QUADRATIC SUBFIELDS OF THE SPLITTING FIELD OF A DIHEDRAL QUINTIC TRINOMIAL $\boldsymbol{x}^{5}+a x+b$

Blair K. Spearman, Laura Y. Spearman and Kenneth S. Williams

(Received November 1995)

Abstract

It is known that every quadratic field K is a subfield of the splitting field of a dihedral quintic polynomial. In this paper it is shown that K is a subfield of the splitting field of a dihedral quintic trinomial $x^{5}+a x+b$ if and only if the discriminant of K is of the form $-4 q$ or $-8 q$, where q is the (possibly empty) product of distinct primes congruent to 1 modulo 4 .

1. Introduction

The quintic polynomial $f(x)=x^{5}+a_{1} x^{4}+a_{2} x^{3}+a_{3} x^{2}+a_{4} x+a_{5} \in Q[x]$ is said to be dihedral if its Galois group is D_{5} (the dihedral group of order 10). We denote the splitting field of $f(x)$ by $S F(f(x))$. Jensen and Yui [3, Theorem 1.2.1] have shown (as a special case of a more general result) that if K is a quadratic field then there exists a dihedral quintic polynomial $f(x)$ such that $K \subseteq S F(f(x))$. In this paper we characterize those quadratic fields K for which there exist a dihedral quintic trinomial $x^{5}+a x+b \in Q[x]$ such that $K \subseteq S F\left(x^{5}+a x+b\right)$. We remark that if $x^{5}+a x+b$ is dihedral then $x^{5}+a x+b$ is irreducible, $a \neq 0$, and $b \neq 0$.

After a number of preliminary results, we prove -
Theorem 1.1. Let K be a quadratic field. Let denote the discriminant of K. Then there exists a dihedral quintic trinomial $x^{5}+a x+b \in Q[x]$ such that $K \subseteq S F\left(x^{5}+a x+b\right)$ if and only if $d=-4 q$ or $-8 q$ where q is a (possibly empty) product of distinct primes congruent to 1 modulo 4.

In the course of the proof of Theorem 1.1, we establish the following result.
Theorem 1.2. Let K be a quadratic field with discriminant $d=-4 q$ or $-8 q$, where q is a (possibly empty) product of distinct primes $\equiv 1(\bmod 4)$. Then there exist integers r and s such that

$$
\begin{equation*}
q=r^{2}+s^{2}, \quad r \equiv 1 \quad(\bmod 2), \quad s \equiv 0 \quad(\bmod 2) \tag{1.1}
\end{equation*}
$$

[^0]Set

$$
\begin{align*}
& a= \begin{cases}\frac{4\left(r^{2}+11 r s-s^{2}\right)\left(r^{2}+r s-s^{2}\right)}{\left(r^{2}+s^{2}\right)^{2}}, & \text { if } 4 \| d, \\
\frac{\left(11 r^{2}-4 r s-1 s^{2}\right)\left(r^{2}-4 r s-s^{2}\right)}{\left(r^{2}+s^{2}\right)^{2}}, & \text { if } 8 \| d,\end{cases} \tag{1.2}\\
& b= \begin{cases}\frac{16(3 r+4 s)(4 r-3 s)\left(r^{2}+r s-s^{2}\right)}{5\left(r^{2}+s^{2}\right)^{2}}, & \text { if } 4 \| d, \\
\frac{4(r-7 s)(7 r+s)\left(r^{2}-4 r s-s^{2}\right)}{5\left(r^{2}+s^{2}\right)^{2}}, & \text { if } 8 \| d .\end{cases} \tag{1.3}
\end{align*}
$$

Then $x^{5}+a x+b$ is dihedral and $K \subseteq S F\left(x^{5}+a x+b\right)$.
Example 1.3. We take $K=Q(\sqrt{-10})$. Here $d=-40$ so that $q=5$. Choosing $r=$ 1 and $s=-2$ we obtain $a=-5$ and $b=12$ so that $Q(\sqrt{-10}) \subseteq S F\left(x^{5}-5 x+12\right)$, in agreement with the table in [5].

Choosing $r=1$ and $s=2$ we obtain $a=\frac{451}{25}$ and $b=\frac{5148}{125}$ so that

$$
Q(\sqrt{-10}) \subseteq S F\left(x^{5}+\frac{451}{25} x+\frac{5148}{125}\right)=S F\left(x^{5}+11275 x+128700\right)
$$

Example 1.4. We take $K=Q(\sqrt{-5})$. Here $d=-20$ so that $q=5$. Choosing $r=1$ and $s=-2$ we obtain $a=20$ and $b=32$ so that $Q(\sqrt{-5}) \subseteq S F\left(x^{5}+20 x+32\right)$.

Choosing $r=1$ and $s=2$ we obtain $a=-\frac{76}{25}$ and $b=\frac{352}{125}$ so that

$$
Q(\sqrt{-5}) \subseteq S F\left(x^{5}-\frac{76}{25} x+\frac{352}{125}\right)=S F\left(x^{5}-1900 x-8800\right)
$$

in agreement with the table in [5].

2. Preliminary Results

We will need the following results in the course of the proof of Theorem 1.1.
Proposition 2.1. If $x^{5}+a x+b \in Q[x]$ is irreducible, then the Galois group of $x^{5}+a x+b$ is D_{5} if and only if there exist rational numbers $\varepsilon(= \pm 1), c(\geq 0)$, $e(\neq 0)$, and $t(>0)$ such that

$$
\begin{equation*}
a=\frac{5 e^{4}(3-4 \varepsilon c)}{c^{2}+1}, \quad b=\frac{-4 e^{5}(11 \varepsilon+2 c)}{c^{2}+1}, \quad c^{2}+1=5 t^{2} \tag{2.1}
\end{equation*}
$$

Moreover ε, c, e, t are uniquely determined by a and b.
This result can be found in [3, pp. 987 and 990$]$. The only part of this proposition which is not explicitly stated in [3] is the assertion about uniqueness, which we now prove. Suppose that ε, c, e, t satisfy (2.1). Then

$$
e^{4}=\frac{a\left(c^{2}+1\right)}{5(3-4 \varepsilon c)}, \quad e^{5}=\frac{-b\left(c^{2}+1\right)}{4(11 \varepsilon+2 c)}
$$

and eliminating e we see that c is a rational root of

$$
\frac{a^{5}\left(c^{2}+1\right)^{5}}{5^{5}(3-4 \varepsilon c)^{5}}=\frac{b^{4}\left(c^{2}+1\right)^{4}}{2^{8}(11 \varepsilon+2 c)^{4}}
$$

or equivalently

$$
a^{5} 2^{8}(11 \varepsilon+2 c)^{4}\left(c^{2}+1\right)-5^{5} b^{4}(3-4 \varepsilon c)^{5}=0
$$

As $x^{5}+a x+b$ is dihedral, we have $a \neq 0$ and $b \neq 0$, and thus $3-4 \varepsilon c \neq 0$ and $11 \varepsilon+2 c \neq 0$. Setting

$$
r=\frac{4 a(4+3 \varepsilon c)}{(3-4 \varepsilon c)}
$$

so that $r \neq-3 a$, we have

$$
\begin{aligned}
\varepsilon c & =\frac{3 r-16 a}{4(r+3 a)}, & c^{2}+1=\frac{25\left(r^{2}+16 a^{2}\right)}{16(r+3 a)^{2}}, \\
11 \varepsilon+2 c & =\frac{25(r+2 a) \varepsilon}{2(r+3 a)}, & 3-4 \varepsilon c=\frac{25 a}{r+3 a},
\end{aligned}
$$

so that r is a rational root of

$$
(r+2 a)^{4}\left(r^{2}+16 a^{2}\right)-5^{5} b^{4}(r+3 a)=0
$$

This shows that r is a root of the resolvent sextic of $x^{5}+a x+b$. As the Galois group of $x^{5}+a x+b$ is D_{5}, its resolvent sextic has a unique rational root [2, Theorem 1]. Thus r is uniquely determined by a and b. Clearly $c \neq 0$ in view of the third equation in (2.1). Then ε, c, e, t are uniquely determined by

$$
\varepsilon c=\frac{3 r-16 a}{4(r+3 a)}(c>0, \varepsilon= \pm 1), \quad e=-\frac{5 b(3-4 \varepsilon c)}{4 a(11 \varepsilon+2 c)}, \quad \text { and } \quad t=+\sqrt{\left(c^{2}+1\right) / 5}
$$

Proposition 2.2. Suppose that $x^{5}+a x+b \in Q[x]$ is dihedral. Define ε, c, e, and t uniquely as in Proposition 2.1. Then the splitting field of $x^{5}+a x+b$ contains a unique quadratic subfield, namely,

$$
Q(\sqrt{-5-(1+2 \varepsilon c) / t})
$$

This result is proved in [5].
Proposition 2.3. All positive integral solutions of $m^{2}+n^{2}=5 z^{2},(m, n)=1$, $m \equiv 1(\bmod 2), n \equiv 0(\bmod 2)$, are given by

$$
m=\left|r^{2}-4 r s-s^{2}\right|, \quad n=\left|2 r^{2}+2 r s-2 s^{2}\right|, \quad z=r^{2}+s^{2}
$$

where r and s are integers with

$$
\begin{equation*}
r \equiv s+1 \quad(\bmod 2), \quad(r, s)=1, \quad 2 r+s \not \equiv 0 \quad(\bmod 5) \tag{2.2}
\end{equation*}
$$

This result is easily proved using the arithmetic of the domain of Gaussian integers.
Proposition 2.4. Let $\varepsilon(= \pm 1), c(\geq 0), e(\neq 0)$ be rational numbers. Then the polynomial

$$
f_{\varepsilon, c, e}(x)=x^{5}+\frac{5 e^{4}(3-4 \varepsilon c)}{c^{2}+1} x-\frac{4 e^{5}(11 \varepsilon+2 c)}{c^{2}+1}
$$

is reducible if and only if

$$
c=3 / 4, \quad \varepsilon=1 \quad \text { or } \quad c=11 / 2, \quad \varepsilon=-1
$$

Proof. If $c=3 / 4, \varepsilon=1$ then $f_{\varepsilon, c, e}(x)=x^{5}-32 e^{5}=(x-2 e)\left(x^{4}+2 e x^{3}+4 e^{2} x^{2}+\right.$ $\left.8 e^{3} x+16 e^{4}\right)$. If $c=11 / 2, \varepsilon=-1$ then $f_{\varepsilon, c, e}(x)=x^{5}+4 e^{4} x=x\left(x^{2}-2 e x+2 e^{2}\right)$ $\left(x^{2}+2 e x+2 e^{2}\right)$. Now suppose that $f_{\varepsilon, c, e}(x)$ is reducible. By [$\mathbf{3}$, Theorem and remark following equation (19)] the roots of $f_{\varepsilon, c, e}(x)=0$ are

$$
x_{j}=e\left(\omega^{j} u_{1}+\omega^{2 j} u_{2}+\omega^{3 j} u_{3}+\omega^{4 j} u_{4}\right) \quad(j=0,1,2,3,4)
$$

where $\omega=\exp (2 \pi i / 5)$ and

$$
\begin{gathered}
u_{1}=\left(\frac{v_{1}^{2} v_{3}}{D^{2}}\right)^{1 / 5}, \quad u_{2}=\left(\frac{v_{3}^{2} v_{4}}{D^{2}}\right)^{1 / 5}, \quad u_{3}=\left(\frac{v_{2}^{2} v_{1}}{D^{2}}\right)^{1 / 5}, \quad u_{4}=\left(\frac{v_{4}^{2} v_{2}}{D^{2}}\right)^{1 / 5} \\
v_{1}=\sqrt{D}+\sqrt{D-\varepsilon \sqrt{D}}, \quad v_{2}=-\sqrt{D}-\sqrt{D+\varepsilon \sqrt{D}} \\
v_{3}=-\sqrt{D}+\sqrt{D+\varepsilon \sqrt{D}}, \quad v_{4}=\sqrt{D}-\sqrt{D-\varepsilon \sqrt{D}}, \quad D=c^{2}+1
\end{gathered}
$$

From these formulae we see that the degree of the splitting field of $f_{\varepsilon, c, e}(x)$ is of the form $2^{r} 5^{s}$ for some nonnegative integers r and s. Thus $f_{\varepsilon, c, e}(x)$ cannot have an irreducible cubic factor $\in Q[x]$. Hence $f_{\varepsilon, c, e}(x)$ possesses a linear factor over Q. Thus $f_{\varepsilon, c, 1}(x)$ has a rational root x, and

$$
\begin{equation*}
x^{5}+\frac{5(3-4 \varepsilon c) x}{c^{2}+1}-\frac{4(11 \varepsilon+2 c)}{c^{2}+1}=0 \tag{2.3}
\end{equation*}
$$

If $x=0$ then $c=-11 \varepsilon / 2$, and so $c=11 / 2$ and $\varepsilon=-1$ as required. If $x=2 \varepsilon$ then (2.3) gives after a short calculation $c=3 \varepsilon / 4$, and so $c=3 / 4$ and $\varepsilon=1$ as required. Hence we may suppose that $x \neq 0,2 \varepsilon$. Writing (2.3) as a quadratic equation in c, we obtain

$$
\left(x^{5}\right) c^{2}+(-20 \varepsilon x-8) c+\left(x^{5}+15 x-44 \varepsilon\right)=0
$$

Solving this equation for c, we obtain

$$
c=\frac{1}{x^{5}}\left(10 \varepsilon x+4 \pm\left(x^{3}-\varepsilon x^{2}+2 x+2 \varepsilon\right) \sqrt{-(x-2 \varepsilon)\left(x^{3}+4 \varepsilon x^{2}+7 x+2 \varepsilon\right)}\right)
$$

Thus there is a rational number y such that

$$
\begin{equation*}
y^{2}=-(x-2 \varepsilon)\left(x^{3}+4 \varepsilon x^{2}+7 x+2 \varepsilon\right) \tag{2.4}
\end{equation*}
$$

Setting

$$
\begin{equation*}
X=\frac{-40 \varepsilon}{x-2 \varepsilon}, \quad Y=\frac{40 y}{(x-2 \varepsilon)^{2}} \tag{2.5}
\end{equation*}
$$

we deduce from (2.4) that (X, Y) is a rational point on the elliptic curve E given by

$$
\begin{equation*}
Y^{2}=X^{3}-35 X^{2}+400 X-1600 \tag{2.6}
\end{equation*}
$$

The minimal equation for E is

$$
\begin{equation*}
y_{1}^{2}+x_{1} y_{1}+y_{1}=x_{1}^{3}-x_{1}-2 \tag{2.7}
\end{equation*}
$$

which is obtained from (2.6) by setting

$$
\begin{equation*}
X=4 x_{1}+12, \quad Y=4 x_{1}+8 y_{1}+4 \tag{2.8}
\end{equation*}
$$

From the table in [1], we see that E has conductor 50 , and that its group $E(Q)$ of rational points has order 3. Thus, apart from the point at infinity, the curve (2.7) has just 2 rational points on it, and these are $\left(x_{1}, y_{1}\right)=(2,1)$ and (2, -4). These give the rational points $(X, Y)=(20, \pm 20)$ on the curve (2.6), and the transformation (2.5) shows that there are no rational points on the curve (2.4) with $x \neq 0,2 \varepsilon$.

Proof of Theorem 1.1. Let $x^{5}+a x+b \in Q[x]$ be a dihedral polynomial. By Proposition 2.1 there exist unique rational numbers $\varepsilon(= \pm 1), c(>0), e(\neq 0)$, and $t(>0)$ such that (2.1) holds. As c is a positive rational number, there exist positive coprime integers m and n such that $c=m / n$. Then, from $c^{2}+1=5 t^{2}$, we obtain $m^{2}+n^{2}=5 z^{2}$, where $z=n t$ is a positive integer. Hence, by Proposition 2.3, there are integers r and s satisfying (2.2) such that

$$
\begin{array}{r}
m=\left|r^{2}-4 r s-s^{2}\right|, \quad n=\left|2 r^{2}+2 r s-2 s^{2}\right|, \quad z=r^{2}+s^{2} \\
\text { if } m \equiv 1 \quad(\bmod 2), n \equiv 0 \quad(\bmod 2) \\
m=\left|2 r^{2}+2 r s-2 s^{2}\right|, \quad n=\left|r^{2}-4 r s-s^{2}\right|, \quad z=r^{2}+s^{2} \\
\text { if } m \equiv 0 \quad(\bmod 2), n \equiv 1 \quad(\bmod 2) \tag{2.10}
\end{array}
$$

Now, by Proposition 2.2, $S F\left(x^{5}+a x+b\right)$ contains a unique quadratic subfield, namely,

$$
K=Q(\sqrt{-5-(1+2 \varepsilon c) / t})
$$

If (3.1) holds then $c=\frac{\mid r^{2}-4 r s-s^{2}}{2\left|r^{2}+r s-s^{2}\right|}$ and $t=\frac{r^{2}+s^{2}}{2\left|r^{2}+r s-s^{2}\right|}$, so that

$$
\begin{aligned}
& (-5-(1+2 \varepsilon c) / t)\left(r^{2}+s^{2}\right)=-5\left(r^{2}+s^{2}\right)-2 \varepsilon\left|r^{2}-4 r s-s^{2}\right|-2\left|r^{2}+r s-s^{2}\right| \\
& = \begin{cases}-(3 r-s)^{2}, & \text { if } \varepsilon\left|r^{2}-4 r s-s^{2}\right|=r^{2}-4 r s-s^{2} \text { and }\left|r^{2}+r s-s^{2}\right|=r^{2}+r s-s^{2}, \\
-5(r-s)^{2}, & \text { if } \varepsilon\left|r^{2}-4 r s-s^{2}\right|=r^{2}-4 r s-s^{2} \text { and }\left|r^{2}+r s-s^{2}\right|=-\left(r^{2}+r s-s^{2}\right), \\
-5(r+s)^{2}, & \text { if } \varepsilon\left|r^{2}-4 r s-s^{2}\right|=-\left(r^{2}-4 r s-s^{2}\right) \text { and }\left|r^{2}+r s-s^{2}\right|=r^{2}+r s-s^{2}, \\
-(r+3 s)^{2}, & \text { if } \varepsilon\left|r^{2}-4 r s-s^{2}\right|=-\left(r^{2}-4 r s-s^{2}\right) \text { and }\left|r^{2}+r s-s^{2}\right|=-\left(r^{2}+r s-s^{2}\right),\end{cases}
\end{aligned}
$$

and thus

$$
K= \begin{cases}Q\left(\sqrt{-\left(r^{2}+s^{2}\right)}\right), & \text { if } \operatorname{sgn}\left(\varepsilon\left(r^{2}-4 r s-s^{2}\right)\left(r^{2}+r s-s^{2}\right)\right)=+1 \\ Q\left(\sqrt{-5\left(r^{2}+s^{2}\right)}\right), & \text { if } \operatorname{sgn}\left(\varepsilon\left(r^{2}-4 r s-s^{2}\right)\left(r^{2}+r s-s^{2}\right)\right)=-1\end{cases}
$$

If (3.2) holds then $\left.c=\frac{2 \mid r^{2}+r s-s^{2}}{\mid r^{2}-4 r s-s^{2}} \right\rvert\,$ and $t=\frac{r^{2}+s^{2}}{\left|r^{2}-4 r s-s^{2}\right|}$, so that

$$
\begin{aligned}
& (-5-(1+2 \varepsilon c) / t)\left(r^{2}+s^{2}\right)=-5\left(r^{2}+s^{2}\right)-\left|r^{2}-4 r s-s^{2}\right|-4 \varepsilon\left|r^{2}+r s-s^{2}\right| \\
& = \begin{cases}-10 r^{2}, & \text { if } \varepsilon\left|r^{2}+r s-s^{2}\right|=r^{2}+r s-s^{2} \text { and }\left|r^{2}-4 r s-s^{2}\right|=r^{2}-4 r s-s^{2}, \\
-2(r-2 s)^{2}, & \text { if } \varepsilon\left|r^{2}+r s-s^{2}\right|=-\left(r^{2}+r s-s^{2}\right) \text { and }\left|r^{2}-4 r s-s^{2}\right|=r^{2}-4 r s-s^{2}, \\
-2(2 r+s)^{2}, & \text { if } \varepsilon\left|r^{2}+r s-s^{2}\right|=r^{2}+r s-s^{2} \text { and }\left|r^{2}-4 r s-s^{2}\right|=-\left(r^{2}-4 r s-s^{2}\right), \\
-10 s^{2}, & \text { if } \varepsilon\left|r^{2}+r s-s^{2}\right|=-\left(r^{2}+r s-s^{2}\right) \text { and }\left|r^{2}-4 r s-s^{2}\right|=-\left(r^{2}-4 r s-s^{2}\right),\end{cases}
\end{aligned}
$$

and thus

$$
K= \begin{cases}Q\left(\sqrt{-2\left(r^{2}+s^{2}\right)}\right), & \text { if } \operatorname{sgn}\left(\varepsilon\left(r^{2}-4 r s-s^{2}\right)\left(r^{2}+r s-s^{2}\right)\right)=-1 \\ Q\left(\sqrt{-10\left(r^{2}+s^{2}\right)}\right), & \text { if } \operatorname{sgn}\left(\varepsilon\left(r^{2}-4 r s-s^{2}\right)\left(r^{2}+r s-s^{2}\right)\right)=+1\end{cases}
$$

As $(r, s)=1$, the squarefree part of $r^{2}+s^{2}$ is a product of distinct primes $\equiv 1$ $(\bmod 4)$ or twice such a product and so

$$
d=\operatorname{disc}(K)=-4 q \quad \text { or } \quad-8 q
$$

where q is a (possibly empty) product of distinct primes $\equiv 1(\bmod 4)$.

Conversely suppose that K is a quadratic field with $d(K)=-4 q$ or $-8 q$, where q is a (possibly empty) product of distinct primes $\equiv 1(\bmod 4)$. As q is a product of primes $\equiv 1(\bmod 4)$ there exist integers r and s such that

$$
q=r^{2}+s^{2}, \quad r \equiv 1 \quad(\bmod 2), \quad s \equiv 0 \quad(\bmod 2)
$$

Now define rational numbers $\varepsilon(= \pm 1), c(>0)$ and $t(>0)$ by

$$
\begin{align*}
& \varepsilon= \begin{cases}\operatorname{sgn}\left(\left(r^{2}-4 r s-s^{2}\right)\left(r^{2}+r s-s^{2}\right)\right), & \text { if } 2^{2} \| d(K), \\
-\operatorname{sgn}\left(\left(r^{2}-4 r s-s^{2}\right)\left(r^{2}+r s-s^{2}\right)\right), & \text { if } 2^{3} \| d(K),\end{cases} \tag{2.11}\\
& c= \begin{cases}\frac{\left|r^{2}-4 r s-s^{2}\right|}{2\left|r^{2}+r s-s^{2}\right|}, & \text { if } 2^{2} \| d(K), \\
\frac{2\left|r^{2}+r s-s^{2}\right|}{\left|r^{2}-4 r s-s^{2}\right|}, & \text { if } 2^{3} \| d(K),\end{cases} \\
& t= \begin{cases}\frac{r^{2}+s^{2}}{2\left|r^{2}+\tau s-s^{2}\right|}, & \text { if } 2^{2} \| d(K), \\
\frac{r^{2}+s^{2}}{\left|r^{2}-4 r s-s^{2}\right|}, & \text { if } 2^{3} \| d(K),\end{cases} \\
& a= \begin{cases}\frac{4\left(r^{2}+11 r s-s^{2}\right)\left(r^{2}+r s-s^{2}\right)}{\left(r^{2}+s^{2}\right)^{2}}, & \text { if } 2^{2} \| d(K), \\
\frac{\left(11 r^{2}-4 r s-11 s^{2}\right)\left(r^{2}-4 r s-s^{2}\right)}{\left(r^{2}+s^{2}\right)^{2}}, & \text { if } 2^{3} \| d(K),\end{cases} \\
& b= \begin{cases}\frac{16(3 r+4 s)(4 r-3 s)\left(r^{2}+\tau s-s^{2}\right)}{5\left(r^{2}+s^{2}\right)^{2}}, & \text { if } 2^{2} \| d(K), \\
\frac{4(r-7 s)(7 r+s)\left(r^{2}-4 r s-s^{2}\right)}{5\left(r^{2}+s^{2}\right)^{2}}, & \text { if } 2^{3} \| d(K) .\end{cases} \tag{2.12}
\end{align*}
$$

Set $f(x)=x^{5}+a x+b \in Q[x]$, so that $f(x)=f_{\varepsilon, c,-\varepsilon}(x)$. It is easy to check that $c^{2}+1=5 t^{2}$ and $(c, \varepsilon) \neq(3 / 4,1)$ or $(11 / 2,-1)$. Hence, by Proposition $2.4, f(x)$ is irreducible. Then, by Proposition 2.1, we see that $f(x)$ is dihedral. By Proposition $2.2, S F\left(x^{5}+a x+b\right)$ contains $Q(\sqrt{-5-(1+2 \varepsilon c) / t})$. It is easy to verify from (3.3) and (3.4) that $\varepsilon c \neq 2$. Then the relation

$$
(-5-(1+2 \varepsilon c) / t)(-5+(1+2 \varepsilon c) / t)=((c-2 \varepsilon) / t)^{2}
$$

shows that

$$
\begin{aligned}
Q(\sqrt{-5-(1+2 \varepsilon c) / t}) & =Q(\sqrt{-5 \pm(1+2 \varepsilon c) / t}) \\
& = \begin{cases}Q\left(\sqrt{-\left(r^{2}+s^{2}\right)}\right), & \text { if } 2^{2} \| d(K) \\
Q\left(\sqrt{-2\left(r^{2}+s^{2}\right)}\right), & \text { if } 2^{3} \| d(K)\end{cases} \\
& =K
\end{aligned}
$$

This completes the proofs of Theorems 1.1 and 1.2.

References

1. J.E. Cremona, Algorithms for Modular Elliptic Curves, Cambridge University Press, 1992.
2. D.S. Dummit, Solving solvable quintics, Math. Comp. 57 (1991), 387-401.
3. C.U. Jensen and N. Yui, Polynomials with D_{p} as Galois group, J. Number Theory 15 (1982), 347-375.
4. Blair K. Spearman and Kenneth S. Williams, Characterization of solvable quintics $x^{5}+a x+b$, Amer. Math. Monthly 101 (1994), 986-992.
5. Blair K. Spearman, Laura Y. Spearman and Kenneth S. Williams, The subfields of the splitting field of a solvable quintic trinomial $X^{5}+a X+b$, J. Math. Sci. 6 (1995), 15-18.

Blair K. Spearman
Department of Mathematics and Statistics
Okanagan University College
Kelowna, B.C. V1V 1V7
CANADA
bkspearm@okanagan.bc.ca

Laura Y. Spearman
City of Kelowna Information Services Department
Kelowna, B.C. V1Y 1 J4
CANADA

Kenneth S. Williams
Department of Mathematics and Statistics
Carleton University
Ottawa
Ontario K1S 5B6
CANADA
williams@math.carleton.ca

[^0]: 1991 AMS Mathematics Subject Classification: 11R04, 11R09, 11R11, 11R21.
 Key words and phrases: quadratic field, dihedral quintic trinomial $x^{5}+a x+b$, splitting field. Research of the third author supported by Natural Sciences and Engineering Research Council of Canada Grant A-7233.

