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Abstract. Let Q denote the field of rational numbers. Let K be a cyclic quartic extension
of Q. It is known that there are unique integers A, B, C, D such that

A is squarefree and odd,
D = B2 + C2 is squarefree, B > 0, C > 0,
GCD(A,D) = 1.

The conductor f(K) of K is f(K) = 2l\A\D, where

Let Q denote the field of rational numbers. Let K be a cyclic extension of Q of
degree 4. It is known [1, Theorem 1] that there exist unique integers A, B, C, D
such that
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where

A simple proof of this formula for f(K) is given, which uses the basic properties of quartic
Gauss sums.
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where

(2) A is squarefree and odd,

(3) D = B2 + C2 is squarefree, B > 0, C > 0,

(4) GCD(A,D) = l.

We also divide case 3 into two subcases according as

The minimal polynomial of \JA(D + B\/D) is X* - 2ADX2 + A2C2D whose roots

are ±W A(D + B\fD] and ±JA(D - B\/~D). It is convenient to consider three cases
as follows:

We note that

and

We set

In [1, Theorem 5] the conductor of the field K was determined using p-adic arith-
metic.
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Theorem. The conductor f ( K ) of the cyclic quartic field K, as given in (l)-(4), is

where I is defined in (8).

In this paper we give a simpler proof of this theorem than the one given in [1].
Instead of p-adic arithmetic, we use the basic properties of quartic Gauss sums, as
given for example in [2].

Since D = (±5)2 + (±C)2 and K = Q(^]A(D ± flv/IO), we are at liberty to
change the signs of B and C without changing the field K. We do this as follows:

The choices of B and C in (10) will always be assumed from this point on.
Next we define a Gaussian integer K (that is, an integer of the field Q(i)) as follows:

It is easy to check using (7) and (10) that

that is, K is primary. From (3) and (11) we deduce

As N(K) is squarefree and odd, and K is primary, K is the (possibly empty) product
TTi ... 7r/t of primary Gaussian primes whose norms p\,... ,p^ are distinct rational
primes = 1 (mod 4). Note that
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The empty product is understood to be 1. This occurs only when D = 2 in which
case B — C = 1, K = 1. The Gauss sum G(KJ) (j = 1 , . . . , k) is defined by

we see from (13) and (15) that

Our first lemma determines the effect of a certain automorphism or G = G(K)
when D = 1 (mod 4), a result we shall use later.

Lemma 1. If D = 1 (mod 4) and 1 ? a € Gal (Q(e2rti/4D)/Q(e2lti/D)) then

where \~\ is the fourth root of unity given by

We set

it being understood that G = 1 when k = 0 <£=> K — 1 <=> D = 2. As each Gauss
sum G(iTj) (j = 1 , . . . , k) has the following properties:

P r o o f . The automorphisms ar of Q(e2ra/l4£)) are given by
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Those automorphisms ar fixing Q(e2K1^D) must satisfy

so that r = 1 or r = 2D + 1. Thus the unique nontrivial automorphism of
Gal (Q(e2'li/4D)/Q(e2'ti/D)) is a = a2D+l given by <r(e27ti/4D) = -e

2ni/4°. As
<r(i) = -i and <r(e2T"/«) = e2]"/« (j = 1,..., k), we have

so that by (15), (12) and (13)

Our next lemma determines the roots of the minimal polynomial X4 — 2ADX2 +
A*C*D in terms of G = G(K).

Lemma 2. The roots of the minimal polynomial X* - 2ADX2 + A*CD of

\/ A(D + B\/D) are given as follows:

where u> = e2"1/16.

P r o o f . We set

From (18) we have

so that by (11), (12), (13) and (16)
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as asserted. Cases 2 and 3 follow in a similar manner.

We set
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and

Hence in case 1 we have

and

so that

so that by Lemma 2

Lemma 3. (i)

(ii) IfD = l (mod 4)



so that

Lemma 4. f ( K ) ^ 2'|/1|Z?, where I is defined in (8).

P r o o f . We consider cases 1, 2 and 3 separately. Set w = e2"1/16.

Case 1. Clearly w <E Q(e2lli/16) and, by (12) and (19), we have G e Q(e2™/2D),
so that uG £ <Q(e2lti/8D). Similarly wG e Q(e2lli/8D) so that wG + wG € Q(e27ti/8C).
By Lemma 3(i) \/I £ CKe2*1/4^) so that 0 = v/I(wG + wG) e Q(e2]ti/8lAlD), that
is by (21), K C Q(ea»i/8l^lD), and so /(JiT) < 8\A\D = 2l\A\D, as / = 3 in case 1.

Case 2. By (12) and (19) we have G e Q(e2ni/4D), G e Q(e2?ti/4£l), so that
G + G e Q(e2lti/4C>). By Lemma 3(i) <fA € Q(e2lti/4l'4l), and clearly x/2 € Q(e2™/8),
so that ^ = v^4(G + G)/V2 e Q(e2lti/8l'4lD), that is by (21), K C Q(e2'li/8i'4lD), and
so f ( K ) < B\A\D = 2l\A\D, as / = 3 in case 2.
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P r o o f . The assertions of the Lemma are easily checked when A = 1 so we may
assume A ^ 1. Set k = Q(>/A), so that A; is a quadratic field, and let /(/e) denote
the conductor of fc. Now

This proves (i).
Suppose now D = I (mod 4). In case 2 we have

in case 3(a) (-l)^"1)/4^ = 3 (mod 4), and in case 3(b) (-1)(D-V/*A - 1 (mod 4).
Part (ii) now follows from (i).



so that, by (8) and (21), K C Q(e2™/2'MP) and so f ( K ) < 1l\A\D.

in Q(\/D). Thus p ramifies in Q(\/D) and, as Q(\/Z>) C ®(JA(D + J3-/D)) C

Q^e2ra//(K)^ p ramifies in Q(e2jl1/^^)). Hence p | /(.K") for every odd prime divisor
of D. This proves the assertion of the lemma.

Case 3. By (12) and (19) wejiave G e Q(e2!ci/4D), G e Q(e2rei/4D). Clearly
* 6 Q(e2lli/4£)) so that (1+}|g+ife7i)O € Q(e2Tli/4£l). Then, by Lemma 1, we have

so that

By Lemma 3(ii) we have

Then, from (22) and (23), we deduce

P r o o f . Let p be an odd prime divisor of D. As D is squarefree, we have

P r o o f . Let p be prime divisor of \A\. As A is odd, p ^ 2. In K we have

Lemma 5.

Lemma 6. |A| | f ( K ) .

Thus p ramifies in K and so in Q(e2*i//(fc>). Hence p | /(/if) and so |.A| | f ( K ) .
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By (12), (19), Lemma 5 and Lemma 7, we have

Lemma 7. 4 | f ( K ) in cases I, 2 and 3(a).

P r o o f . We have

so that 2 ramifies in Q(e2ni/ /<K '), and thus 4 | f ( K ) .

Lemma 8.

P r o o f . Prom (21) we have

and by Lemma 7 for cases 1 and 2 we have

Case 1. By Lemmas 3(i), 6 and 7 we have

Hence, appealing to (20), we see that

and so 16 | f ( K ) .
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Case 2. By (12) and (19) we have G 6 Q(e2lli/4D), G € Q(e2jli/4I)), so that
G + G S Q(e27ti/4D). By Lemmas 5 and 7, we have 4D | f ( K ) , so that
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By Lemma 3(i) we have

and, by Lemmas 6 and 7, 4\A\ f ( K ) so that

Hence we have shown that

But, by (20) and (21), 8 = \fA(G + G)/^ € K C Q(eani/'W) so V2 € Q(e2Ki//(/c>)
and thus 8 f ( K ) .

P r o o f of T h e o r e m . From (8) and Lemmas 5, 6, 7 and 8, we see that 2;|yl|D
divides f(K). Hence by Lemma 4 we have f(K] = 2l\A\D.
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