	1	1

TABLE 2.
Values of $\left[\begin{array}{ll}c_{0} & c_{1} \\ d_{0} & d_{1}\end{array}\right]$.

	$c_{0} c_{1}$			
$d_{0} d_{1}$	00	10	01	11
00	1	1	1	1
10	1	1	1	3
01	1	1	1	3
11	1	1	1	1

Thus, for example, if $c=26=010110$ and $d=39=111001$, we have $s=5$ and $u=4$ so that

$$
\binom{26}{39}=2^{5-4}\binom{01011}{11100}=2\binom{26}{7}
$$

The symbol $\left\langle\begin{array}{l}c \\ d\end{array}\right\rangle$ is an extension of the ordinary binomial coefficient since for $0 \leq d \leq c$ we have $u=s$ and so $\left(\begin{array}{l}c \\ d\end{array}\right\rangle=\binom{c}{d}$. The odd part of $\left\langle\begin{array}{l}c \\ d\end{array}\right\rangle$ is denoted by $\left[\begin{array}{l}c \\ d\end{array}\right]$. The values of $\left[\begin{array}{l}c \\ d\end{array}\right]$ for $s=0,1$, and 2 are given in Tables $1-3$ respectively.
For our purposes it is also convenient to set for $s \geq 1$

$$
\left[\begin{array}{l}
c \\
d
\end{array}\right]^{\prime}=\text { odd part of } \frac{\left\langle\begin{array}{l}
c_{0} c_{1} \ldots c_{s} \\
d_{0} d_{1} \ldots . d_{s}
\end{array}\right\rangle}{\left(\begin{array}{l}
c_{0} c_{1} \ldots c_{s-1} \\
d_{0} d_{1} \ldots \\
d_{s-1}
\end{array}\right\rangle}
$$

The values of $\left[\begin{array}{l}c \\ d\end{array}\right]^{\prime}$ for $s=1$ and 2 are given in Tables 4 and 5 respectively. From Tables 1-5 we obtain the assertions of Lemma 1.

Lemma 1.

(a) $\left[\begin{array}{l}c_{0} \\ d_{0}\end{array}\right]=1$.
(b) $\left[\begin{array}{ll}c_{0} & c_{1} \\ d_{0} & d_{1}\end{array}\right] \equiv \begin{cases}1(\bmod 4), & \text { if } c_{0} c_{1} \neq 11, \\ (-1)^{d_{0}+d_{1}}(\bmod 4), & \text { if } c_{0} c_{1}=11 .\end{cases}$
(c) $\left[\begin{array}{ll}c_{0} & c_{1} \\ d_{0} & d_{1}\end{array}\right] \equiv \begin{cases}1(\bmod 8), & \text { if } c_{0} c_{1} \neq 11, \\ (-1)^{d_{0}+d_{1} 5^{d_{0}+d_{1}}(\bmod 8),} & \text { if } c_{0} c_{1}=11 .\end{cases}$
(d) $\left[\begin{array}{ll}c_{0} & c_{1} \\ d_{0} & d_{1}\end{array}\right]^{\prime} \equiv \begin{cases}1(\bmod 4), & \text { if } c_{0} c_{1} \neq 11, \\ (-1)^{d_{0}+d_{1}}(\bmod 4), & \text { if } c_{0} c_{1}=11 .\end{cases}$
(e) $\left[\begin{array}{lll}c_{0} & c_{1} & 0 \\ d_{0} & d_{1} & d_{2}\end{array}\right]^{\prime}=1$.

Table 3.
Values of $\left[\begin{array}{c}c_{0} c_{1} c_{2} \\ d_{0} d_{1} d_{2}\end{array}\right]$.

	$c_{0} c_{1} c_{2}$							
$d_{0} d_{1} d_{2}$	000	100	010	110	001	101	011	111
000	1	1	1	1	1	1	1	1
100	1	1	1	3	1	5	3	7
010	1	1	1	3	3	5	15	21
110	1	1	1	1	1	5	5	35
001	1	1	1	1	1	5	15	35
101	1	1	1	3	1	1	3	21
011	1	1	1	3	1	1	1	7
111	1	1	1	1	1	1	1	1

Table 4.

Values of $\left[\begin{array}{c}c_{0} c_{1} \\ d_{0} d_{1}\end{array}\right]^{\prime}$				
	$c_{0} c_{1}$			
$d_{0} d_{1}$	00	10	01	11
00	1	1	1	1
10	1	1	1	3
01	1	1	1	3
11	1	1	1	1

(h) $\left[\begin{array}{ccc}c_{0} & 1 & 1 \\ d_{0} & d_{1} & d_{2}\end{array}\right]^{\prime} \equiv(-1)^{d_{1}+d_{2}}(\bmod 4), \quad$ if $c_{0} \geq d_{0}$.
(i) $\left[\begin{array}{lll}c_{0} & c_{1} & c_{2} \\ d_{0} & d_{1} & d_{2}\end{array}\right]^{\prime} \equiv 1(\bmod 4), \quad$ if $c_{1} c_{2} \neq 11$ and $c_{1} \geq d_{1}$.
(j) $\left[\begin{array}{ccc}1 & 0 & 1 \\ d_{0} & 0 & d_{2}\end{array}\right] \equiv 5^{d_{0}+d_{2}}(\bmod 8)$.
(k) $\left[\begin{array}{ccc}0 & 1 & 1 \\ 0 & d_{1} & d_{2}\end{array}\right]^{\prime} \equiv(-1)^{d_{1}+d_{2}}(\bmod 8)$.
(l) $=\left[\begin{array}{ccc}1 & 1 & 1 \\ d_{0} & d_{1} & d_{2}\end{array}\right]^{\prime} \equiv(-1)^{d_{1}+d_{2}} 5^{d_{0}+d_{2}}(\bmod 8)$.
(m) $\left[\begin{array}{lll}c_{0} & c_{1} & c_{2} \\ d_{0} & d_{1} & d_{2}\end{array}\right]^{\prime} \equiv 1(\bmod 8), \quad$ if $c_{0} c_{1} c_{1} \neq 101,011,111$, and $c_{i} \geq d_{i}(i=0,1,2)$.

Let h be an integer with $h \geq 2$. When $\ell \geq h-1$, Davis and Webb [1] have given a congruence for $\binom{n}{r}\left(\bmod p^{h}\right)$ for any prime p. (Granville's Proposition 2 in [4] is the special case of Davis and Webb's congruence when $p \nmid\binom{n}{r}$.) When $p=2$ their congruence can be expressed using Proposition 1 in the form:

Davis-Webb Congruence $\left(\bmod 2^{h}\right)$. For $2 \leq h \leq \ell+1$

$$
\binom{n}{r} \equiv 2^{c(n, r)}\left[\begin{array}{l}
a_{0} a_{1} \ldots a_{h-2} \tag{2.1}\\
b_{0} b_{1} \ldots b_{h-2}
\end{array}\right]^{\ell-h+1}\left[\begin{array}{l}
a_{i} a_{i+1} \ldots a_{i+h-1} \\
b_{i} b_{i+1} \ldots b_{i+h-1}
\end{array}\right]^{\prime} \quad\left(\bmod 2^{h}\right)
$$

Table 5.
Values of $\left[\begin{array}{c}c_{0} c_{1} c_{2} \\ d_{0} d_{1} d_{2}\end{array}\right]^{\prime}$.

	$c_{0} c_{1} c_{2}$								
$d_{0} d_{1} d_{2}$	000	100	010	110	001	101	011	111	
000	1	1	1	1	1	1	1	1	
100	1	1	1	1	1	5	3	$7 / 3$	
010	1	1	1	1	3	5	15	7	
110	1	1	1	1	1	5	5	35	
001	1	1	1	1	1	5	15	35	
101	1	1	1	1	1	1	3	7	
011	1	1	1	1	1	1	1	$7 / 3$	
111	1	1	1	1	1	1	1	1	

Our next task is to make the Davis-Webb congruence (mod 2^{h}) explicit in certain cases when $h=2$ and $h=3$ by means of Lemma 1. It is convenient to set

$$
E_{1}=\sum_{\substack{i=0 \\ a_{i} a_{i+1}=11}}^{\ell-1}\left(b_{i}+b_{i+1}\right), \quad E_{2}=\sum_{\substack{i=0 \\ a_{i} a_{i+2}=11}}^{\ell-2}\left(b_{i}+b_{i+2}\right)
$$

For an integer f with $0 \leq f \leq \ell-1$ we also set

$$
H_{f}=\sum_{\substack{i=0 \\ i \neq f-1, f, f+1 \\ a_{i} a_{i+1}=11}}^{\ell-1}\left(b_{i}+b_{i+1}\right)
$$

Davis-Webb Congruence $(\bmod 4)$. For $\ell \geq 1$ and $c(n, r)=0$, we have

$$
\binom{n}{r} \equiv(-1)^{E_{1}} \quad(\bmod 4)
$$

PROOF. Taking $h=2$ and $c(n, r)=0$ in (2.1), we obtain for $\ell \geq 1$

$$
\binom{n}{r} \equiv\left[\begin{array}{l}
a_{0} \\
b_{0}
\end{array}\right] \prod_{i=0}^{\ell-1}\left[\begin{array}{ll}
a_{i} & a_{i+1} \\
b_{i} & b_{i+1}
\end{array}\right]^{\prime} \quad(\bmod 4)
$$

Appealing to Lemma 1(a)(d), we obtain

$$
\binom{n}{r} \equiv \prod_{\substack{i=0 \\ a_{i} a_{i+1}=11}}^{\ell-1}(-1)^{b_{i}+b_{i+1}} \equiv(-1)^{\sum_{\substack{a_{i}=0 \\ a_{i+1}=11}}^{\ell-1}\left(b_{i}+b_{i+1}\right)} \equiv(-1)^{E_{1}} \quad(\bmod 4)
$$

DAVIS-Webb Congruence $(\bmod 8)$. (a) For $\ell \geq 2$ and $c(n, r)=0$, we have

$$
\begin{aligned}
& \binom{n}{r} \equiv(-1)^{E_{1}} 5^{E_{2}} \quad(\bmod 8), \quad \text { if } a_{0} a_{1} \neq 11, \\
& \binom{n}{r} \equiv(-1)^{E_{1}} 5^{b_{0}+b_{1}+E_{2}} \quad(\bmod 8), \quad \text { if } a_{0} a_{1}=11
\end{aligned}
$$

(b) For $\ell \geq 2$ and $c(n, r)=1$, we have

$$
\binom{n}{r} \equiv 2(-1)^{1+a_{f-1}+a_{f+2}+H_{f}} \quad(\bmod 8)
$$

where $f(0 \leq f \leq \ell-1)$ is the position of the carry when adding the binary representations of r and $n-r$, and

$$
a_{-1}=-1, \quad a_{\ell+1}=0
$$

Proof. (a) Taking $h=3$ and $c(n, r)=0$ in (2.1), we obtain for $\ell \geq 2$

$$
\binom{n}{r} \equiv\left[\begin{array}{ll}
a_{0} & a_{1} \\
b_{0} & b_{1}
\end{array}\right] \prod_{i=0}^{\ell-2}\left[\begin{array}{lll}
a_{i} & a_{i+1} & a_{i+2} \\
b_{i} & b_{i+1} & b_{i+2}
\end{array}\right]^{\prime} \quad(\bmod 8)
$$

By Proposition 2(a) we have $b_{i} \leq a_{i}$ for $i=0, \ldots, \ell$. Appealing to Lemma 1(j)(k)(l)(m), we obtain $\bmod 8$:

$$
\begin{aligned}
& \binom{n}{r} \equiv\left[\begin{array}{ll}
a_{0} & a_{1} \\
b_{0} & b_{1}
\end{array}\right] \prod_{\substack{i=0 \\
a_{i} a_{i+1} a_{i+2}=101}}^{\ell-2} 5^{b_{i}+b_{i+2}} \prod_{\substack{i=0 \\
a_{i} a_{i+1} a_{i+2}=011}}^{\ell-2}(-1)^{b_{i+1}+b_{i+2}} \\
& \times \prod_{\substack{i=0 \\
a_{i} a_{i+1} a_{i+2}=111}}^{\ell-2}(-1)^{b_{i+1}+b_{i+2}} 5^{b_{i}+b_{i+2}} \\
& \equiv\left[\begin{array}{cc}
a_{0} & a_{1} \\
b_{0} & b_{i}
\end{array}\right] \prod_{\substack{i=0 \\
a_{i} a_{i+2}=11}}^{\ell-2} 5^{b_{i}+b_{i+2}} \prod_{\substack{i=0 \\
a_{i+1} a_{i+2}=11}}^{\ell-2}(-1)^{b_{i+1}+b_{i+2}} \\
& \equiv\left[\begin{array}{ll}
a_{0} & a_{1} \\
b_{0} & b_{1}
\end{array}\right] \prod_{\substack{i=0 \\
a_{i} a_{i+2}=11}}^{\ell-2} 5^{b_{i}+b_{i+2}} \prod_{\substack{i=1 \\
a_{i} a_{i+1}=11}}^{\ell-1}(-1)^{b_{i}+b_{i+1}} \\
& \equiv\left[\begin{array}{ll}
a_{0} & a_{1} \\
b_{0} & b_{1}
\end{array}\right] 5^{\sum_{i=0}^{a_{i} a_{i+2}=11}}\left(b_{i}+b_{i+2}\right) \sum_{\substack{i=1 \\
\sum_{i=1}}}^{a_{i} a_{i+1}=11}\left(b_{i}+b_{i+1}\right) .
\end{aligned}
$$

If $a_{0} a_{1} \neq 11$, then, by Lemma $1(\mathrm{c})$, we have $\binom{n}{r} \equiv(-1)^{E_{1}} 5^{E_{2}}(\bmod 8)$. If $a_{0} a_{1}=11$ then, by Lemma 1(c), we have

$$
\binom{n}{r} \equiv(-1)^{b_{0}+b_{1}} 5^{b_{0}+b_{1}} 5^{E_{2}}(-1)^{E_{1}-\left(b_{0}+b_{1}\right)} \equiv(-1)^{E_{1}} 5^{b_{0}+b_{1}+E_{2}} \quad(\bmod 8)
$$

(b) Taking $h=3$ and $c(n, r)=1$ in (2.1), we obtain for $\ell \geq 2$

$$
\binom{n}{r} \equiv 2\left[\begin{array}{ll}
a_{0} & a_{1} \\
b_{0} & b_{1}
\end{array}\right] \prod_{i=0}^{\ell-2}\left[\begin{array}{lll}
a_{i} & a_{i+1} & a_{i+2} \\
b_{i} & b_{i+1} & b_{i+2}
\end{array}\right]^{\prime} \quad(\bmod 8)
$$

We let $f(0 \leq f \leq \ell-1)$ be the position of the carry so that by Proposition 2(b)
$a_{f} a_{f+1}=01, b_{f} b_{f+1}=10$, and $a_{k} \geq b_{k}$ for $k \neq f, f+1$. We have, by Lemma 1(h)(i)(1),

$$
\begin{aligned}
& {\left[\begin{array}{ll}
a_{0} & a_{1} \\
b_{0} & b_{1}
\end{array}\right] \prod_{\substack{i=0}}^{\ell-2}\left[\begin{array}{lll}
a_{i} & a_{i+1} & a_{i+2} \\
b_{i} & b_{i+1} & b_{i+2}
\end{array}\right]^{\prime}} \\
& \equiv\left[\begin{array}{ll}
a_{0} & a_{1} \\
b_{0} & b_{1}
\end{array} \prod_{\substack{i=1 \\
i \neq f-1, f, f+1}}^{\sum_{\substack{i=1}}^{\ell-1}\left(b_{i}+b_{i+1}\right)}\left[\begin{array}{lll}
a_{i-1} & a_{i} & a_{i+1} \\
b_{i-1} & b_{i} & b_{i+1}
\end{array}\right]^{\prime}\right. \\
& \equiv\left[\begin{array}{ll}
a_{0} & a_{1} \\
b_{0} & b_{1}
\end{array}\right](-1)^{\substack{i \neq f-1, f, f+1 \\
a_{i} a_{i+1}=11}} \\
& \sum_{\substack{i=1 \\
i \neq 0 \\
i \neq f-1, f, f+1}}^{\left(b_{i}+b_{i+1}\right)} \\
& a_{i} a_{i+1}=11 \\
&
\end{aligned}>(-1)^{H_{f}} \quad(\bmod 4) .
$$

We now consider four cases: (i) $f=0$; (ii) $f=1$; (iii) $2 \leq f \leq \ell-2$; and (iv) $f=\ell-1$. In each case we must determine

$$
P=\prod_{\substack{i=0 \\
i=f-2, f-1, f}}^{\ell-2}\left[\begin{array}{lll}
a_{i} & a_{i+1} & a_{i+2} \\
b_{i} & b_{i+1} & b_{i+2}
\end{array}\right]^{\prime}(\bmod 4)
$$

Case (i). $f=0$. In this case we have

$$
P=\left[\begin{array}{lll}
0 & 1 & a_{2} \\
1 & 0 & b_{2}
\end{array}\right]^{\prime} \equiv(-1)^{a_{2}} \quad(\bmod 4)
$$

by Lemma $1(\mathrm{~g})$, so that

$$
\binom{n}{r} \equiv 2(-1)^{H_{f}}(-1)^{a_{2}} \equiv 2(-1)^{1+a_{f-1}+a_{f+2}+H_{f}} \quad(\bmod 8)
$$

Case (ii). $f=1$. Here

$$
P=\left[\begin{array}{lll}
a_{0} & 0 & 1 \\
b_{0} & 1 & 0
\end{array}\right]^{\prime}\left[\begin{array}{lll}
0 & 1 & a_{3} \\
1 & 0 & b_{3}
\end{array}\right]^{\prime} \equiv(-1)^{1+a_{0}}(-1)^{a_{3}} \equiv(-1)^{1+a_{0}+a_{3}} \quad(\bmod 4)
$$

by Lemma $1(\mathrm{f})(\mathrm{g})$, so that

$$
\binom{n}{r} \equiv 2(-1)^{H_{f}}(-1)^{1+a_{0}+a_{3}} \equiv 2(-1)^{1+a_{f-1}+a_{f+2}+H_{f}} \quad(\bmod 8)
$$

Case (iii). $2 \leq f \leq \ell-2$. Here
$P=\left[\begin{array}{lll}a_{f-2} & a_{f-1} & 0 \\ b_{f-2} & b_{f-1} & 1\end{array}\right]^{\prime}\left[\begin{array}{lll}a_{f-1} & 0 & 1 \\ b_{f-1} & 1 & 0\end{array}\right]^{\prime}\left[\begin{array}{lll}0 & 1 & a_{f+2} \\ 1 & 0 & b_{f+2}\end{array}\right]^{\prime} \equiv(-1)^{1+a_{f-1}+a_{f+2}} \quad(\bmod 4)$,
by Lemma $1(\mathrm{e})(\mathrm{f})(\mathrm{g})$, so that

$$
\binom{n}{r} \equiv 2(-1)^{H_{f}}(-1)^{1+a_{f-1}+a_{f+2}} \equiv 2(-1)^{1+a_{f-1}+a_{f+2}+H_{f}} \quad(\bmod 8)
$$

Case (iv). $f=\ell-1$. Here

$$
P=\left[\begin{array}{lll}
a_{\ell-3} & a_{\ell-2} & 0 \\
b_{\ell-3} & b_{\ell-2} & 1
\end{array}\right]^{\prime}\left[\begin{array}{lll}
a_{\ell-2} & 0 & 1 \\
b_{\ell-2} & 1 & 0
\end{array}\right]^{\prime} \equiv(-1)^{1+a_{\ell-2}} \quad(\bmod 4)
$$

by Lemma 1(e)(f), so that

$$
\binom{n}{r} \equiv 2(-1)^{H_{f}}(-1)^{1+a_{\ell-2}} \equiv 2(-1)^{1+a_{f-1}+a_{f+2}+H_{f}} \quad(\bmod 8) .
$$

Our final task in this section is to give the mechanism whereby we can count the number of integers $r(0 \leq r \leq n)$ for which $\binom{n}{r}$ is in a particular residue class $(\bmod 4)$ or (mod 8). This mechanism is provided by the next lemma.

Lemma 2. Let c_{0}, \ldots, c_{ℓ} be integers. Then

$$
\sum_{b_{0}, \ldots, b_{\ell}=0}^{a_{0}, \ldots, a_{\ell}}(-1)^{\sum_{i=0}^{\ell} c_{i} b_{i}}= \begin{cases}2^{n_{1}}, & \text { if } c_{i} \equiv 0(\bmod 2) \text { for each } i=0,1, \ldots, \ell \text { with } a_{i}=1, \\ 0, & \text { if } c_{i} \equiv 1(\bmod 2) \text { for some } i(0 \leq i \leq \ell) \text { with } a_{i}=1\end{cases}
$$

Proof. We have

$$
\begin{aligned}
\sum_{b_{0}, \ldots, b_{\ell}=0}^{a_{0}, \ldots, a_{\ell}}(-1)^{\sum_{i=0}^{\ell} c_{i} b_{i}}= & \prod_{i=0}^{\ell}\left(\sum_{b_{i}=0}^{a_{i}}(-1)^{c_{i} b_{i}}\right)=\prod_{\substack{i=0 \\
a_{i}=1}}^{\ell}\left(\sum_{b_{i}=0}^{1}(-1)^{c_{i} b_{i}}\right)=\prod_{i=0}^{\ell}\left(1+(-1)^{c_{i}}\right) \\
= & \begin{cases}\prod_{i}=1 \\
\prod_{i=0}^{\ell} 2, & \text { if } c_{i} \equiv 0(\bmod 2) \text { for each } i \text { with } a_{i}=1 \\
a_{i=1} & \text { if } c_{i} \equiv 1(\bmod 2) \text { for some } i \text { with } a_{i}=1 \\
0, & \end{cases}
\end{aligned}
$$

In applying Lemma 2 in the evaluation of $N_{n}(t, 4)(t=1,3)$ and $N_{n}(t, 8)(t=1,2,3,5,6,7)$ a number of finite sums involving E_{1} and E_{2} arise. These sums are evaluated in Lemmas 3-7.

Lemma 3.

$$
\sum_{b_{0}, \ldots, b_{\ell}=0}^{a_{0}, \ldots, a_{\ell}}(-1)^{E_{1}}=0^{n_{11}} 2^{n_{1}}
$$

Proof. Set $S=\sum_{b_{0}, \ldots, b_{\ell}=0}^{a_{0}, \ldots, a_{\ell}}(-1)^{E_{1}}$. For $j=0,1, \ldots, \ell$ let c_{j} denote the number of occurrences of b_{j} in

$$
E_{1}=\sum_{\substack{i=0 \\ a_{i} a_{i+1}=11}}^{\ell-1}\left(b_{i}+b_{i+1}\right)
$$

so that $S=\sum_{b_{0}, \ldots, b_{\ell}=0}^{a_{0}, \ldots, a_{\ell}}(-1)^{\sum_{i=0}^{\ell} c_{i} b_{i}}$. If $n_{11}=0$ then $c_{j}=0(0 \leq j \leq \ell)$ so $S=2^{n_{1}}$ by Lemma 2. If $n_{11}>0$ let u be the least integer $(0 \leq u \leq \ell-1)$ such that $a_{u} a_{u+1}=11$. Then $c_{u}=1$ and $S=0$ by Lemma 2.

Lemma 4.

$$
\sum_{b_{0}, \ldots, b_{\ell}=0}^{a_{0}, \ldots, a_{\ell}}(-1)^{E_{2}}= \begin{cases}2^{n_{1}}, & \text { if } n_{101}=n_{111}=0 \\ 0, & \text { if } n_{101}>0 \text { or } n_{111}>0 .\end{cases}
$$

Proof. Set $S=\sum_{b_{0}, \ldots, b_{\ell}=0}^{a_{0}, \ldots, a_{\ell}}(-1)^{E_{2}}$. For $j=0,1, \ldots, \ell$ let c_{j} denote the number of occurrences of b_{j} in

$$
E_{2}=\sum_{\substack{i=0 \\ a_{i} a_{i+2}=11}}^{\ell-2}\left(b_{i}+b_{i+2}\right)
$$

If $n_{101}=n_{111}=0$ then $c_{j}=0(0 \leq j \leq \ell)$ so, by Lemma 2, we have $S=2^{n_{1}}$. If $n_{101}>0$ or $n_{111}>0$ let s be the least integer such that $a_{s} a_{s+2}=11(0 \leq s \leq \ell-2)$. Then $c_{s}=1$ and $S=0$ by Lemma 2 .

Before stating the next lemma, we remind the reader that the length of the i th block of 0 's in $a_{0} a_{1} \ldots a_{\ell}$ is denoted by v_{i} and the length of the i th block of 1 's by s_{i}. We consider $a_{0} a_{1} \ldots a_{\ell}$ to start with a block of 0 's and finish with a block of 1 's.

Lemma 5. For $n \geq 1$

$$
\sum_{b_{0}, \ldots, b_{\ell}=0}^{a_{0}, \ldots, a_{\ell}}(-1)^{E_{1}+E_{2}}= \begin{cases}0, & \text { if } n_{101}>0 \text { or } n_{1111}>0, \\ 0, & \text { if } n_{101}=n_{1111}=0 \text { and some } s_{i}=2, \\ 2^{n_{1}}, & \text { if } n_{101}=n_{1111}=0 \text { and } \text { each } s_{i}=1 \text { or } 3 .\end{cases}
$$

Proof. The lemma is easily checked for $\ell=0,1,2$ so we may suppose that $\ell \geq 3$. Let $S=\sum_{b_{0}, \ldots, b_{\ell}=0}^{a_{0}, \ldots, a_{\ell}}(-1)^{E_{1}+E_{2}}$. For $j=0,1, \ldots, \ell$ let c_{j} denote the number of occurrences of b_{j} in

$$
E_{1}+E_{2}=\sum_{\substack{i=0 \\ a_{i} a_{i+1}=11}}^{\ell-1}\left(b_{i}+b_{i+1}\right)+\sum_{\substack{i=0 \\ a_{i} a_{i+1} a_{i+2}=101}}^{\ell-2}\left(b_{i}+b_{i+2}\right)+\sum_{\substack{i=0 \\ a_{i} a_{i+1} a_{i+2}=111}}^{\ell-2}\left(b_{i}+b_{i+2}\right)
$$

Suppose first that $n_{101}=n_{1111}=0$ and some $s_{i}=2$, where $i \geq 1$. Hence there exists an integer $u(0 \leq u \leq \ell-1)$ such that $a_{u} a_{u+1}=11, a_{u-1}=0$ if $u \geq 1$, and $a_{u+2}=0$ if $u \leq \ell-2$. Let u be the least such integer. Then $c_{u}=1$ and $S=0$ by Lemma 2.
Suppose next that $n_{101}=n_{1111}=0$ and each $s_{i}=1$ or 3 . Let $j(0 \leq j \leq \ell)$ be an integer such that $a_{j}=1$. If $j=0$ and $a_{1}=0$, then $a_{2}=0$ and $c_{j}=0$. If $j=0$ and $a_{1}=1$, then $a_{2}=1$ and $c_{j}=2$. If $j=\ell$ and $a_{\ell-1}=0$, then $a_{\ell-2}=0$ and $c_{j}=0$. If $j=\ell$ and $a_{\ell-1}=1$, then $a_{\ell-2}=1$ and $c_{j}=2$. Now suppose $1 \leq j \leq \ell-1$. If $a_{j-1} a_{j} a_{j+1}=010$ then $c_{j}=0$. If $a_{j-1} a_{j} a_{j+1}=110$ then $j \geq 2$ and $a_{j-2} a_{j-1} a_{j} a_{j+1}=1110$ so that $c_{j}=2$. If $a_{j-1} a_{j} a_{j+1}=011$ then $j \leq \ell-2$ and $a_{j-1} a_{j} a_{j+1} a_{j+2}=0111$ so that $c_{j}=2$. If $a_{j-1} a_{j} a_{j+1}=111$ then $c_{j}=2$. Hence c_{j} is even for every j with $a_{j}=1$. Thus, by Lemma 2, we have $S=2^{n_{1}}$.
Now suppose that $n_{101}>0$. Let s be the least integer such that $a_{s} a_{s+1} a_{s+2}=101$. If $s=0$ then $c_{s}=1$. If $s \geq 1$ and $a_{s-1}=0$ then $c_{s}=1$. If $s=1$ and $a_{0}=1$ then $c_{0}=1$. If $s \geq 2$, $a_{s-1}=1$, and $a_{s-2}=0$ then $c_{s-1}=1$. If $s \geq 2, a_{s-1}=1$, and $a_{s-2}=1$ then $c_{s}=3$. Hence, by Lemma 2 , we have $S=0$.

Finally suppose that $n_{1111}>0$. Let w be the least integer such that $a_{w} a_{w+1} a_{w+2} a_{w+3}=$ 1111. Then $c_{w+1}=3$ and, by Lemma 2 , we have $S=0$.

Lemma 6. If $a_{0} a_{1}=1$ then

$$
\sum_{b_{0}, \ldots, b_{\ell}=0}^{a_{0}, \ldots, a_{\ell}}(-1)^{b_{0}+b_{1}+E_{2}}=0
$$

Proof. Set $S=\sum_{b_{0}, \ldots, b_{\ell}=0}^{a_{0}, \ldots, a_{\ell}}(-1)^{b_{0}+b_{1}+E_{2}}$. Let $c_{j}(0 \leq j \leq \ell)$ denote the number of occurrences of b_{j} in

$$
b_{0}+b_{1}+E_{2}=b_{0}+b_{1}+\sum_{\substack{i=0 \\ a_{i} a_{i+2}=11}}^{\ell-2}\left(b_{i}+b_{i+2}\right)
$$

Let $k(1 \leq k \leq \ell)$ be the largest integer such that $a_{0} a_{1} \ldots a_{k}=11 \ldots 1$. Then $c_{k-1}=1$. Hence, by Lemma 2, $S=0$.

Lemma 7. If $a_{0} a_{1}=11$ then

$$
\sum_{b_{0}, \ldots, b_{\ell}=0}^{a_{0}, \ldots, a_{\ell}}(-1)^{b_{0}+b_{1}+E_{1}+E_{2}}= \begin{cases}0, & \text { if } n_{101}>0 \text { or } n_{1111}>0 \\ 0, & \text { if } n_{101}=n_{1111}=0 \text { and some } s_{i}=2 \text { with } i \geq 2, \\ 0, & \text { if } n_{101}=n_{1111}=0 \text { and each } s_{i}=1 \text { or } 3, \\ 2^{n_{1}}, & \text { if } n_{101}=n_{1111}=0, s_{1}=2 \\ & \text { and each } s_{i}=1 \text { or } 3 \text { with } i \geq 2 .\end{cases}
$$

Proof. Set $S=\sum_{b_{0} \ldots, b_{\ell}=0}^{a_{0}, \ldots, a_{\ell}}(-1)^{b_{0}+b_{1}+E_{1}+E_{2}}$. For $j=0,1, \ldots, \ell$, let c_{j} denote the number of occurrences of b_{j} in

$$
b_{0}+b_{1}+\sum_{\substack{i=0 \\ a_{i} a_{i+1}=11}}^{\ell-1}\left(b_{i}+b_{i+1}\right)+\sum_{\substack{i=0 \\ a_{i} a_{i+2}=11}}^{\ell-2}\left(b_{i}+b_{i+2}\right) .
$$

Suppose first that $n_{101}>0$. Let $s(0 \leq s \leq \ell-2)$ be the least integer such that $a_{s} a_{s+1} a_{s+2}=$ 101. As $a_{0} a_{1}=11$ we have $s \geq 1$. If $s=1$ then $a_{s-1}=a_{0}=1$ and $c_{1}=3$. If $s \geq 2$ and $a_{s-1}=0$, then $a_{s-2}=0$ and $s \geq 4$, so that $c_{s}=1$. If $s \geq 2$ and $a_{s-2}=a_{s-1}=1$ then $c_{s}=3$. If $s \geq 2$ and $a_{s-2}=0, a_{s-1}=1$, then $s \geq 3$ and $a_{s-3}=0$, so that $c_{s-1}=1$. Hence, by Lemma $2, S=0$.
Suppose next that $n_{1111}>0$. Let $s(0 \leq s \leq \ell-3)$ be the least integer such that $a_{s} a_{s+1} a_{s+2} a_{s+3}=1111$. If $s=0$ then $c_{0}=3$. If $s \geq 1$ then $a_{s-1}=0$ and $c_{s+1}=3$. Hence, by Lemma $2, S=0$.
Now suppose that $n_{101}=n_{1111}=0$ and some $s_{i}=2$ with $i \geq 2$, say $a_{s} a_{s+1}=11$. As $a_{0} a_{1}=11$ and $n_{101}=0$ we have $s \geq 4$. Clearly $a_{s-2} a_{s-1}=00$. Hence $c_{s}=1$, and, by Lemma 2, we have $S=0$.

Next suppose that $n_{101}=n_{1111}=0$ and each $s_{i}=1$ or 3 . Then, as $a_{0} a_{1}=11$, we must have $a_{2}=1$. Thus $c_{0}=3$ and, by Lemma 2, we have $S=0$.
Finally suppose that $n_{101}=n_{1111}=0, s_{1}=2$, and each $s_{i}(i \geq 2)=1$ or 3. Clearly $c_{0}=c_{1}=2, c_{i}=0$ if $a_{i-1} a_{i} a_{i+1}=010(4 \leq i \leq \ell-1), c_{\ell}=0$ if $a_{\ell-1} a_{\ell}=01$, and $c_{i-1}=c_{i}=c_{i+1}=2$ if $a_{i-1} a_{i} a_{i+1}=111(5 \leq i \leq \ell-1)$. Thus c_{i} is even for all i with $a_{i}=1$ so that, by Lemma 2 , we have $S=2^{n_{1}}$.

In Section 3 we use the Davis-Webb congruence $(\bmod 4)$ to determine $N_{n}(1,4)$ and $N_{n}(3,4)$, thereby reproving the formulae due to Davis and Webb [2] (see Theorem B (second part)). In Sections 4 and 5 we employ the Davis-Webb congruence $(\bmod 8)$ to determine $N_{n}(t, 8)$ $(t=2,6)$ (see Theorem C (second part) in Section 4) and $N_{n}(t, 8)(t=1,3,5,7)$ (see Theorem C (third part) in Section 5).

3. Evaluation of $N_{n}(1,4)$ and $N_{n}(3,4)$

In this section we illustrate our methods by re-establishing the formulae for $N_{n}(1,4)$ and $N_{n}(3,4)$ due to Davis and Webb [2].

Theorem B (SECOND part, Davis and Webb [2]).

$$
N_{n}(1,4)=\left\{\begin{array}{ll}
2^{n_{1}}, & \text { if } n_{11}=0, \\
2^{n_{1}-1}, & \text { if } n_{11}>0,
\end{array} \quad N_{n}(3,4)= \begin{cases}0, & \text { if } n_{11}=0 \\
2^{n_{1}-1}, & \text { if } n_{11}>0\end{cases}\right.
$$

PROOF. It is easily checked that the formulae hold for $n=0,1$ so that we may take $n \geq 2$. Thus $\ell \geq 1$. For $t=1$ and 3 , we have

$$
N_{n}(t, 4)=\sum_{\substack{r=0 \\
\left(\begin{array}{l}
n \\
r
\end{array}\right) \equiv t(\bmod 4)}}^{n} 1=\sum_{\substack{b_{0}, \ldots, b_{\ell}=0 \\
(-1)^{E_{1}} \equiv t(\bmod 4)}}^{a_{0}, \ldots, a_{\ell}} 1,
$$

by Proposition 1, Proposition 2(a), and the Davis-Webb congruence (mod 4). Hence

$$
\begin{aligned}
N_{n}(t, 4) & =\sum_{\substack{b_{0}, \ldots, b_{\ell}=0 \\
E_{1}=\frac{1}{2}(t-1)(\bmod 2)}}^{a_{0}, \ldots, a_{\ell}} 1=\frac{1}{2} \sum_{b_{0}, \ldots, b_{\ell}=0}^{a_{0}, \ldots, a_{\ell}}\left(1+(-1)^{\frac{1}{2}(t-1)+E_{1}}\right) \\
& =2^{n_{1}-1}+\frac{1}{2}(-1)^{\frac{1}{2}(t-1)} \sum_{b_{0}, \ldots, b_{\ell}=0}^{a_{0}, \ldots, a_{\ell}}(-1)^{E_{1}} \\
& = \begin{cases}2^{n_{1}-1}+(-1)^{\frac{1}{2}(t-1)} 2^{n_{1}-1}, & \text { if } n_{11}=0, \\
2^{n_{1}-1}, & \text { if } n_{11}>0,\end{cases}
\end{aligned}
$$

by Lemma 3.

4. Evaluation of $N_{n}(2,8)$ and $N_{n}(6,8)$

In this section we evaluate $N_{n}(2,8)$ and $N_{n}(6,8)$.
THEOREM C (SECOND PART).

$$
\begin{aligned}
& N_{n}(2,8)= \begin{cases}n_{01} 2^{n_{1}-1}-n_{001} 2^{n_{1}-1}, & \text { if } n_{11}=0, \\
n_{01} 2^{n_{1}-2}-n_{011} 2^{n_{1}-2}+n_{0011} 2^{n_{1}-1}, & \text { if } n_{11}=1, \\
n_{01} 2^{n_{1}-2}, & \text { if } n_{11} \geq 2 .\end{cases} \\
& N_{n}(6,8)= \begin{cases}n_{001} 2^{n_{1}-1}, & \text { if } n_{11}=0, \\
n_{01} 2^{n_{1}-2}+n_{011} 2^{n_{1}-2}-n_{0011} 2^{n_{1}-1}, & \text { if } n_{11}=1, \\
n_{01} 2^{n_{1}-2}, & \text { if } n_{11} \geq 2 .\end{cases}
\end{aligned}
$$

Proof. It is easily checked that the theorem holds for $n=0,1,2,3$ (equivalently $\ell=0,1$). Hence we may assume that $\ell \geq 2$. For $t=2$ and 6 we have, by Proposition 1,

$$
N_{n}(t, 8)=\sum_{\substack{r=0 \\
\left(\begin{array}{l}
n \\
r
\end{array}\right) \equiv t(\bmod 8)}}^{n} 1=\sum_{\substack{r=0 \\
c(n, r)=1 \\
\left(\begin{array}{l}
n \\
r
\end{array}\right) \equiv t(\bmod 8)}}^{n} 1=\sum_{f=0}^{\ell-1} \sum_{\substack{r=0 \\
c(n, r)=1 \\
\text { carry in } f \text { th place } \\
\left(\begin{array}{l}
n \\
r
\end{array}\right) \equiv t(\bmod 8)}}^{n} 1 .
$$

Before continuing it is convenient to introduce some notation. Let S be a string of 0 's and 1 's of length k. For $0 \leq i \leq i+k-1 \leq \ell$ we set

$$
\left(\binom{a_{i} a_{i+1} \ldots a_{i+k-1}}{S}\right)= \begin{cases}1, & \text { if } a_{i} a_{i+1} \ldots a_{i+k-1}=S \\ 0, & \text { if } a_{i} a_{i+1} \ldots a_{i+k-1} \neq S\end{cases}
$$

Now, by the Davis-Webb congruence $(\bmod 8)$, we have

$$
\binom{n}{r} \equiv t \quad(\bmod 8) \Leftrightarrow \frac{1}{4}(t+2)+a_{f-1}+a_{f+2}+H_{f} \equiv 0 \quad(\bmod 2)
$$

Next, let

$$
E_{1}^{\prime}=\sum_{\substack{i=0 \\ a_{i} a_{i+1}=11}}^{f-2}\left(b_{i}+b_{i+1}\right), \quad E_{1}^{\prime \prime}=\sum_{\substack{i=f+2 \\ a_{i} a_{i+1}=11}}^{\ell-1}\left(b_{i}+b_{i+1}\right)
$$

so that $E_{1}^{\prime}+E_{1}^{\prime \prime}=H_{f}$. Hence the Davis-Webb congruence $(\bmod 8)$ becomes

$$
\binom{n}{r} \equiv t \quad(\bmod 8) \Leftrightarrow \frac{1}{4}(t+2)+a_{f-1}+a_{f+2}+E_{1}^{\prime}+E_{1}^{\prime \prime} \equiv 0 \quad(\bmod 2)
$$

Hence

$$
\begin{aligned}
N_{n}(t, 8)= & \sum_{\substack{f=0 \\
a_{f} a_{f+1}=01}}^{\ell-1} \sum_{\substack{b_{0}, \ldots, b_{f-1}, b_{f+2}, \ldots, b_{\ell}=0 \\
b_{f} b_{f+1}=10}}^{a_{0}, \ldots, a_{f-1}, a_{f+2}, \ldots, a_{\ell}} \frac{1}{2}\left(1+(-1)^{\left.\frac{1}{4}(t+2)+a_{f-1}+a_{f+2}+E_{1}^{\prime}+E_{1}^{\prime \prime}\right)}\right. \\
= & n_{01} 2^{n_{1}-2}+\frac{1}{2}(-1)^{\frac{1}{4}(t+2)} \sum_{\substack{f=0 \\
a_{f} a_{f+1}=01}}^{\ell-1}(-1)^{a_{f-1}+a_{f+2}} \sum_{a_{0}, \ldots, b_{f-1}=0}^{a_{0}, \ldots, a_{f-1}}(-1)^{E_{1}^{\prime}} \\
& \times \sum_{b_{f+2}, \ldots, b_{\ell}=0}^{a_{f+2, \ldots, a_{\ell}}(-1)^{E_{1}^{\prime \prime}}}
\end{aligned}
$$

Now, by Lemma 3, we have

$$
\sum_{b_{0}, \ldots, b_{f-1}=0}^{a_{0}, \ldots, a_{f-1}}(-1)^{E_{1}^{\prime}}=0^{n_{11}^{\prime}} 2^{n_{1}^{\prime}}, \quad \sum_{b_{f+2}, \ldots, b_{\ell}=0}^{a_{f+2}, \ldots, a_{\ell}}(-1)^{E_{1}^{\prime \prime}}=0^{n_{11}^{\prime \prime}} 2^{n_{1}^{\prime \prime}}
$$

where n_{1}^{\prime} is the number of 1^{\prime} 's in $a_{0} a_{1} \ldots a_{f-1}, n_{1}^{\prime \prime}$ is the number of 1 's in $a_{f+2} \ldots a_{\ell}, n_{11}^{\prime}$ is the number of occurrences of 11 in $a_{0} a_{1} \ldots a_{f-1}$, and $n_{11}^{\prime \prime}$ is the number of occurrences of 11 in $a_{f+2} \ldots a_{\ell}$. Hence

$$
\sum_{b_{0}, \ldots, b_{f-1}=0}^{a_{0}, \ldots, a_{f-1}}(-1)^{E_{1}^{\prime}} \sum_{b_{f+2}, \ldots, b_{\ell}=0}^{a_{f+2}, \ldots, a_{\ell}}(-1)^{E_{1}^{\prime \prime}}=0^{n_{11}^{\prime}+n_{11}^{\prime \prime} 2^{n_{1}^{\prime}+n_{1}^{\prime \prime}}=\left\{\begin{array}{ll}
0^{n_{11}} 2^{n_{1}-1}, & \text { if } a_{f+2}=0 \\
0^{n_{11}-1} 2^{n_{1}-1}, & \text { if } a_{f+2}=1
\end{array} . .8\right. \text {. }}
$$

Thus for $n_{11}>1$ we have $N_{n}(t, 8)=n_{01} 2^{n_{1}-2}$. Next for $n_{11}=1$ we have

$$
\begin{aligned}
N_{n}(t, 8) & =n_{01} 2^{n_{1}-2}+\frac{1}{2}(-1)^{\frac{1}{4}(t+2)} \sum_{f=0}^{\ell-1}(-1)^{a_{f-1}+a_{f+2} 2^{n_{1}-1}} \\
& =n_{01} 2^{n_{1}-2}-(-1)^{\frac{1}{4}(t+2)} 2^{n_{1}-2} \sum_{f=0}^{\ell-1}(-1)^{a_{f}-1} \\
& a_{f} a_{f+1}^{a_{f+2}=011} \\
& =n_{01} 2^{n_{1}-2}+(-1)^{\frac{1}{4}(t-2)} 2^{n_{1}-2}\left(-\left(\left(\begin{array}{ccc}
a_{0} & a_{1} & a_{2} \\
0 & 1 & 1
\end{array}\right)\right)+n_{0011}-n_{1011}\right) \\
& =n_{01} 2^{n_{1}-2}+(-1)^{\frac{1}{4}(t-2)} 2^{n_{1}-2}\left(2 n_{0011}-n_{011}\right)
\end{aligned}
$$

as

$$
\left(\left(\begin{array}{ccc}
a_{0} & a_{1} & a_{2} \\
0 & 1 & 1
\end{array}\right)\right)=n_{011}-n_{0011}-n_{1011}
$$

Hence

$$
N_{n}(2,8)=n_{01} 2^{n_{1}-2}+2^{n_{1}-1} n_{0011}-2^{n_{1}-2} n_{011}
$$

and

$$
N_{n}(6,8)=n_{01} 2^{n_{1}-2}-2^{n_{1}-1} n_{0011}+2^{n_{1}-2} n_{011}
$$

Finally for $n_{11}=0$ we have

$$
\begin{aligned}
N_{n}(t, 8)= & n_{01} 2^{n_{1}-2}+\frac{1}{2}(-1)^{\frac{1}{4}(t+2)} \sum_{f=0}^{\ell-1}(-1)^{a_{f-1}+a_{f+2}} 2^{n_{1}-1} \\
= & n_{01} 2^{n_{1}-2}+(-1)^{\frac{1}{4}(t+2)} 2^{n_{1}-2}\left\{-\left(\left(\begin{array}{ccc}
a_{0} & a_{1} & a_{2} \\
0 & 1 & 0
\end{array}\right)\right)+\left(\left(\begin{array}{cc}
a_{\ell-2} & a_{\ell-1} \\
0 & a_{\ell} \\
0 & 1
\end{array}\right)\right)\right. \\
& \left.-\left(\left(\begin{array}{ccc}
a_{\ell-2} & a_{\ell-1} & a_{\ell} \\
1 & 0 & 1
\end{array}\right)\right)+\sum_{\substack{f=1 \\
a_{f} a_{f+1} a_{f+2}=010}}^{\ell-2}(-1)^{a_{f-1}}\right\}
\end{aligned}
$$

Now as $n_{11}=0$ we have

$$
\begin{aligned}
& \left(\left(\begin{array}{ccc}
a_{0} & a_{1} & a_{2} \\
0 & 1 & 0
\end{array}\right)\right)=\left(\left(\begin{array}{cc}
a_{0} & a_{1} \\
0 & 1
\end{array}\right)\right)=n_{01}-n_{001}-n_{101} \\
& \left(\left(\begin{array}{ccc}
a_{\ell-2} & a_{\ell-1} & a_{\ell} \\
0 & 0 & 1
\end{array}\right)\right)=n_{001}-n_{0010}-n_{0011}=n_{001}-n_{0010}, \\
& \left(\left(\begin{array}{ccc}
a_{\ell-2} & a_{\ell-1} & a_{\ell} \\
1 & 0 & 1
\end{array}\right)\right)=n_{101}-n_{1010}-n_{1011}=n_{101}-n_{1010}, \\
& \sum_{\substack{f=1 \\
a_{f} a_{f+1} a_{f+2}=010}}^{\ell-2}(-1)^{a_{f-1}}=\sum_{a_{f-1} a_{f} a_{f+1} a_{f+2}=0010}^{\ell-2} 1-\sum_{a_{f-1} a_{f} a_{f+1} a_{f+2}=1010}^{\ell-2} 1=n_{0010}-n_{1010},
\end{aligned}
$$

so that

$$
\begin{aligned}
& -\left(\left(\begin{array}{ccc}
a_{0} & a_{1} & a_{2} \\
0 & 1 & 0
\end{array}\right)\right)+\left(\left(\begin{array}{ccc}
a_{\ell-2} & a_{\ell-1} & a_{\ell} \\
0 & 0 & 1
\end{array}\right)\right)-\left(\left(\begin{array}{ccc}
a_{\ell-2} & a_{\ell-1} & a_{\ell} \\
1 & 0 & 1
\end{array}\right)\right) \\
& +\sum_{\substack{\ell=1 \\
a_{f} a_{f+1} a_{f+2}=010}}(-1)^{a_{f-1}}=-n_{01}+2 n_{001}
\end{aligned}
$$

Hence

$$
\begin{aligned}
N_{n}(t, 8) & =n_{01} 2^{n_{1}-2}+(-1)^{\frac{1}{4}(t+2)}\left(-n_{01}+2 n_{001}\right) 2^{n_{1}-2} \\
& = \begin{cases}n_{01} 2^{n_{1}-1}-n_{001} 2^{n_{1}-1}, & \text { if } t=2 \\
n_{001} 2^{n_{1}-1}, & \text { if } t=6\end{cases}
\end{aligned}
$$

5. Evaluation of $N_{n}(t, 8), t=1,3,5,7$

In this section we carry out the evaluation of $N_{n}(t, 8)$ for $t=1,3,5,7$ using the Davis-Webb congruence $(\bmod 8)$.

THEOREM C (THIRD PART).

Case No.	n_{1111}	n_{11}	n_{101}	n_{111}	v_{1}	s_{1}	$s_{i}(i \geq 2)$	$N_{n}(1,8)$	$N_{n}(3,8)$	$N_{n}(5,8)$	$N_{n}(7,8)$
(i)	$\neq 0$							$2^{n_{1}-2}$	$2^{n_{1}-2}$	$2^{n_{1}-2}$	$2^{n_{1}-2}$
(ii)	0	0	0					$2^{n_{1}}$	0	0	0
(iii)			$\neq 0$					$2^{n_{1}-1}$	0	$2^{n_{1}-1}$	0
(iv)		$\neq 0$	$\neq 0$					$2^{n_{1}-2}$	$2^{n_{1}-2}$	$2^{n_{1}-2}$	$2^{n_{1}-2}$
(v)			0	0	$\neq 0$			$2^{n_{1}-1}$	0	0	$2^{n_{1}-1}$
(vi)					0	1		$2^{n_{1}-1}$	0	0	$2^{n_{1}-1}$
(vii)						2	some $=2$	$2^{n_{1}-2}$	$2^{n_{1}-2}$	$2^{n_{1}-2}$	$2^{n_{1}-2}$
(viii)						2	none $=2$	$2^{n_{1}-1}$	$2^{n_{1}-1}$	0	0
(ix)				$\neq 0$	0	3		$2^{n_{1}-2}$	$2^{n_{1}-2}$	$2^{n_{1}-2}$	$2^{n_{1}-2}$
(x)						1,2	some $=2$	$2^{n_{1}-2}$	$2^{n_{1}-2}$	$2^{n_{1}-2}$	$2^{n_{1}-2}$
(xi)						1,2	none $=2$	$2^{n_{1}-1}$	$2^{n_{1}-1}$	0	0
(xii)					$\neq 0$		some $=2$	$2^{n_{1}-2}$	$2^{n_{1}-2}$	$2^{n_{1}-2}$	$2^{n_{1}-2}$
(xiii)							none $=2$	$2^{n_{1}-1}$	$2^{n_{1}-1}$	0	0

Proof. It is easily checked that the theorem holds for $n=0,1,2,3$ (equivalently $\ell=0,1$). Hence we may assume that $\ell \geq 2$. For $t=1,3,5,7$ we have

$$
N_{n}(t, 8)=\sum_{\substack{r=0 \\
\left(\begin{array}{c}
n \\
r
\end{array}\right) \equiv t(\bmod 8)}}^{n} 1=\sum_{\substack{r=0 \\
c(n, r)=0 \\
\left(\begin{array}{c}
n \\
r
\end{array} \equiv t(\bmod 8)\right.}}^{n} 1=\sum_{\substack{\left.\left.b_{0}, \ldots, b_{\ell}=0 \\
(-1)^{E_{1}} 5^{\left(b_{0}+b_{1}\right)\left(\left(\begin{array}{c}
a_{0} \\
1 \\
1
\end{array} 1\right.\right.} 1\right)\right)+E_{2} \equiv t(\bmod 8)}}^{a_{0}, \ldots, a_{\ell}} 1,
$$

by Propositions 1 and 2(a), and part (a) of the Davis-Webb congruence (mod 8). Set

$$
\alpha(t)=(t-1) / 2 . \quad \beta(t)=\left(t^{2}-1\right) / 8
$$

so that $t \equiv(-1)^{\alpha(t)} 5^{\beta(t)}(\bmod 8)$. Hence

$$
\begin{aligned}
& (-1)^{E_{1}} 5^{\left(b_{0}+b_{1}\right)\left(\binom{a_{0} a_{1}}{1}\right)+E_{2}} \equiv t \quad(\bmod 8) \\
& \Leftrightarrow E_{1} \equiv \alpha(t) \quad(\bmod 2),\left(b_{0}+b_{1}\right)\left(\left(\begin{array}{cc}
a_{0} & a_{1} \\
1 & 1
\end{array}\right)\right)+E_{2} \equiv \beta(t) \quad(\bmod 2)
\end{aligned}
$$

Thus

$$
\begin{aligned}
N_{n}(t, 8)= & \frac{1}{4} \sum_{b_{0}, \ldots, b_{\ell}=0}^{a_{0}, \ldots, a_{\ell}}\left(1+(-1)^{\alpha(t)}(-1)^{E_{1}}\right)\left(1+(-1)^{\beta(t)}(-1)^{\left(b_{0}+b_{1}\right)\left(\left(\begin{array}{cc}
a_{0} & a_{1} \\
1 & 1
\end{array}\right)\right)+E_{2}}\right) \\
= & 2^{n_{1}-2}+\frac{(-1)^{\alpha(t)}}{4} \sum_{b_{0}, \ldots, b_{\ell}=0}^{a_{0}, \ldots, a_{\ell}}(-1)^{E_{1}} \\
& +\frac{(-1)^{\beta(t)}}{4} \sum_{b_{0}, \ldots, b_{\ell}=0}^{a_{0}, \ldots, a_{\ell}}(-1)^{\left(b_{0}+b_{1}\right)\left(\left(\begin{array}{cc}
a_{0} & a_{1} \\
1 & 1
\end{array}\right)\right)+E_{2}} \\
& +\frac{(-1)^{\alpha(t)+\beta(t)}}{4} \sum_{b_{0}, \ldots, b_{\ell}=0}^{a_{0}, \ldots, a_{\ell}}(-1)^{\left(b_{0}+b_{1}\right)\left(\left(\begin{array}{ccc}
a_{0} & a_{1} \\
1 & 1
\end{array}\right)\right)+E_{1}+E_{2}} .
\end{aligned}
$$

We treat the two cases $a_{0} a_{1} \neq 11$ and $a_{0} a_{1}=11$ separately.
If $a_{0} a_{1} \neq 11$ then $\left(\left(\begin{array}{cc}a_{0} & a_{1} \\ 1 & 1\end{array}\right)\right)=0$ and appealing to Lemmas 3, 4 and 5, we obtain

$$
\begin{aligned}
N_{n}(t, 8)= & 2^{n_{1}-2}+\left\{\begin{array}{ll}
(-1)^{\alpha(t)} 2^{n_{1}-2}, & \text { if } n_{11}=0 \\
0, & \text { if } n_{11}>0
\end{array}\right\}+\left\{\begin{array}{ll}
(-1)^{\beta(t)} 2^{n_{1}-2}, & \text { if } n_{101}=n_{111}=0 \\
0, & \text { if } n_{101} \text { or } n_{111}>0
\end{array}\right\} \\
& + \begin{cases}(-1)^{\alpha(t)+\beta(t)} 2^{n_{1}-2}, & \text { if } n_{101}=n_{1111}=0 \text { and each } s_{i}=1 \text { or } 3 \\
0, & \text { if } n_{101}=n_{1111}=0 \\
& \text { and some } s_{i}=2 ; \text { or } n_{101}>0 ; \text { or } n_{1111}>0 .\end{cases}
\end{aligned}
$$

Appealing to the case definitions given in the statement of the theorem we obtain the value of $N_{n}(t, 8)$.

Cases (i), (iv), (xii). $\quad N_{n}(t, 8)=2^{n_{1}-2}+0+0+0=2^{n_{1}-2}$.

Case (ii). Here $n_{11}=0$ so that each $s_{i}=1$.

$$
\begin{aligned}
N_{n}(t, 8) & =2^{n_{1}-2}+(-1)^{\alpha(t)} 2^{n_{1}-2}+(-1)^{\beta(t)} 2^{n_{1}-2}+(-1)^{\alpha(t)+\beta(t)} 2^{n_{1}-2} \\
& = \begin{cases}2^{n_{1}}, & \text { if } t=1, \\
0, & \text { if } t=3,5,7 .\end{cases}
\end{aligned}
$$

Case (iii). $\quad N_{n}(t, 8)=2^{n_{1}-2}+(-1)^{\alpha(t)} 2^{n_{1}-2}= \begin{cases}2^{n_{1}-1}, & \text { if } t=1,5, \\ 0, & \text { if } t=3,7 .\end{cases}$
Cases (v), (vi). Here $n_{11}>0, n_{111}=0$ implies that some $s_{i}=2$.

$$
N_{n}(t, 8)=2^{n_{1}-2}+0+(-1)^{\beta(t)} 2^{n_{1}-2}+0= \begin{cases}2^{n_{1}-1}, & \text { if } t=1,7 \\ 0, & \text { if } t=3,5\end{cases}
$$

Cases (vii), (viii), (ix). Here $v_{1}=0$ and $s_{1}=2$ or 3 so that $a_{0} a_{1}=11$, contradicting $a_{0} a_{1} \neq 11$. These cases cannot occur.

Case (x). Here $v_{1}=0$ and $s_{1}=1$ or 2 . As $a_{0} a_{1} \neq 11$ we have $s_{1}=1$.

$$
N_{n}(t, 8)=2^{n_{1}-2}+0+0+0=2^{n_{1}-2} .
$$

Case (xi) (Here $v_{1}=0$ and $s_{1}=1$ or 2: as $a_{0} a_{1} \neq 11$ we have $s_{1}=1$.) and Case (xiii).

$$
N_{n}(t, 8)=2^{n_{1}-2}+0+0+(-1)^{\alpha(t)+\beta(t)} 2^{n_{1}-2}= \begin{cases}2^{n_{1}-1}, & \text { if } t=1,3 \\ 0, & \text { if } t=5,7\end{cases}
$$

If $a_{0} a_{1}=11$, appealing to Lemmas 3,6 , and 7 , we obtain

$$
N_{n}(t, 8)=2^{n_{1}-2}+ \begin{cases}(-1)^{\alpha(t)+\beta(t)} 2^{n_{1}-2}, & \text { if } n_{101}=n_{1111}=0, s_{1}=2 \\ & \text { each } s_{i}(i \geq 2)=1 \text { or } 3 \\ 0, & \text { otherwise }\end{cases}
$$

Cases (i), (iv), (ix), (x). $N_{n}(t, 8)=2^{n_{1}-2}+0=2^{n_{1}-2}$.

Cases (ii), (iii). Here $a_{0} a_{1}=11$ implies $n_{11}>0$ so these cases cannot occur.

Case (v). Here $a_{0} a_{1}=11$ implies $v_{1}=0$ so this case cannot occur.

Case (vi). Here $a_{0} a_{1}=11$ implies $v_{1}=0$ and $s_{1} \geq 2$ so this case cannot occur.

Case (vii). $\quad N_{n}(t, 8)=2^{n_{1}-2}+0=2^{n_{1}-2}$.

Case (xi) (Here $a_{0} a_{1}=11$ implies $v_{1}=0$ and $s_{1} \geq 2$.) and Case (viii).

$$
N_{n}(t, 8)=2^{n_{1}-2}+(-1)^{\alpha(t)+\beta(t)} 2^{n_{1}-2}= \begin{cases}2^{n_{1}-1}, & \text { if } t=1,3 \\ 0, & \text { if } t=5,7\end{cases}
$$

Cases (xii), (xiii). Here $v_{1}>0$ contradicting $a_{0} a_{1}=11$. These cases cannot occur.

References

1. K. S. Davis and W. A. Webb, Lucas' theorem for prime powers, Europ. J. Combinatorics, 11 (1990), 229-233.
2. K. S. Davis and W. A. Webb, Pascal's triangle modulo 4, Fibonacci Quart., 29 (1991), 79-83.
3. J. W. L. Glaisher, On the residue of a binomial-theorem coefficient with respect to a prime modulus, Quart. J. Math., 30 (1899), 150-156.
4. A. Granville, Zaphod Beeblebrox's brain and the fifty-ninth row of Pascal's triangle, Amer. Math. Monthly, 99 (1992), 318-331.
5. E. E. Kummer, Über die Erganzungssätze zu den allgemeinen Reciprocitätsgesetzen, J. Reine Angew. Math., 44 (1852), 93-146.
6. E. Lucas, Sur les congruences des nombres eulériens et des coefficients différentiels des fonctions trigonométriques, suivant un module premier, Bull. Soc. Math. France, 6 (1877-8), 49-54.

Received 18 August 1996 and accepted on 12 March 1997
James G. Huard
Department of Mathematics,
Canisius College,
Buffalo,
NY 14208,
USA
E-mail: huard@canisius.edu
Blair K. Spearman
Department of Mathematics and Statistics, Okanagan University College,

Kelowna,
B.C. V1V 1V7,

Canada
E-mail: bkspearm@okanagan.bc.ca
Kenneth S. Williams
Department of Mathematics and Statistics,
Carleton University, Ottawa,
Ontario K1S 5B6, Canada
E-mail: williams@math.carleton.ca

