THE CONDUCTOR OF A CYCLIC QUARTIC FIELD USING GAUSS SUMS

Blair K. Spearman, Kelowna and Kenneth S. Williams ${ }^{1}$, Ottawa

(Received December 12, 1994)

Abstract. Let Q denote the field of rational numbers. Let K be a cyclic quartic extension of Q. It is known that there are unique integers A, B, C, D such that

$$
K=Q(\sqrt{A(D+B \sqrt{D})})
$$

where

$$
\begin{aligned}
& A \text { is squarefree and odd, } \\
& D=B^{2}+C^{2} \text { is squarefree, } B>0, C>0 \\
& G C D(A, D)=1
\end{aligned}
$$

The conductor $f(K)$ of K is $f(K)=2^{l}|A| D$, where

$$
l= \begin{cases}3, & \text { if } D \equiv 2(\bmod 4) \text { or } D \equiv 1(\bmod 4), B \equiv 1(\bmod 2) \\ 2, & \text { if } D \equiv 1(\bmod 4), B \equiv 0(\bmod 2), A+B \equiv 3(\bmod 4) \\ 0, & \text { if } D \equiv 1(\bmod 4), B \equiv 0(\bmod 2), A+B \equiv 1(\bmod 4)\end{cases}
$$

A simple proof of this formula for $f(K)$ is given, which uses the basic properties of quartic Gauss sums.

Let \mathbb{Q} denote the field of rational numbers. Let K be a cyclic extension of \mathbb{Q} of degree 4. It is known [1, Theorem 1] that there exist unique integers A, B, C, D such that

$$
\begin{equation*}
K=\mathbb{Q}(\sqrt{A(D+B \sqrt{D})}) \tag{1}
\end{equation*}
$$

[^0]where
A is squarefree and odd,
\[

$$
\begin{equation*}
D=B^{2}+C^{2} \text { is squarefree, } B>0, C>0, \tag{2}
\end{equation*}
$$

\]

$$
\begin{equation*}
G C D(A, D)=1 . \tag{3}
\end{equation*}
$$

The minimal polynomial of $\sqrt{A(D+B \sqrt{D})}$ is $X^{4}-2 A D X^{2}+A^{2} C^{2} D$ whose roots are $\pm \sqrt{A(D+B \sqrt{D})}$ and $\pm \sqrt{A(D-B \sqrt{D})}$. It is convenient to consider three cases as follows:
$(5)_{1}$

$$
\begin{cases}\text { Case } 1: & D \equiv 2(\bmod 4), \\ \text { Case } 2: & D \equiv 1(\bmod 4), \\ \text { Case } 3: & D \equiv 1(\bmod 2) \\ \text { C } & D \equiv 1 \bmod 4), \\ B \equiv 0(\bmod 2)\end{cases}
$$

We also divide case 3 into two subcases according as
$(5)_{2}$

$$
\left\{\begin{array}{l}
\text { (a) } A+B \equiv 3(\bmod 4) \\
\text { (b) } A+B \equiv 1(\bmod 4)
\end{array}\right.
$$

We note that

$$
\begin{cases}B \equiv C \equiv 1(\bmod 2), D \equiv 2(\bmod 8), & \text { in case } 1 \tag{6}\\ C \equiv 0(\bmod 2), & \text { in case } 2 \\ C \equiv 1(\bmod 2), & \text { in case } 3\end{cases}
$$

and

$$
\begin{cases}D \equiv 1+2 C(\bmod 8), & \text { in case } 2 \tag{7}\\ D \equiv-1-2 A \equiv 1+2 B(\bmod 8), & \text { in case } 3(\mathrm{a}) \\ D \equiv 3-2 A \equiv 1+2 B(\bmod 8), & \text { in case } 3(\mathrm{~b})\end{cases}
$$

We set

$$
l=l(K)= \begin{cases}3, & \text { in cases } 1 \text { and } 2 \tag{8}\\ 2, & \text { in case 3(a) } \\ 0, & \text { in case 3(b) }\end{cases}
$$

In [1, Theorem 5] the conductor of the field K was determined using p-adic arithmetic.

Theorem. The conductor $f(K)$ of the cyclic quartic field K, as given in (1)-(4), is

$$
\begin{equation*}
f(K)=2^{l}|A| D \tag{9}
\end{equation*}
$$

where l is defined in (8).
In this paper we give a simpler proof of this theorem than the one given in [1]. Instead of p-adic arithmetic, we use the basic properties of quartic Gauss sums, as given for example in [2].

Since $D=(\pm B)^{2}+(\pm C)^{2}$ and $K=\mathbb{Q}(\sqrt{A(D \pm B \sqrt{D})})$, we are at liberty to change the signs of B and C without changing the field K. We do this as follows:

Case 1: replace B by $-B$ if necessary and C by $-C$ if necessary so that

$$
B \equiv C \equiv 1(\bmod 4)
$$

Case 2: replace B by $-B$ if necessary so that

$$
B \equiv \begin{cases}1(\bmod 4), & \text { if } D \equiv 1(\bmod 8) \tag{10}\\ 3(\bmod 4), & \text { if } D \equiv 5(\bmod 8)\end{cases}
$$

Case 3: replace C by $-C$ if necessary so that

$$
C \equiv \begin{cases}1(\bmod 4), & \text { if } D \equiv 1(\bmod 8) \\ 3(\bmod 4), & \text { if } D \equiv 5(\bmod 8)\end{cases}
$$

The choices of B and C in (10) will always be assumed from this point on.
Next we define a Gaussian integer κ (that is, an integer of the field $\mathbb{Q}(i))$ as follows:

$$
\begin{cases}\text { Case } 1: & \kappa=\frac{1}{2}(B+C)+\mathrm{i} \frac{1}{2}(C-B) \tag{11}\\ \text { Case } 2: & \kappa=B+\mathrm{i} C \\ \text { Case } 3: & \kappa=C+\mathrm{i} B\end{cases}
$$

It is easy to check using (7) and (10) that

$$
\kappa \equiv 1\left(\bmod (1+i)^{3}\right)
$$

that is, κ is primary. From (3) and (11) we deduce

$$
N(\kappa)=\kappa \bar{\kappa}= \begin{cases}\frac{1}{2} D, & \text { in case } 1 \tag{12}\\ D, & \text { in cases } 2 \text { and } 3\end{cases}
$$

As $N(\kappa)$ is squarefree and odd, and κ is primary, κ is the (possibly empty) product $\pi_{1} \ldots \pi_{k}$ of primary Gaussian primes whose norms p_{1}, \ldots, p_{k} are distinct rational primes $\equiv 1(\bmod 4)$. Note that

$$
\begin{equation*}
N(\kappa)=p_{1} \ldots p_{k} \tag{13}
\end{equation*}
$$

The empty product is understood to be 1 . This occurs only when $D=2$ in which case $B=C=1, \kappa=1$. The Gauss sum $G\left(\pi_{j}\right)(j=1, \ldots, k)$ is defined by

$$
\begin{equation*}
G\left(\pi_{j}\right)=\sum_{x=1}^{p_{j}-1}\left[\frac{x}{\pi_{j}}\right]_{4} \mathrm{e}^{2 \mathrm{x} \mathrm{i} x / p_{j}} \tag{14}
\end{equation*}
$$

where $\left[\frac{x}{\pi_{j}}\right]_{4}$ is the fourth root of unity given by

$$
\left[\frac{x}{\pi_{j}}\right]_{4} \equiv x^{(p-1) / 4}(\bmod \pi)_{j}
$$

We set

$$
\begin{equation*}
G=G(\kappa)=\prod_{j=1}^{k} G\left(\pi_{j}\right) \tag{15}
\end{equation*}
$$

it being understood that $G=1$ when $k=0 \Longleftrightarrow \kappa=1 \Longleftrightarrow D=2$. As each Gauss sum $G\left(\pi_{j}\right)(j=1, \ldots, k)$ has the following properties:

$$
\begin{aligned}
& G\left(\pi_{j}\right) \overline{G\left(\pi_{j}\right)}=p_{j}, \quad[2, \text { Prop. } 8.2 .2] \\
& \overline{G\left(\pi_{j}\right)}=(-1)^{\left(p_{j}-1\right) / 4} G\left(\bar{\pi}_{j}\right), \quad[2, \text { p. } 92] \\
& G\left(\pi_{j}\right)^{2}=-(-1)^{\left(p_{j}-1\right) / 4} \sqrt{p_{j} \pi_{j}}, \quad[2, \text { Prop. } 9.10 .1] \\
& G\left(\pi_{j}\right) \in \mathbb{Q}\left(\mathrm{e}^{2 \pi \mathrm{i} / 4}, \mathrm{e}^{2 \pi i / p_{j}}\right)=\mathbb{Q}\left(\mathrm{e}^{2 \pi \mathrm{i} / 4 p_{j}}\right),
\end{aligned}
$$

we see from (13) and (15) that

$$
\begin{align*}
& G(\kappa) \overline{G(\kappa)}=N(\kappa) \tag{16}\\
& \overline{G(\kappa)}=(-1)^{(N(\kappa)-1) / 4} G(\bar{\kappa}) \tag{17}\\
& G(\kappa)^{2}=(-1)^{\kappa+(N(\kappa)-1) / 4} N(\kappa)^{1 / 2} \kappa \tag{18}\\
& G(\kappa) \in \mathbb{Q}\left(\mathrm{e}^{2 \pi \mathrm{i} / 4 N(\kappa)}\right) \tag{19}
\end{align*}
$$

Our first lemma determines the effect of a certain automorphism or $G=G(\kappa)$ when $D \equiv 1(\bmod 4)$, a result we shall use later.

Lemma 1. If $D \equiv 1(\bmod 4)$ and $1 \neq \sigma \in \operatorname{Gal}\left(\mathbb{Q}\left(\mathrm{e}^{2 \pi \mathrm{i} / 4 D}\right) / \mathbb{Q}\left(\mathrm{e}^{2 \pi \mathrm{i} / D}\right)\right)$ then

$$
\sigma(G)=(-1)^{(D-1) / 4} \bar{G}
$$

Proof. The automorphisms σ_{r} of $\mathbb{Q}\left(\mathrm{e}^{2 \pi \mathrm{i} / 4 D}\right)$ are given by

$$
\sigma_{r}\left(\mathrm{e}^{2 \pi \mathrm{i} / 4 D}\right)=\mathrm{e}^{2 r \pi \mathrm{i} / 4 D}, \quad r=1, \ldots, 4 D, \quad G C D(r, 4 D)=1
$$

Those automorphisms σ_{r} fixing $\mathbb{Q}\left(\mathrm{e}^{2 \pi \mathrm{i} / D}\right)$ must satisfy

$$
r \equiv 1(\bmod D), \quad 1 \leqslant r \leqslant 4 D, \quad G C D(r, 4 D)=1
$$

so that $r=1$ or $r=2 D+1$. Thus the unique nontrivial automorphism of $\operatorname{Gal}\left(\mathbb{Q}\left(\mathrm{e}^{2 \pi \mathrm{i} / 4 D}\right) / \mathbb{Q}\left(\mathrm{e}^{2 \pi \mathrm{i} / D}\right)\right)$ is $\sigma=\sigma_{2 D+1}$ given by $\sigma\left(\mathrm{e}^{2 \pi \mathrm{i} / 4 D}\right)=-\mathrm{e}^{2 \pi \mathrm{i} / 4 D}$. As $\sigma(\mathrm{i})=-\mathrm{i}$ and $\sigma\left(\mathrm{e}^{2 \pi \mathrm{i} / p_{j}}\right)=\mathrm{e}^{2 \pi \mathrm{i} / p_{j}}(j=1, \ldots, k)$, we have

$$
\begin{aligned}
\sigma\left(G\left(\pi_{j}\right)\right) & =\sigma\left(\sum_{x=1}^{p_{j}-1}\left[\frac{x}{\pi_{j}}\right]_{4} \mathrm{e}^{2 \pi \mathrm{i} / p_{j}}\right)=\sum_{x=1}^{p_{j}-1} \overline{\left[\frac{x}{\pi_{j}}\right]_{4}} \mathrm{e}^{2 \pi \mathrm{i} / p_{j}} \\
& =\sum_{x=1}^{p_{j}-1}\left[\frac{x}{\bar{\pi}_{j}}\right]_{4} \mathrm{e}^{2 \pi \mathrm{i} / p_{j}}=G\left(\bar{\pi}_{j}\right)=(-1)^{\left(p_{j}-1\right) / 4} \overline{G\left(\pi_{j}\right)}
\end{aligned}
$$

so that by (15), (12) and (13)

$$
\sigma(G)=(-1)^{\sum_{j=1}^{k}\left(p_{j}-1\right) / 4} \bar{G}=(-1)^{(D-1) / 4} \bar{G}
$$

Our next lemma determines the roots of the minimal polynomial $X^{4}-2 A D X^{2}+$ $A^{2} C^{2} D$ in terms of $G=G(\kappa)$.

Lemma 2. The roots of the minimal polynomial $X^{4}-2 A D X^{2}+A^{2} C D$ of $\sqrt{A(D+B \sqrt{D})}$ are given as follows:

$$
\begin{cases}\text { Case 1: } & \pm \sqrt{A}(\omega G+\bar{\omega} \overline{\mathrm{G}}), \pm \mathrm{i} \sqrt{A}(\omega G-\bar{\omega} \bar{G}) \\ \text { Case 2: } & \pm \sqrt{A}(G+\bar{G}) / \sqrt{2}, \pm \mathrm{i} \sqrt{A}(G-\bar{G}) / \sqrt{2} \\ \text { Case 3: } & \pm \frac{1}{2} \sqrt{A}((1+\mathrm{i}) G+(1-\mathrm{i}) \bar{G}), \pm \frac{1}{2} \mathrm{i} \sqrt{A}((1-\mathrm{i}) G+(1+\mathrm{i}) \bar{G})\end{cases}
$$

where $\omega=\mathrm{e}^{2 \pi \mathrm{i} / 16}$.
Proof. We set

$$
\varepsilon=(-1)^{k+(N(\kappa)-1) / 4}
$$

From (18) we have

$$
G^{2}=\varepsilon N(\kappa)^{1 / 2} \kappa, \bar{G}^{2}=\varepsilon N(\kappa)^{1 / 2} \bar{\kappa}
$$

so that by (11), (12), (13) and (16)

$$
\begin{aligned}
G^{2}+\bar{G}^{2} & = \begin{cases}\varepsilon D^{1 / 2}(B+C) / 2^{1 / 2}, & \text { in case } 1 \\
2 \varepsilon D^{1 / 2} B, & \text { in case } 2 \\
2 \varepsilon D^{1 / 2} C, & \text { in case 3 }\end{cases} \\
G^{2}-\bar{G}^{2} & = \begin{cases}i \varepsilon D^{1 / 2}(C-B) / 2^{1 / 2}, & \text { in case } 1 \\
2 i \varepsilon D^{1 / 2} C, & \text { in case } 2 \\
2 i \varepsilon D^{1 / 2} B, & \text { in case } 3\end{cases}
\end{aligned}
$$

and

$$
2 G \bar{G}= \begin{cases}D, & \text { in case } 1 \\ 2 D, & \text { in cases } 2 \text { and } 3\end{cases}
$$

Hence in case 1 we have

$$
\begin{aligned}
(\omega G+\bar{\omega} \bar{G})^{2} & =\frac{(1+\mathrm{i})}{\sqrt{2}} G^{2}+\frac{(1-\mathrm{i})}{\sqrt{2}} \bar{G}^{2}+2 G \bar{G} \\
& =\varepsilon D^{1 / 2}(B+C) / 2+\varepsilon D^{1 / 2}(B-C) / 2+D \\
& =D+\varepsilon B \sqrt{D}
\end{aligned}
$$

and

$$
\begin{aligned}
(\mathrm{i}(\omega G-\bar{\omega} \bar{G}))^{2} & =-\frac{(1+\mathrm{i})}{\sqrt{2}} G^{2}-\frac{(1-\mathrm{i})}{\sqrt{2}} \bar{G}^{2}+2 G \bar{G} \\
& =D-\varepsilon B \sqrt{D}
\end{aligned}
$$

so that

$$
\begin{aligned}
& (\pm \sqrt{A}(\omega G+\bar{\omega} \bar{G}))^{2}=A(D+\varepsilon B \sqrt{D}) \\
& (\pm \mathrm{i} \sqrt{A}(\omega G-\bar{\omega} \bar{G}))^{2}=A(D-\varepsilon B \sqrt{D})
\end{aligned}
$$

as asserted. Cases 2 and 3 follow in a similar manner.
We set

$$
\begin{cases}\theta=\sqrt{A}(\omega G+\bar{\omega} \bar{G}), & \varphi=\mathrm{i} \sqrt{A}(\omega G-\bar{\omega} \bar{G}), \text { in case } 1 \tag{20}\\ \theta=\sqrt{A}(G+\bar{G}) / \sqrt{2}, & \varphi=\mathrm{i} \sqrt{A}(G-\bar{G}) / \sqrt{2}, \text { in case } 2 \\ \theta=\frac{1}{2} \sqrt{A}((1+\mathrm{i}) G+(1-\mathrm{i}) \bar{G}), & \varphi=\frac{1}{2} \sqrt{A}((1-\mathrm{i}) G+(1+\mathrm{i}) \bar{G}), \text { in case } 3\end{cases}
$$

so that by Lemma 2

$$
\begin{equation*}
K=\mathbb{Q}(\sqrt{A(D+B \sqrt{D})})=\mathbb{Q}(\theta)=\mathbb{Q}(\varphi) \tag{21}
\end{equation*}
$$

Lemma 3. (i)

$$
\sqrt{A} \in \begin{cases}\mathbb{Q}\left(\mathrm{e}^{2 \pi \mathrm{i} /|A|}\right), & \text { if } A \equiv 1(\bmod 4) \\ \mathbb{Q}\left(\mathrm{e}^{2 \pi \mathrm{i} / 4|A|}\right), & \text { if } A \equiv 3(\bmod 4)\end{cases}
$$

(ii) If $D \equiv 1(\bmod 4)$

$$
\sqrt{(-1)^{(D-1) / 4} A} \in \begin{cases}\mathbb{Q}\left(\mathrm{e}^{2 \pi \mathrm{i} /|A|}\right), & \text { in case } 2 \text { when } A+C \equiv 1(\bmod 4) \\ \mathbb{Q}\left(\mathrm{e}^{2 \pi \mathrm{i} / 4|A|}\right), & \text { and in case } 3(\mathrm{~b}) \\ & \text { in case } 2 \text { when } A+C \equiv 3(\bmod 4) \\ & \text { and in case } 3(\mathrm{a})\end{cases}
$$

Proof. The assertions of the Lemma are easily checked when $A=1$ so we may assume $A \neq 1$. Set $k=\mathbb{Q}(\sqrt{A})$, so that k is a quadratic field, and let $f(k)$ denote the conductor of k. Now

$$
\begin{aligned}
f(k) & =|\operatorname{disc}(k)| \\
& = \begin{cases}A, & \text { if } A>0, A \equiv 1(\bmod 4), \\
4 A, & \text { if } A>0, A \equiv 3(\bmod 4), \\
-A, & \text { if } A<0, A \equiv 1(\bmod 4) \\
-4 A, & \text { if } A<0, A \equiv 3(\bmod 4),\end{cases} \\
& = \begin{cases}|A|, & \text { if } A \equiv 1(\bmod 4) \\
4|A|, & \text { if } A \equiv 3(\bmod 4)\end{cases}
\end{aligned}
$$

so that

$$
\sqrt{A} \in k \subseteq \mathbb{Q}\left(\mathrm{e}^{2 \pi \mathrm{i} / f(k)}\right)= \begin{cases}\mathbb{Q}\left(\mathrm{e}^{2 \pi \mathrm{i} /|A|}\right), & \text { if } A \equiv 1(\bmod 4) \\ \mathbb{Q}\left(\mathrm{e}^{2 \pi \mathrm{i} / 4|A|}\right), & \text { if } A \equiv 3(\bmod 4)\end{cases}
$$

This proves (i).
Suppose now $D \equiv 1(\bmod 4)$. In case 2 we have

$$
(-1)^{(D-1) / 4} A \equiv \begin{cases}1(\bmod 4), & \text { if } A+C \equiv 1(\bmod 4) \\ 3(\bmod 4), & \text { if } A+C \equiv 3(\bmod 4)\end{cases}
$$

in case $3(\mathrm{a})(-1)^{(D-1) / 4} A \equiv 3(\bmod 4)$, and in case $3(\mathrm{~b})(-1)^{(D-1) / 4} A \equiv 1(\bmod 4)$. Part (ii) now follows from (i).

Lemma 4. $f(K) \leqslant 2^{l}|A| D$, where l is defined in (8).
Proof. We consider cases 1,2 and 3 separately. Set $\omega=e^{2 \pi i / 16}$.
Case 1. Clearly $\omega \in \mathbb{Q}\left(\mathrm{e}^{2 \pi \mathrm{i} / 16}\right)$ and, by (12) and (19), we have $G \in \mathbb{Q}\left(\mathrm{e}^{2 \pi \mathrm{i} / 2 D}\right)$, so that $\omega G \in \mathbb{Q}\left(\mathrm{e}^{2 \pi \mathrm{i} / 8 D}\right)$. Similarly $\bar{\omega} \bar{G} \in \mathbb{Q}\left(\mathrm{e}^{2 \pi \mathrm{i} / 8 D}\right)$ so that $\omega G+\bar{\omega} \bar{G} \in \mathbb{Q}\left(\mathrm{e}^{2 \pi \mathrm{i} / 8 D}\right)$. By Lemma $3(\mathrm{i}) \sqrt{A} \in \mathbb{Q}\left(\mathrm{e}^{2 \pi \mathrm{i} / 4|A|}\right)$ so that $\theta=\sqrt{A}(\omega G+\bar{\omega} \bar{G}) \in \mathbb{Q}\left(\mathrm{e}^{2 \mathrm{i} / 8|A| D}\right)$, that is by (21), $K \subseteq \mathbb{Q}\left(\mathrm{e}^{2 \pi \mathrm{i} / 8|A| D}\right)$, and so $f(K) \leqslant 8|A| D=2^{l}|A| D$, as $l=3$ in case 1 .

Case 2. By (12) and (19) we have $G \in \mathbb{Q}\left(\mathrm{e}^{2 \pi \mathrm{i} / 4 D}\right), \bar{G} \in \mathbb{Q}\left(\mathrm{e}^{2 \pi \mathrm{i} / 4 D}\right)$, so that $G+\bar{G} \in \mathbb{Q}\left(\mathrm{e}^{2 \pi \mathrm{i} / 4 D}\right)$. By Lemma $3(\mathrm{i}) \sqrt{A} \in \mathbb{Q}\left(\mathrm{e}^{2 \pi \mathrm{i} / 4|A|}\right)$, and clearly $\sqrt{2} \in \mathbb{Q}\left(\mathrm{e}^{2 \pi \mathrm{i} / 8}\right)$, so that $\theta=\sqrt{A}(G+\bar{G}) / \sqrt{2} \in \mathbb{Q}\left(\mathrm{e}^{2 \pi \mathrm{i} / 8|A| D}\right)$, that is by $(21), K \subseteq \mathbb{Q}\left(\mathrm{e}^{2 \pi \mathrm{i} / 8|A| D}\right)$, and so $f(K) \leqslant 8|A| D=2^{l}|A| D$, as $l=3$ in case 2 .

Case 3. By (12) and (19) we have $G \in \mathbb{Q}\left(\mathrm{e}^{2 \pi \mathrm{i} / 4 D}\right), \bar{G} \in \mathbb{Q}\left(\mathrm{e}^{2 \pi \mathrm{i} / 4 D}\right)$. Clearly $i \in \mathbb{Q}\left(\mathrm{e}^{2 \pi \mathrm{i} / 4 D}\right)$ so that $\frac{(1+\mathrm{i}) G+(1-\mathrm{i}) \bar{G}}{\mathrm{i}^{(D-1) / 4}} \in \mathbb{Q}\left(\mathrm{e}^{2 \pi \mathrm{i} / 4 D}\right)$. Then, by Lemma 1 , we have

$$
\begin{aligned}
\sigma\left(\frac{(1+\mathrm{i}) G+(1-\mathrm{i}) \bar{G}}{\mathrm{i}^{(D-1) / 4}}\right) & =\frac{(1-\mathrm{i})(-1)^{(D-1) / 4} \bar{G}+(1+\mathrm{i})(-1)^{(D-1) / 4} G}{(-\mathrm{i})^{(D-1) / 4}} \\
& =\frac{(1+\mathrm{i}) G+(1-\mathrm{i}) \bar{G}}{\mathrm{i}^{(D-1) / 4}}
\end{aligned}
$$

so that

$$
\begin{equation*}
\frac{(1+\mathrm{i}) G+(1-\mathrm{i}) \bar{G}}{\mathrm{i}^{(D-1) / 4}} \in \mathbb{Q}\left(\mathrm{e}^{2 \pi \mathrm{i} / D}\right) \tag{22}
\end{equation*}
$$

By Lemma 3(ii) we have

$$
\pm \mathrm{i}^{(D-1) / 4} \sqrt{A}=\sqrt{(-1)^{(D-1) / 4} A} \in \begin{cases}\mathbb{Q}\left(\mathrm{e}^{2 \pi \mathrm{i} /|A|}\right), & \text { in case } 3(\mathrm{~b}) \tag{23}\\ \mathbb{Q}\left(\mathrm{e}^{2 \pi \mathrm{i} / 4|A|}\right), & \text { in case 3(a). }\end{cases}
$$

Then, from (22) and (23), we deduce

$$
\theta=\sqrt{A}\left(\frac{(1+\mathrm{i}) G+(1-\mathrm{i}) \bar{G}}{2}\right) \in \begin{cases}\mathbb{Q}\left(\mathrm{e}^{2 \pi \mathrm{i} /|A| D}\right), & \text { in case } 3(\mathrm{~b}) \\ \mathbb{Q}\left(\mathrm{e}^{2 \pi \mathrm{i} / 4|A| D}\right), & \text { in case } 3(\mathrm{a})\end{cases}
$$

so that, by (8) and (21), $K \subseteq \mathbb{Q}\left(\mathrm{e}^{2 \pi i / 2^{l}|A| D}\right)$ and so $f(K) \leqslant 2^{l}|A| D$.

Lemma 5.

$$
\begin{cases}\left.\frac{D}{2} \right\rvert\, f(K), & \text { in case } 1 \\ D \mid f(K), & \text { in cases } 2 \text { and } 3\end{cases}
$$

Proof. Let p be an odd prime divisor of D. As D is squarefree, we have

$$
\langle p\rangle=\langle p, \sqrt{D}\rangle^{2}
$$

in $\mathbb{Q}(\sqrt{D})$. Thus p ramifies in $\mathbb{Q}(\sqrt{D})$ and, as $\mathbb{Q}(\sqrt{D}) \subseteq \mathbb{Q}(\sqrt{A(D+B \sqrt{D})}) \subseteq$ $\mathbb{Q}\left(\mathrm{e}^{2 \pi \mathrm{i} / f(K)}\right)$, p ramifies in $\mathbb{Q}\left(\mathrm{e}^{2 \pi \mathrm{i} / f(K)}\right)$. Hence $p \mid f(K)$ for every odd prime divisor of D. This proves the assertion of the lemma.

Lemma 6. $|A| \mid f(K)$.
Proof. Let p be prime divisor of $|A|$. As A is odd, $p \neq 2$. In K we have

$$
\langle p\rangle= \begin{cases}\langle p, \sqrt{A(D+B \sqrt{D})}\rangle^{2}, & \text { if } p \nmid C \\ \langle p, \sqrt{A(D+B \sqrt{D})}+\sqrt{A(D-B \sqrt{D})})^{2}, & \text { if } p \nmid B\end{cases}
$$

Thus p ramifies in K and so in $\mathbb{Q}\left(\mathrm{e}^{2 \pi \mathrm{i} / f(k)}\right)$. Hence $p \mid f(K)$ and so $|A| \mid f(K)$.

Lemma 7. $4 \mid f(K)$ in cases 1,2 and $3(\mathrm{a})$.
Proof. We have
$\langle 2\rangle= \begin{cases}\langle 2, \sqrt{D}\rangle^{2} & \text { in } \mathbb{Q}(\sqrt{D}) \text { in case } 1, \\ \langle 2, \sqrt{A(D+B \sqrt{D})}+\sqrt{A(D-B \sqrt{D})}\rangle^{2} & \text { in } K \text { in case } 2, \\ \langle 2,1+\sqrt{A(D+B \sqrt{D})}\rangle^{2} & \text { in } K \text { in case } 3(\mathrm{a}),\end{cases}$
so that 2 ramifies in $\mathbb{Q}\left(\mathrm{e}^{2 \pi \mathrm{i} / f(K)}\right)$, and thus $4 \mid f(K)$.

Lemma 8.

$$
\begin{array}{r}
16 \mid f(K), \text { in case } 1 \\
8 \mid f(K), \text { in case } 2
\end{array}
$$

Proof. From (21) we have

$$
\theta, \varphi \in K \subseteq \mathbb{Q}\left(\mathrm{e}^{2 \pi \mathrm{i} / f(K)}\right)
$$

and by Lemma 7 for cases 1 and 2 we have

$$
i \in \mathbb{Q}\left(\mathrm{e}^{2 \mathrm{ni} / f(K)}\right)
$$

Case 1. By Lemmas 3(i), 6 and 7 we have

$$
\sqrt{A} \in \mathbb{Q}\left(\mathrm{e}^{2 \pi \mathrm{i} / 4|A|}\right) \subseteq \mathbb{Q}\left(\mathrm{e}^{2 \pi \mathrm{i} / f(K)}\right)
$$

By (12), (19), Lemma 5 and Lemma 7, we have

$$
G \in \mathbb{Q}\left(\mathrm{e}^{2 \pi \mathrm{i} / 2 D}\right) \subseteq \mathbb{Q}\left(\mathrm{e}^{2 \pi \mathrm{i} / f(K)}\right)
$$

Hence, appealing to (20), we see that

$$
\mathrm{e}^{2 \pi \mathrm{i} / 16}=\omega=\frac{\theta-\mathrm{i} \varphi}{2 G \sqrt{A}} \in \mathbb{Q}\left(\mathrm{e}^{2 \pi \mathrm{i} / f(K)}\right)
$$

and so $16 \mid f(K)$.

Case 2. By (12) and (19) we have $G \in \mathbb{Q}\left(\mathrm{e}^{2 \pi \mathrm{i} / 4 D}\right), \bar{G} \in \mathbb{Q}\left(\mathrm{e}^{2 \pi \mathrm{i} / 4 D}\right)$, so that $G+\bar{G} \in \mathbb{Q}\left(\mathrm{e}^{2 \pi \mathrm{i} / 4 D}\right)$. By Lemmas 5 and 7 , we have $4 D \mid f(K)$, so that

$$
G+\bar{G} \in \mathbb{Q}\left(\mathrm{e}^{2 \pi \mathrm{i} / f(K)}\right)
$$

By Lemma 3(i) we have

$$
\sqrt{A} \in \mathbb{Q}\left(\mathrm{e}^{2 \pi \mathrm{i} / 4|A|}\right)
$$

and, by Lemmas 6 and $7,4|A| \mid f(K)$ so that

$$
\sqrt{A} \in \mathbb{Q}\left(\mathrm{e}^{2 \pi \mathrm{i} / f(K)}\right)
$$

Hence we have shown that

$$
\sqrt{A}(G+\bar{G}) \in \mathbb{Q}\left(\mathrm{e}^{2 \pi \mathrm{i} / f(K)}\right)
$$

But, by (20) and (21), $\theta=\sqrt{A}(G+\bar{G}) / \sqrt{2} \in K \subseteq \mathbb{Q}\left(\mathrm{e}^{2 \pi \mathrm{i} / f(K)}\right)$ so $\sqrt{2} \in \mathbb{Q}\left(\mathrm{e}^{2 \pi \mathrm{i} / f(K)}\right)$ and thus $8 \mid f(K)$.

Proof of Theorem. From (8) and Lemmas 5, 6, 7 and 8, we see that $2^{l}|A| D$ divides $f(K)$. Hence by Lemma 4 we have $f(K)=2^{l}|A| D$.

References

[1] K. Hardy, R.H. Hudson, D. Richman, K.S. Williams and N.M. Holtz: Calculation of the class numbers of imaginary cyclic quartic fields. Carleton-Ottawa Mathematical Lecture Note Series (Carleton University, Ottawa, Ontario, Canada), Number 7, July 1986, pp. 201.
[2] K. Ireland and M. Rosen: A Classical Introduction to Modern Number Theory. SpringerVerlag, New York, Second Edition (1990).

Authors' addresses: B.K. Spearman, Department of Mathematics and Statistics, Okanagan University College, Kelowna, B.C., Canada, V1V1V7; K.S. Williams, Department of Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada, K1S 5B6.

[^0]: ${ }^{1}$ Research supported by Natural Sciences and Engineering Research of Canada Grant A-7233.

