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ON PASCAL'S TRIANGLE MODULO p2 

JAMES G. H U A R D  (BUFFALO, N.Y.) , 
BLAIR K. S P E A R M  A N (KELOWNA, B.C.), 

AND KENNETH S. W I L L I A M S (OTTAWA, ONT.) 

1. Introduction. Let n be a nonnegative integer. The nth row of Pas- 
cal's triangle consists of the n + 1 binomial coefficients 

We denote by Nn(t, m) the number of these binomial coefficients which are 
congruent to t modulo m, where t and m (2 1) are integers. 

If p is a prime we write the pary  representation of the positive integer 
n as 

k n = a0 + alp + a2p2 + . . . + akp , 
where k. 2 0, each ai = O,l,. . . , p  - 1 and ak # 0. We denote the num- 
ber of T'S occurring among ao,al, .  . . ,ak by nr (T = 0, 1,.  . . , p  - 1). We 
set w = e2"il(~-1) and let g denote a primitive root (mod p). We denote 
the index of the integer t $ 0 (modp) with respect to g by indgt; 
that is, indgt is the unique integer j such that t = gj (modp). Hexel and 
Sachs [2, Theorem 31 have shown in a different form that for t = l ,2 ,  . . . , p-1, 

where for any integer T not exceeding p - 1 and any integer s, 
r 

In this paper we make use of the Hexel-Sachs formula (1.1) to determine 
the analogous formula for Nn (tp, p2) for t = 1,2, . . . , p - 1. We prove 
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THEOREM 1.1. For t = 1,2 ,  . . . , p - 1, 

where 

and nij denotes the number of occurrences of the paw LJ 11' the striny 
aoal..  .ak. , 

The proof of this theorem is given in § 3  after a preliminary result is 
proved in §2.  We consider the special cases p = 2 and p = 3 of the theorem 
in $4 and 55 respectively. 

The proof of (1 .1)  given by Hexel and Sachs [2] is quite long so we 
conclude this introduction by giving a short proof of their result. 

P r o o f  of (1 .1) .  Fort  = 1 , 2  ,..., p - 1  we have 
n n n 

Pi(: 1 
It remains to show that 

n P- 1 x W s i n d e ( : )  = B(p ,g )nr .  

We express r ( 0  5 r 5 n )  in base p as 

where each bi = 0 ,  1, . . . , p  - 1. By Lucas' theorem [5,  p. 521, we have 
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1f we have (;:) (i = 0,1,.  . . , k) so that bi 5 ai (i = 0,1,. . . , k). 
Conversely, if bi 5 ai (i = 0,1,. . . , k) then p i  (;:) (i = 0,1,. . . , k) so that 

(:). Hence 

As B(0, s) = 1 the term r = 0 contributes 1 to the product. 

2. A preliminary result. We begin by recalling Wilson's theorem in 
the form 

(2.1) h!(p- h -  I)! 5 (-l)h+l (modp) (h = O , l ,  ..., p -  1). 

We make use of (2.1) in the proof of the following result. 

LEMMA 2.1. Let p be a prime and let g be a primitive root of p. Set 
w = eZni/(p-'1. Let s be an integer. Then 

(i) C wsindg(b!(a-l-b)!/a!) = w-sind a B(a - 1, -s) 

b=O 
for a = 1,2 ,..., p -  1, and 

P- 1 

(ii) C w s ind,(b!(a+p-b)!/a!) = i d g ( - 1 )  w s indg(a+l)~(p - a - 2, s) 

for a = 0,1,2 ,..., p -  2. 

P roof. (i) We have 
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(ii) By Wilson's theorem (2.1), we have for b = a + 1,. . . , p  - 1, 

p - a - 2  - (P - a - 1) ( ) (modp), b - a - 1  

as 1 - (-l)p+' (modp). Thus we have 

p-a-2 
- - indg(P-a-l) indg(p-:-2) 

1 =o 
- - indg(-a-l)B (p- a -  2,s). 

The asserted result now follows as 

indg(-a-1) - - ,S indo(-l)+s indg(a+l) 

Re  m a r  k. We adopt the convention that (i) holds when a = 0 and (ii) 
holds when a = p - 1 as B(-1, f s) = 0. 

3. Proof of the theorem. Let n be a fixed positive integer. Let 

be the pary  representation of n so that k, ao, . . . , ak are fixed integers sat- 
isfiying 

(3.2) kLO,  O I a j  5 ~ - 1  ( O k )  ak#O. 

Let r denote an arbitrary integer between 0 and n. We express r and n - r 
in base p as follows: 

where each bj and cj is one of the integers O,1,. . . , p - 1. Let c(n, r )  denote 
the number of carries when r is added to n - r in base p. Kazandzidis 
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[4, pp. 3-41 (see also Singmaster [6]) has shown that 

If c(n, r) = 0 then bj + cj = a j  for j = 0,1, . . . , k. Conversely, if bj + cj = 
a j  for j = 0,1,. . . , k, then c(n, r) = 0. Hence, for t = 1,2, .  . . , p - 1, we have 

k 
aj! 

o b j + c j  = a j  ( j = 0 , 1 ,  ..., k) and urn - = t (mod p). 
j = O  3' 3 

Thus 

r=O bor~O,.. . ,b~,~~=O 
( : )~ t  (modp) bj+cj=aj (j=O,l, ..., k) njk=, aj!/(bj!cj!)nt (modp) 

Suppose now that c(n, r) = 1. If the unique carry occurs in the j th place 
(0 5 j 5 k - I), then, for i = 0,1,.  . . , k, the pair (bi, ci) satisfies 

Conversely, if each pair (bi, ci) satisfies (3.7) then c(n, r) = 1, and the carry 
occurs in the j th place. By Kazandzidis' theorem (3.4) we have 

appealing to (3.8), we obtain 

~ n ( t ~ ,  p2) = C 
r=O 

=C 
j=O 

C 
r=O 

c(n,r)=l carry in j t h  place 

n:=, aI!/(br!cr!)=-t (modp) n:=, al!/(bl!cl!)~-t (modp) 

Appealing to (3.1), (3.3) and (3.7), we deduce that 



j=O b j  , c j , b j + l , c j + l = O  bo,cg, ... , b j - 1 7 c j - l , b j + 2 , c j + ~  ,. . . ,bk,ck=O 
b j + c j = a j + p  ~ I + C I = ~ I  ( I # j , j + l )  

b j + l + c j + l = a j + l - 1  n aI!/(bI!cl!)~-t(bj!~j!bj+l!cj+l!)/(aj!aj+l!) ( m o d p )  

where the product is over I = 0,. . . , j - 1, j + 2,. . . , k. Next, appealing to 
(3.6), we see that the inner sum is 

where the quotient is taken as an integer modulo p. Then 

where 

The next step is to apply Hexel and Sachs' theorem (see (1.1)) to n - ajpJ - 
~ j + ~ p J + ' .  The number of r's in the pa ry  representation of n-ajpJ - ~ j + ~ p J + l  

is nr - 6(r - a j )  - 6(r - a j + 1 ) .  Hence 

r = l  

Thus 
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Appealing to Lemma 2.1, we obtain 

4. Case p = 2. Here w = 1 and g = 1. Fkom (1.2) we obtain 

Taking p = 2 and t = 1 in the theorem, we deduce that 

Nn(2,4) = nolB(O, 0 ) ~ ~ ( 1 , 0 ) " ' - ~  = m12n1-1. 

This result is due to Davis and Webb 11, Theorem 71. 
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5. Case p = 3. Here w = -1 and g = 2.  From (1.2)  we have 

Taking p = 3 and t = 1 , 2  in the theorem, we obtain 

This result is due to Huard, Spearman and Williams [3] .  

6. Concluding remarks. As 

and 

summing (1.1)  and (1 .3)  over t = 1 , 2 , .  . . , p  - 1,  we obtain 

and 

so that 

We conclude this paper by observing that our theorem shows that 
Nn( tp ,p2 )  ( p t t )  depends only on t ,  ni (i = 1 , 2 ,  . . . , p  - 1) and nij (i = 
0 ,  1, . . . , p  - 2; j = 1 , 2 , .  . . , p  - 1) .  This result should be compared to that 
of Webb [7, Theorem 31 for Nn( t ,  p2) ( p t t ) .  
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