QUADRATIC SUBFIELDS OF THE SPLITTING FIELD OF A DIHEDRAL QUINTIC TRINOMIAL x^5+ax+b

BLAIR K. SPEARMAN, LAURA Y. SPEARMAN AND KENNETH S. WILLIAMS

(Received November 1995)

Abstract. It is known that every quadratic field K is a subfield of the splitting field of a dihedral quintic polynomial. In this paper it is shown that K is a subfield of the splitting field of a dihedral quintic trinomial $x^5 + ax + b$ if and only if the discriminant of K is of the form -4q or -8q, where q is the (possibly empty) product of distinct primes congruent to 1 modulo 4.

1. Introduction

Ą

£

ş

The quintic polynomial $f(x) = x^5 + a_1x^4 + a_2x^3 + a_3x^2 + a_4x + a_5 \in Q[x]$ is said to be dihedral if its Galois group is D_5 (the dihedral group of order 10). We denote the splitting field of f(x) by SF(f(x)). Jensen and Yui [3, Theorem 1.2.1] have shown (as a special case of a more general result) that if K is a quadratic field then there exists a dihedral quintic polynomial f(x) such that $K \subseteq SF(f(x))$. In this paper we characterize those quadratic fields K for which there exist a dihedral quintic trinomial $x^5 + ax + b \in Q[x]$ such that $K \subseteq SF(x^5 + ax + b)$. We remark that if $x^5 + ax + b$ is dihedral then $x^5 + ax + b$ is irreducible, $a \neq 0$, and $b \neq 0$.

After a number of preliminary results, we prove -

Theorem 1.1. Let K be a quadratic field. Let d denote the discriminant of K. Then there exists a dihedral quintic trinomial $x^5 + ax + b \in Q[x]$ such that $K \subseteq SF(x^5 + ax + b)$ if and only if d = -4q or -8q where q is a (possibly empty) product of distinct primes congruent to 1 modulo 4.

In the course of the proof of Theorem 1.1, we establish the following result.

Theorem 1.2. Let K be a quadratic field with discriminant d = -4q or -8q, where q is a (possibly empty) product of distinct primes $\equiv 1 \pmod{4}$. Then there exist integers r and s such that

$$q = r^2 + s^2, \quad r \equiv 1 \pmod{2}, \quad s \equiv 0 \pmod{2}.$$
 (1.1)

¹⁹⁹¹ AMS Mathematics Subject Classification: 11R04, 11R09, 11R11, 11R21.

Key words and phrases: quadratic field, dihedral quintic trinomial $x^5 + ax + b$, splitting field. Research of the third author supported by Natural Sciences and Engineering Research Council of Canada Grant A-7233.

Set
$$a = \begin{cases} \frac{4(r^2 + 11rs - s^2)(r^2 + rs - s^2)}{(r^2 + s^2)^2}, & \text{if } 4 \| d, \\ \frac{(11r^2 - 4rs - 11s^2)(r^2 - 4rs - s^2)}{(r^2 + s^2)^2}, & \text{if } 8 \| d, \end{cases}$$
(1.2)

$$b = \begin{cases} \frac{16(3r+4s)(4r-3s)(r^2+rs-s^2)}{5(r^2+s^2)^2}, & \text{if } 4 \| d, \\ \frac{4(r-7s)(7r+s)(r^2-4rs-s^2)}{5(r^2+s^2)^2}, & \text{if } 8 \| d. \end{cases}$$
(1.3)

Ŀ

....

÷

and

Then $x^5 + ax + b$ is dihedral and $K \subseteq SF(x^5 + ax + b)$.

Example 1.3. We take $K = Q(\sqrt{-10})$. Here d = -40 so that q = 5. Choosing r = 1 and s = -2 we obtain a = -5 and b = 12 so that $Q(\sqrt{-10}) \subseteq SF(x^5 - 5x + 12)$, in agreement with the table in [5].

Choosing r = 1 and s = 2 we obtain $a = \frac{451}{25}$ and $b = \frac{5148}{125}$ so that

$$Q(\sqrt{-10}) \subseteq SF\left(x^5 + \frac{451}{25}x + \frac{5148}{125}\right) = SF(x^5 + 11275x + 128700).$$

Example 1.4. We take $K = Q(\sqrt{-5})$. Here d = -20 so that q = 5. Choosing r = 1 and s = -2 we obtain a = 20 and b = 32 so that $Q(\sqrt{-5}) \subseteq SF(x^5+20x+32)$. Choosing r = 1 and s = 2 we obtain $a = -\frac{76}{25}$ and $b = \frac{352}{125}$ so that

$$Q(\sqrt{-5}) \subseteq SF\left(x^5 - \frac{76}{25}x + \frac{352}{125}\right) = SF(x^5 - 1900x - 8800),$$

in agreement with the table in [5].

2. Preliminary Results

We will need the following results in the course of the proof of Theorem 1.1.

Proposition 2.1. If $x^5 + ax + b \in Q[x]$ is irreducible, then the Galois group of $x^5 + ax + b$ is D_5 if and only if there exist rational numbers $\varepsilon(=\pm 1)$, $c(\geq 0)$, $e(\neq 0)$, and t(> 0) such that

$$a = \frac{5e^4(3-4\varepsilon c)}{c^2+1}, \quad b = \frac{-4e^5(11\varepsilon+2c)}{c^2+1}, \quad c^2+1 = 5t^2.$$
(2.1)

Moreover ε, c, e, t are uniquely determined by a and b.

This result can be found in [3, pp. 987 and 990]. The only part of this proposition which is not explicitly stated in [3] is the assertion about uniqueness, which we now prove. Suppose that ε, c, e, t satisfy (2.1). Then

$$e^4 = rac{a(c^2+1)}{5(3-4arepsilon c)}\,, \quad e^5 = rac{-b(c^2+1)}{4(11arepsilon+2c)}\,,$$

and eliminating e we see that c is a rational root of

$$\frac{a^5(c^2+1)^5}{5^5(3-4\varepsilon c)^5} = \frac{b^4(c^2+1)^4}{2^8(11\varepsilon+2c)^4},$$

or equivalently

$$a^{5}2^{8}(11\varepsilon + 2c)^{4}(c^{2} + 1) - 5^{5}b^{4}(3 - 4\varepsilon c)^{5} = 0.$$

As $x^5 + ax + b$ is dihedral, we have $a \neq 0$ and $b \neq 0$, and thus $3 - 4\varepsilon c \neq 0$ and $11\varepsilon + 2c \neq 0$. Setting

$$r \;=\; rac{4a(4+3arepsilon c)}{(3-4arepsilon c)}\,,$$

so that $r \neq -3a$, we have

$$arepsilon c = rac{3r - 16a}{4(r + 3a)}, \qquad c^2 + 1 = rac{25(r^2 + 16a^2)}{16(r + 3a)^2}, \ 11arepsilon + 2c = rac{25(r + 2a)arepsilon}{2(r + 3a)}, \qquad 3 - 4arepsilon c = rac{25a}{r + 3a},$$

so that r is a rational root of

$$(r+2a)^4(r^2+16a^2)-5^5b^4(r+3a) = 0.$$

This shows that r is a root of the resolvent sextic of $x^5 + ax + b$. As the Galois group of $x^5 + ax + b$ is D_5 , its resolvent sextic has a unique rational root [2, Theorem 1]. Thus r is uniquely determined by a and b. Clearly $c \neq 0$ in view of the third equation in (2.1). Then ε, c, e, t are uniquely determined by

$$\varepsilon c = \frac{3r - 16a}{4(r + 3a)}(c > 0, \varepsilon = \pm 1), \quad e = -\frac{5b(3 - 4\varepsilon c)}{4a(11\varepsilon + 2c)}, \quad \text{and} \quad t = +\sqrt{(c^2 + 1)/5}$$

Proposition 2.2. Suppose that $x^5 + ax + b \in Q[x]$ is dihedral. Define ε, c, e , and t uniquely as in Proposition 2.1. Then the splitting field of $x^5 + ax + b$ contains a unique quadratic subfield, namely,

$$Q\left(\sqrt{-5-(1+2arepsilon c)/t}
ight)$$

This result is proved in [5].

Proposition 2.3. All positive integral solutions of $m^2 + n^2 = 5z^2$, (m, n) = 1, $m \equiv 1 \pmod{2}$, $n \equiv 0 \pmod{2}$, are given by

$$m = |r^2 - 4rs - s^2|, \quad n = |2r^2 + 2rs - 2s^2|, \quad z = r^2 + s^2,$$

where r and s are integers with

$$r \equiv s+1 \pmod{2}, \qquad (r,s) = 1, \qquad 2r+s \not\equiv 0 \pmod{5}.$$
 (2.2)

This result is easily proved using the arithmetic of the domain of Gaussian integers.

Proposition 2.4. Let $\varepsilon (= \pm 1)$, $c (\geq 0)$, $e \neq 0$ be rational numbers. Then the polynomial

$$f_{\varepsilon,c,e}(x) = x^5 + \frac{5e^4(3-4\varepsilon c)}{c^2+1}x - \frac{4e^5(11\varepsilon+2c)}{c^2+1}$$

is reducible if and only if

$$c = 3/4, \quad \varepsilon = 1 \quad or \quad c = 11/2, \quad \varepsilon = -1.$$

Proof. If c = 3/4, $\varepsilon = 1$ then $f_{\varepsilon,c,e}(x) = x^5 - 32e^5 = (x - 2e)(x^4 + 2ex^3 + 4e^2x^2 + 8e^3x + 16e^4)$. If c = 11/2, $\varepsilon = -1$ then $f_{\varepsilon,c,e}(x) = x^5 + 4e^4x = x(x^2 - 2ex + 2e^2)$ $(x^2 + 2ex + 2e^2)$. Now suppose that $f_{\varepsilon,c,e}(x)$ is reducible. By [3, Theorem and remark following equation (19)] the roots of $f_{\varepsilon,c,e}(x) = 0$ are

$$x_j = e(\omega^j u_1 + \omega^{2j} u_2 + \omega^{3j} u_3 + \omega^{4j} u_4) \quad (j = 0, 1, 2, 3, 4)$$

where $\omega = \exp(2\pi i/5)$ and

$$u_{1} = \left(\frac{v_{1}^{2}v_{3}}{D^{2}}\right)^{1/5}, \quad u_{2} = \left(\frac{v_{3}^{2}v_{4}}{D^{2}}\right)^{1/5}, \quad u_{3} = \left(\frac{v_{2}^{2}v_{1}}{D^{2}}\right)^{1/5}, \quad u_{4} = \left(\frac{v_{4}^{2}v_{2}}{D^{2}}\right)^{1/5},$$
$$v_{1} = \sqrt{D} + \sqrt{D - \varepsilon\sqrt{D}}, \quad v_{2} = -\sqrt{D} - \sqrt{D + \varepsilon\sqrt{D}},$$
$$v_{3} = -\sqrt{D} + \sqrt{D + \varepsilon\sqrt{D}}, \quad v_{4} = \sqrt{D} - \sqrt{D - \varepsilon\sqrt{D}}, \quad D = c^{2} + 1.$$

From these formulae we see that the degree of the splitting field of $f_{\varepsilon,c,e}(x)$ is of the form $2^r 5^s$ for some nonnegative integers r and s. Thus $f_{\varepsilon,c,e}(x)$ cannot have an irreducible cubic factor $\in Q[x]$. Hence $f_{\varepsilon,c,e}(x)$ possesses a linear factor over Q. Thus $f_{\varepsilon,c,1}(x)$ has a rational root x, and

$$x^{5} + \frac{5(3 - 4\varepsilon c)x}{c^{2} + 1} - \frac{4(11\varepsilon + 2c)}{c^{2} + 1} = 0.$$
(2.3)

If x = 0 then $c = -11\varepsilon/2$, and so c = 11/2 and $\varepsilon = -1$ as required. If $x = 2\varepsilon$ then (2.3) gives after a short calculation $c = 3\varepsilon/4$, and so c = 3/4 and $\varepsilon = 1$ as required. Hence we may suppose that $x \neq 0, 2\varepsilon$. Writing (2.3) as a quadratic equation in c, we obtain

$$(x^5)c^2 + (-20\varepsilon x - 8)c + (x^5 + 15x - 44\varepsilon) = 0.$$

 $(x^{\circ})c^{2} + (-20\varepsilon x - \delta)$ Solving this equation for c, we obtain

$$c = \frac{1}{x^5} \left(10\varepsilon x + 4 \pm (x^3 - \varepsilon x^2 + 2x + 2\varepsilon) \sqrt{-(x - 2\varepsilon)(x^3 + 4\varepsilon x^2 + 7x + 2\varepsilon)} \right).$$

Thus there is a rational number y such that

$$y^2 = -(x - 2\varepsilon)(x^3 + 4\varepsilon x^2 + 7x + 2\varepsilon).$$
 (2.4)

Setting

$$X = \frac{-40\varepsilon}{x - 2\varepsilon}, \qquad Y = \frac{40y}{(x - 2\varepsilon)^2}, \qquad (2.5)$$

we deduce from (2.4) that (X, Y) is a rational point on the elliptic curve E given by

$$Y^2 = X^3 - 35X^2 + 400X - 1600. (2.6)$$

The minimal equation for E is

$$y_1^2 + x_1 y_1 + y_1 = x_1^3 - x_1 - 2,$$
 (2.7)

which is obtained from (2.6) by setting

$$X = 4x_1 + 12, \qquad Y = 4x_1 + 8y_1 + 4. \tag{2.8}$$

From the table in [1], we see that E has conductor 50, and that its group E(Q) of rational points has order 3. Thus, apart from the point at infinity, the curve (2.7) has just 2 rational points on it, and these are $(x_1, y_1) = (2, 1)$ and (2, -4). These give the rational points $(X, Y) = (20, \pm 20)$ on the curve (2.6), and the transformation (2.5) shows that there are no rational points on the curve (2.4) with $x \neq 0, 2\varepsilon$.

÷

Ŷ

2

Proof of Theorem 1.1. Let $x^5 + ax + b \in Q[x]$ be a dihedral polynomial. By Proposition 2.1 there exist unique rational numbers $\varepsilon(=\pm 1)$, c(>0), $e(\neq 0)$, and t(>0) such that (2.1) holds. As c is a positive rational number, there exist positive coprime integers m and n such that c = m/n. Then, from $c^2 + 1 = 5t^2$, we obtain $m^2 + n^2 = 5z^2$, where z = nt is a positive integer. Hence, by Proposition 2.3, there are integers r and s satisfying (2.2) such that

$$m = |r^2 - 4rs - s^2|, \quad n = |2r^2 + 2rs - 2s^2|, \quad z = r^2 + s^2,$$

if $m \equiv 1 \pmod{2}, n \equiv 0 \pmod{2}, (2.9)$

$$m = |2r^{2} + 2rs - 2s^{2}|, \quad n = |r^{2} - 4rs - s^{2}|, \quad z = r^{2} + s^{2},$$

if $m \equiv 0 \pmod{2}, \quad n \equiv 1 \pmod{2}.$ (2.10)

Now, by Proposition 2.2, $SF(x^5 + ax + b)$ contains a unique quadratic subfield, namely,

$$K = Q\left(\sqrt{-5 - (1 + 2\varepsilon c)/t}\right).$$

If (3.1) holds then $c = \frac{|r^2 - 4rs - s^2|}{2|r^2 + rs - s^2|}$ and $t = \frac{r^2 + s^2}{2|r^2 + rs - s^2|}$, so that

$$(-5 - (1 + 2\varepsilon c)/t)(r^2 + s^2) = -5(r^2 + s^2) - 2\varepsilon |r^2 - 4rs - s^2| - 2|r^2 + rs - s^2|$$

$$= \begin{cases} -(3r - s)^2, & \text{if } \varepsilon |r^2 - 4rs - s^2| = r^2 - 4rs - s^2 \text{ and } |r^2 + rs - s^2| = r^2 + rs - s^2, \\ -5(r - s)^2, & \text{if } \varepsilon |r^2 - 4rs - s^2| = r^2 - 4rs - s^2 \text{ and } |r^2 + rs - s^2| = -(r^2 + rs - s^2), \\ -5(r + s)^2, & \text{if } \varepsilon |r^2 - 4rs - s^2| = -(r^2 - 4rs - s^2) \text{ and } |r^2 + rs - s^2| = r^2 + rs - s^2, \\ -(r + 3s)^2, & \text{if } \varepsilon |r^2 - 4rs - s^2| = -(r^2 - 4rs - s^2) \text{ and } |r^2 + rs - s^2| = -(r^2 + rs - s^2), \end{cases}$$

and thus

2

3

$$K = \begin{cases} Q(\sqrt{-(r^2+s^2)}), & \text{if } \operatorname{sgn}(\varepsilon(r^2-4rs-s^2)(r^2+rs-s^2)) = +1, \\ Q(\sqrt{-5(r^2+s^2)}), & \text{if } \operatorname{sgn}(\varepsilon(r^2-4rs-s^2)(r^2+rs-s^2)) = -1. \end{cases}$$

If (3.2) holds then $c = \frac{2|r^2 + rs - s^2|}{|r^2 - 4rs - s^2|}$ and $t = \frac{r^2 + s^2}{|r^2 - 4rs - s^2|}$, so that

$$(-5 - (1 + 2\varepsilon c)/t)(r^{2} + s^{2}) = -5(r^{2} + s^{2}) - |r^{2} - 4rs - s^{2}| - 4\varepsilon|r^{2} + rs - s^{2}|$$

$$= \begin{cases} -10r^{2}, & \text{if } \varepsilon|r^{2} + rs - s^{2}| = r^{2} + rs - s^{2} \text{ and } |r^{2} - 4rs - s^{2}| = r^{2} - 4rs - s^{2}, \\ -2(r - 2s)^{2}, & \text{if } \varepsilon|r^{2} + rs - s^{2}| = -(r^{2} + rs - s^{2}) \text{ and } |r^{2} - 4rs - s^{2}| = r^{2} - 4rs - s^{2}, \\ -2(2r + s)^{2}, & \text{if } \varepsilon|r^{2} + rs - s^{2}| = r^{2} + rs - s^{2} \text{ and } |r^{2} - 4rs - s^{2}| = r^{2} - 4rs - s^{2}, \\ -10s^{2}, & \text{if } \varepsilon|r^{2} + rs - s^{2}| = -(r^{2} + rs - s^{2}) \text{ and } |r^{2} - 4rs - s^{2}| = -(r^{2} - 4rs - s^{2}), \end{cases}$$

and thus

$$K = \begin{cases} Q(\sqrt{-2(r^2+s^2)}), & \text{if } \operatorname{sgn}(\varepsilon(r^2-4rs-s^2)(r^2+rs-s^2)) = -1, \\ Q(\sqrt{-10(r^2+s^2)}), & \text{if } \operatorname{sgn}(\varepsilon(r^2-4rs-s^2)(r^2+rs-s^2)) = +1. \end{cases}$$

As (r, s) = 1, the squarefree part of $r^2 + s^2$ is a product of distinct primes $\equiv 1 \pmod{4}$ or twice such a product and so

$$d = \operatorname{disc}(K) = -4q \quad \text{or} \quad -8q,$$

where q is a (possibly empty) product of distinct primes $\equiv 1 \pmod{4}$.

Conversely suppose that K is a quadratic field with d(K) = -4q or -8q, where q is a (possibly empty) product of distinct primes $\equiv 1 \pmod{4}$. As q is a product of primes $\equiv 1 \pmod{4}$ there exist integers r and s such that

$$q = r^2 + s^2$$
, $r \equiv 1 \pmod{2}$, $s \equiv 0 \pmod{2}$.

Now define rational numbers $\varepsilon (= \pm 1)$, c (> 0) and t (> 0) by

$$\varepsilon = \begin{cases} \operatorname{sgn}((r^{2} - 4rs - s^{2})(r^{2} + rs - s^{2})), & \text{if } 2^{2} \| d(K), \\ -\operatorname{sgn}((r^{2} - 4rs - s^{2})(r^{2} + rs - s^{2})), & \text{if } 2^{3} \| d(K), \end{cases}$$
(2.11)

$$c = \begin{cases} \frac{|r^{2} - 4rs - s^{2}|}{2|r^{2} + rs - s^{2}|}, & \text{if } 2^{2} \| d(K), \\ \frac{2|r^{2} + rs - s^{2}|}{|r^{2} - 4rs - s^{2}|}, & \text{if } 2^{3} \| d(K), \end{cases}$$

$$t = \begin{cases} \frac{r^{2} + s^{2}}{2|r^{2} + rs - s^{2}|}, & \text{if } 2^{3} \| d(K), \\ \frac{r^{2} + s^{2}}{|r^{2} - 4rs - s^{2}|}, & \text{if } 2^{3} \| d(K), \end{cases}$$

$$a = \begin{cases} \frac{4(r^{2} + 11rs - s^{2})(r^{2} + rs - s^{2})}{(r^{2} + s^{2})^{2}}, & \text{if } 2^{2} \| d(K), \\ \frac{(11r^{2} - 4rs - 11s^{2})(r^{2} - 4rs - s^{2})}{(r^{2} + s^{2})^{2}}, & \text{if } 2^{3} \| d(K), \end{cases}$$

$$b = \begin{cases} \frac{16(3r + 4s)(4r - 3s)(r^{2} + rs - s^{2})}{5(r^{2} + s^{2})^{2}}, & \text{if } 2^{3} \| d(K), \\ \frac{4(r - 7s)(7r + s)(r^{2} - 4rs - s^{2})}{5(r^{2} + s^{2})^{2}}, & \text{if } 2^{3} \| d(K). \end{cases}$$

(2.12)

Set $f(x) = x^5 + ax + b \in Q[x]$, so that $f(x) = f_{\varepsilon,c,-\varepsilon}(x)$. It is easy to check that $c^2 + 1 = 5t^2$ and $(c,\varepsilon) \neq (3/4, 1)$ or (11/2, -1). Hence, by Proposition 2.4, f(x) is irreducible. Then, by Proposition 2.1, we see that f(x) is dihedral. By Proposition 2.2, $SF(x^5 + ax + b)$ contains $Q(\sqrt{-5 - (1 + 2\varepsilon c)/t})$. It is easy to verify from (3.3) and (3.4) that $\varepsilon c \neq 2$. Then the relation

$$\left(-5 - (1+2\varepsilon c)/t\right)\left(-5 + (1+2\varepsilon c)/t\right) = \left((c-2\varepsilon)/t\right)^2$$

shows that

$$Q(\sqrt{-5 - (1 + 2\varepsilon c)/t}) = Q(\sqrt{-5 \pm (1 + 2\varepsilon c)/t})$$

=
$$\begin{cases} Q(\sqrt{-(r^2 + s^2)}), & \text{if } 2^2 \| d(K) \} \\ Q(\sqrt{-2(r^2 + s^2)}), & \text{if } 2^3 \| d(K) \} \\ = K.$$

This completes the proofs of Theorems 1.1 and 1.2.

v

Ľ

References

- 1. J.E. Cremona, Algorithms for Modular Elliptic Curves, Cambridge University Press, 1992.
- 2. D.S. Dummit, Solving solvable quintics, Math. Comp. 57 (1991), 387-401.
- 3. C.U. Jensen and N. Yui, Polynomials with D_p as Galois group, J. Number Theory 15 (1982), 347-375.
- 4. Blair K. Spearman and Kenneth S. Williams, Characterization of solvable quintics $x^5 + ax + b$, Amer. Math. Monthly **101** (1994), 986–992.
- 5. Blair K. Spearman, Laura Y. Spearman and Kenneth S. Williams, The subfields of the splitting field of a solvable quintic trinomial $X^5 + aX + b$, J. Math. Sci. 6 (1995), 15–18.

Blair K. Spearman Department of Mathematics and Statistics Okanagan University College Kelowna, B.C. V1V 1V7 CANADA bkspearm@okanagan.bc.ca

Laura Y. Spearman City of Kelowna Information Services Department Kelowna, B.C. V1Y 1J4 CANADA

Kenneth S. Williams Department of Mathematics and Statistics Carleton University Ottawa Ontario K1S 5B6 CANADA williams@math.carleton.ca