COLLOQUIUM MATHEMATICUM

ON PASCAL'S TRIANGLE MODULO p^{2}

> BY
> JAMES G. HUARD (BUFFALO, N.Y.),
> BLAIR K. SPEARMAN (KELOWNA, B.C.), AND KENNETH S. WILLIAMS (OTTAWA, ONT.)

1. Introduction. Let n be a nonnegative integer. The nth row of Pascal's triangle consists of the $n+1$ binomial coefficients

$$
\binom{n}{0}\binom{n}{1}\binom{n}{2} \ldots\binom{n}{n} .
$$

We denote by $N_{n}(t, m)$ the number of these binomial coefficients which are congruent to t modulo m, where t and $m(\geq 1)$ are integers.

If p is a prime we write the p-ary representation of the positive integer n as

$$
n=a_{0}+a_{1} p+a_{2} p^{2}+\ldots+a_{k} p^{k}
$$

where $k \geq 0$, each $a_{i}=0,1, \ldots, p-1$ and $a_{k} \neq 0$. We denote the number of r 's occurring among $a_{0}, a_{1}, \ldots, a_{k}$ by $n_{r}(r=0,1, \ldots, p-1)$. We set $\omega=e^{2 \pi i /(p-1)}$ and let g denote a primitive root $(\bmod p)$. We denote the index of the integer $t \not \equiv 0(\bmod p)$ with respect to g by $\operatorname{ind}_{g} t$; that is, $\operatorname{ind}_{g} t$ is the unique integer j such that $t \equiv g^{j}(\bmod p)$. Hexel and Sachs [2, Theorem 3] have shown in a different form that for $t=1,2, \ldots, p-1$,

$$
\begin{equation*}
N_{n}(t, p)=\frac{1}{p-1} \sum_{s=0}^{p-2} \omega^{-s \operatorname{ind}_{g} t} \prod_{r=1}^{p-1} B(r, s)^{n_{r}} \tag{1.1}
\end{equation*}
$$

where for any integer r not exceeding $p-1$ and any integer s,

$$
\begin{equation*}
B(r, s)=\sum_{c=0}^{r} \omega^{s \operatorname{ind}_{g}\binom{r}{c}} . \tag{1.2}
\end{equation*}
$$

In this paper we make use of the Hexel-Sachs formula (1.1) to determine the analogous formula for $N_{n}\left(t p, p^{2}\right)$ for $t=1,2, \ldots, p-1$. We prove

[^0]Theorem 1.1. For $t=1,2, \ldots, p-1$,

$$
\begin{align*}
N_{n}\left(t p, p^{2}\right)= & \frac{1}{p-1} \sum_{i=0}^{p-2} \sum_{j=1}^{p-1} n_{i j} \sum_{s=0}^{p-2} \omega^{-s\left(\mathrm{ind}_{g} t+\mathrm{ind}_{g}(i+1)-\mathrm{ind}_{g} j\right)} \tag{1.3}\\
& \times B(p-2-i,-s) B(j-1, s) \prod_{r=1}^{p-1} B(r, s)^{n_{r}-\delta(r-i)-\delta(r-j)},
\end{align*}
$$

where

$$
\delta(x)= \begin{cases}1, & \text { if } x=0 \\ 0 & \text { if } x \neq 0,\end{cases}
$$

and $n_{i j}$ denotes the number of occurrences of the pail is "/ the string $a_{0} a_{1} \ldots a_{k}$.

The proof of this theorem is given in $\S 3$ after a preliminary result is proved in $\S 2$. We consider the special cases $p=2$ and $p=3$ of the theorem in $\S 4$ and $\S 5$ respectively.

The proof of (1.1) given by Hexel and Sachs [2] is quite long so we conclude this introduction by giving a short proof of their result.

Proof of (1.1). For $t=1,2, \ldots, p-1$ we have

$$
\begin{aligned}
N_{n}(t, p) & =\sum_{\substack{r=0 \\
\left(\begin{array}{c}
n \\
r
\end{array}\right) \equiv t(\bmod p)}}^{n} 1=\sum_{\substack{r=0 \\
\left(\begin{array}{c}
n \\
r
\end{array}\right) \equiv t\left(\bmod ^{n} p\right) \\
p \nmid\left(\begin{array}{l}
n \\
r
\end{array}\right.}}^{n} 1=\sum_{\substack{r=0 \\
p \nmid\left(\begin{array}{l}
n \\
n
\end{array}\right)}}^{n} 1 \\
& =\frac{1}{p-1} \sum_{\substack{r=0 \\
p \nmid\left(\begin{array}{l}
n \\
r
\end{array}\right)}}^{n} \sum_{s=0}^{p-2} \omega^{\left(\operatorname{ind}_{g}\binom{n}{r}-\operatorname{ind}_{g} t\right) s} \\
& =\frac{1}{p-1} \sum_{s=0}^{p-2} \omega^{-s \operatorname{ind}_{g} t} \sum_{\substack{r=0 \\
p \nmid\left(\begin{array}{l}
n \\
r
\end{array}\right)}}^{n} \omega^{s \operatorname{ind}_{g}\binom{n}{r}}
\end{aligned}
$$

It remains to show that

$$
\sum_{\substack{r=0 \\
p \nmid\left(\begin{array}{l}
n \\
r
\end{array}\right)}}^{n} \omega^{s \operatorname{ind}_{g}\binom{n}{r}}=\prod_{r=1}^{p-1} B(r, s)^{n_{r}} .
$$

We express $r(0 \leq r \leq n)$ in base p as

$$
r=b_{0}+b_{1} p+\ldots+b_{k} p^{k}
$$

where each $b_{i}=0,1, \ldots, p-1$. By Lucas' theorem [5, p. 52], we have

$$
\binom{n}{r} \equiv\binom{a_{0}}{b_{0}}\binom{a_{1}}{b_{1}} \ldots\binom{a_{k}}{b_{k}}(\bmod p)
$$

If $p \nmid\binom{n}{r}$, we have $p \nmid\binom{a_{i}}{b_{i}}(i=0,1, \ldots, k)$ so that $b_{i} \leq a_{i}(i=0,1, \ldots, k)$. Conversely, if $b_{i} \leq a_{i}(i=0,1, \ldots, k)$ then $p \nmid\binom{a_{i}}{b_{i}}(i=0,1, \ldots, k)$ so that $p \nmid\binom{n}{r}$. Hence

$$
\begin{aligned}
\sum_{\substack{r=0 \\
p \nmid\left(\begin{array}{c}
n \\
r
\end{array}\right)}}^{n} \omega^{s \operatorname{ind}_{g}\binom{n}{r}} & =\sum_{b_{0}, \ldots, b_{k}=0}^{a_{0}, \ldots, a_{k}} \omega^{s \sum_{i=0}^{k} \operatorname{ind}_{g}\left(a_{i}\right)} \\
& =\prod_{i=0}^{k}\left\{\sum_{b_{i}=0}^{a_{i}} \omega^{s \operatorname{ind}_{g}\left(a_{b_{i}}\right)}\right\}=\prod_{r=0}^{p-1} \prod_{\substack{i=0 \\
a_{i}=r}}^{k}\left\{\sum_{b_{i}=0}^{r} \omega^{s \operatorname{ind}_{g}\left(b_{b_{i}}^{r}\right)}\right\} \\
& =\prod_{r=0}^{p-1}\left\{\sum_{b_{i}=0}^{r} \omega^{s \operatorname{ind}_{g}\binom{r}{b}}\right\}^{n_{r}}=\prod_{r=0}^{p-1} B(r, s)^{n_{r}} .
\end{aligned}
$$

As $B(0, s)=1$ the term $r=0$ contributes 1 to the product.
2. A preliminary result. We begin by recalling Wilson's theorem in the form

$$
\begin{equation*}
h!(p-h-1)!\equiv(-1)^{h+1}(\bmod p) \quad(h=0,1, \ldots, p-1) \tag{2.1}
\end{equation*}
$$

We make use of (2.1) in the proof of the following result.
Lemma 2.1. Let p be a prime and let g be a primitive root of p. Set $\omega=e^{2 \pi i /(p-1)}$. Let s be an integer. Then

$$
\begin{equation*}
\sum_{b=0}^{a-1} \omega^{s \operatorname{ind}_{g}(b!(a-1-b)!/ a!)}=\omega^{-s \operatorname{ind}_{g} a} B(a-1,-s) \tag{i}
\end{equation*}
$$

for $a=1,2, \ldots, p-1$, and
(ii) $\sum_{b=a+1}^{p-1} \omega^{s \operatorname{ind}_{g}(b!(a+p-b)!/ a!)}=\omega^{s \operatorname{ind}_{g}(-1)} \omega^{s \operatorname{ind}_{g}(a+1)} B(p-a-2, s)$
for $a=0,1,2, \ldots, p-2$.
Proof. (i) We have

$$
\begin{aligned}
\sum_{b=0}^{a-1} \omega^{s \operatorname{ind}_{g}(b!(a-1-b)!/ a!)} & =\omega^{-s \operatorname{ind}_{g} a} \sum_{b=0}^{a-1} \omega^{s \operatorname{ind}_{g}(b!(a-1-b)!/(a-1)!)} \\
& =\omega^{-s \operatorname{ind}_{g} a} \sum_{b=0}^{a-1} \omega^{-s \operatorname{ind}_{g}((a-1)!/(b!(a-1-b)!))} \\
& \left.=\omega^{-s \operatorname{ind}_{g} a} \sum_{b=0}^{a-1} \omega^{-s \operatorname{ind}_{g}\left(a_{b}-1\right.}\right) \\
& =\omega^{-s \operatorname{ind}_{g} a} B(a-1,-s)
\end{aligned}
$$

(ii) By Wilson's theorem (2.1), we have for $b=a+1, \ldots, p-1$,

$$
\begin{aligned}
\frac{b!(a+p-b)!}{a!} & \equiv \frac{(-1)^{b+1}}{(p-b-1)!} \cdot \frac{(-1)^{a+p-b+1}}{(b-a-1)!} \cdot \frac{(p-a-1)!}{(-1)^{a+1}} \\
& \equiv(p-a-1)\binom{p-a-2}{b-a-1}(\bmod p)
\end{aligned}
$$

as $1 \equiv(-1)^{p+1}(\bmod p)$. Thus we have

$$
\begin{aligned}
\sum_{b=a+1}^{p-1} \omega^{s \operatorname{ind}_{g}(b!(a+p-b)!/ a!)} & =\sum_{b=a+1}^{p-1} \omega^{s \operatorname{ind}_{g}((p-a-1)(p-a-2))} \\
& =\sum_{l=0}^{p-a-2} \omega^{s \operatorname{ind}_{g}\left((p-a-1)\left(p_{l}^{(-a-2}\right)\right)} \\
& =\omega^{s \operatorname{ind}_{g}(p-a-1)} \sum_{l=0}^{p-a-2} \omega^{s \operatorname{ind}_{g}\left(p^{p-a-2}\right)} \\
& =\omega^{s \operatorname{ind}_{g}(-a-1)} B(p-a-2, s) .
\end{aligned}
$$

The asserted result now follows as

$$
\omega^{s \operatorname{ind}_{g}(-a-1)}=\omega^{s \operatorname{ind}_{g}(-1)+s \operatorname{ind}_{g}(a+1)} .
$$

Remark. We adopt the convention that (i) holds when $a=0$ and (ii) holds when $a=p-1$ as $B(-1, \pm s)=0$.
3. Proof of the theorem. Let n be a fixed positive integer. Let

$$
\begin{equation*}
n=\sum_{j=0}^{k} a_{j} p^{j} \tag{3.1}
\end{equation*}
$$

be the p-ary representation of n so that k, a_{0}, \ldots, a_{k} are fixed integers satisfiying

$$
\begin{equation*}
k \geq 0, \quad 0 \leq a_{j} \leq p-1 \quad(j=0,1, \ldots, k), \quad a_{k} \neq 0 . \tag{3.2}
\end{equation*}
$$

Let r denote an arbitrary integer between 0 and n. We express r and $n-r$ in base p as follows:

$$
\begin{equation*}
r=\sum_{j=0}^{k} b_{j} p^{j}, \quad n-r=\sum_{j=0}^{k} c_{j} p^{j}, \tag{3.3}
\end{equation*}
$$

where each b_{j} and c_{j} is one of the integers $0,1, \ldots, p-1$. Let $c(n, r)$ denote the number of carries when r is added to $n-r$ in base p. Kazandzidis
[4, pp. 3-4] (see also Singmaster [6]) has shown that

$$
\begin{equation*}
\binom{n}{r} \equiv(-p)^{c(n, r)} \prod_{j=0}^{k} \frac{a_{j}!}{b_{j}!c_{j}!}\left(\bmod p^{c(n, r)+1}\right) \tag{3.4}
\end{equation*}
$$

If $c(n, r)=0$ then $b_{j}+c_{j}=a_{j}$ for $j=0,1, \ldots, k$. Conversely, if $b_{j}+c_{j}=$ a_{j} for $j=0,1, \ldots, k$, then $c(n, r)=0$. Hence, for $t=1,2, \ldots, p-1$, we have

$$
\begin{align*}
\binom{n}{r} & \equiv t(\bmod p) \tag{3.5}\\
& \Leftrightarrow b_{j}+c_{j}=a_{j}(j=0,1, \ldots, k) \text { and } \prod_{j=0}^{k} \frac{a_{j}!}{b_{j}!c_{j}!} \equiv t(\bmod p)
\end{align*}
$$

Thus

$$
N_{n}(t, p)=\sum_{\substack{r=0 \tag{3.6}\\
\left(\begin{array}{c}
n \\
r
\end{array}\right) \equiv t(\bmod p)}}^{n} 1=\sum_{\substack{b_{0}, c_{0}, \ldots, b_{k}, c_{k}=0 \\
b_{j}+c_{j}=a_{j}(j=0, \ldots, k) \\
\prod_{j=0}^{k} a_{j}!/\left(b_{j}!c_{j}!\right) \equiv t(\bmod p)}}^{p-1} 1 .
$$

Suppose now that $c(n, r)=1$. If the unique carry occurs in the j th place ($0 \leq j \leq k-1$), then, for $i=0,1, \ldots, k$, the pair (b_{i}, c_{i}) satisfies

$$
b_{i}+c_{i}= \begin{cases}a_{i} & \text { if } i \neq j, j+1 \tag{3.7}\\ a_{j}+p & \text { if } i=j \\ a_{j+1}-1 & \text { if } i=j+1\end{cases}
$$

Conversely, if each pair (b_{i}, c_{i}) satisfies (3.7) then $c(n, r)=1$, and the carry occurs in the j th place. By Kazandzidis' theorem (3.4) we have

$$
\begin{equation*}
\binom{n}{r} \equiv t p\left(\bmod p^{2}\right) \Leftrightarrow c(n, r)=1 \text { and } \prod_{l=0}^{k} \frac{a_{l}!}{b_{l}!c_{l}!} \equiv-t(\bmod p) . \tag{3.8}
\end{equation*}
$$

As

$$
N_{n}\left(t p, p^{2}\right)=\sum_{\substack{r=0 \\
\left(\begin{array}{c}
n \\
r
\end{array} \equiv t p\left(\bmod p^{2}\right)\right.}}^{n} 1,
$$

appealing to (3.8), we obtain

$$
N_{n}\left(t p, p^{2}\right)=\sum_{\substack{r=0 \\
c(n, r)=1 \\
\prod_{l=0}^{k} a_{l}!/\left(b_{l}!c_{l}!\right) \equiv-t(\bmod p)}}^{n} 1 \sum_{j=0}^{k-1} \sum_{\substack{r=0 \\
\prod_{\begin{subarray}{c}{c} }}^{k} \text { cary in th place }} \\
{\prod_{l=0} a_{l}!/\left(b_{l}!c_{l}!\right) \equiv-t(\bmod p)}\end{subarray}}^{n} 1 .
$$

Appealing to (3.1), (3.3) and (3.7), we deduce that
$N_{n}\left(t p, p^{2}\right)$

$$
=\sum_{j=0}^{k-1} \sum_{\substack{b_{j}, c_{j}, b_{j+1}, c_{j+1}=0 \\ b_{j}+c_{j}=a_{j}+p \\ b_{j+1}+c_{j+1}=a_{j+1}-1}}^{p-1} \sum_{\substack{b_{0}, c_{0}, \ldots, b_{j-1}, c_{j-1}, b_{j+2}, c_{j+2}, \ldots, b_{k}, c_{k}=0 \\ b_{l}+c_{l}=a_{l}(l \neq j, j+1)}}^{p a_{l}!/\left(b_{l}!c_{l}!\right) \equiv-t\left(b_{j}!c_{j}!b_{j+1}!c_{j+1}!\right) /\left(a_{j}!a_{j+1}!\right)(\bmod p)}<1,
$$

where the product is over $l=0, \ldots, j-1, j+2, \ldots, k$. Next, appealing to (3.6), we see that the inner sum is

$$
N_{n-a_{j} p^{j}-a_{j+1} p^{j+1}}\left(\frac{-t b_{j}!c_{j}!b_{j+1}!c_{j+1}!}{a_{j}!a_{j+1}!}, p\right),
$$

where the quotient is taken as an integer modulo p. Then

$$
\begin{aligned}
N_{n}\left(t p, p^{2}\right) & =\sum_{j=0}^{k-1} \sum_{\substack{b_{j}, c_{j}, b_{j+1}, c_{j+1}=0 \\
b_{j}+c_{j}=j_{j}+p \\
b_{j}+p}}^{p-1} N_{n-a_{j} p^{j}-a_{j+1} p^{j+1}}\left(\frac{-t b_{j}!c_{j}!b_{j+1}!c_{j+1}!}{a_{j}!a_{j+1}!}, p\right) \\
& =\sum_{j=0}^{k-1} \sum_{b_{j}=a_{j}+1}^{p-1} \sum_{b_{j+1}=0}^{p-1} K_{j+1}=a_{j+1},
\end{aligned}
$$

where

$$
K_{j}=N_{n-a_{j} p^{j}-a_{j+1} p^{j+1}}\left(\frac{-t b_{j}!\left(a_{j}+p-b_{j}\right)!b_{j+1}!\left(a_{j+1}-1-b_{j+1}\right)!}{a_{j}!a_{j+1}!}, p\right)
$$

The next step is to apply Hexel and Sachs' theorem (see (1.1)) to $n-a_{j} p^{j}-$ $a_{j+1} p^{j+1}$. The number of r 's in the p-ary representation of $n-a_{j} p^{j}-a_{j+1} p^{j+1}$ is $n_{r}-\delta\left(r-a_{j}\right)-\delta\left(r-a_{j+1}\right)$. Hence

$$
\begin{aligned}
K_{j}= & \frac{1}{p-1} \sum_{s=0}^{p-2} \omega^{\left.-s \operatorname{ind}_{g}\left(-t b_{j}!\left(a_{j}+p-b_{j}\right)!b_{j+1}!\left(a_{j+1}-1-b_{j+1}\right)!\right) /\left(a_{j}!a_{j+1}!\right)\right)} \\
& \times \prod_{r=1}^{p-1} B(r, s)^{n_{r}-\delta\left(r-a_{j}\right)-\delta\left(r-a_{j+1}\right)}
\end{aligned}
$$

Thus

$$
\begin{aligned}
N_{n}\left(t p, p^{2}\right)= & \frac{1}{p-1} \sum_{s=0}^{p-2} \omega^{-s \operatorname{ind}_{s}(-t)} \sum_{j=0}^{k-1}\left\{\sum_{b_{j}=a_{j}+1}^{p-1} \omega^{-s \operatorname{ind}_{g}\left(b_{j}!\left(a_{j}+p-b_{j}\right)!/ a_{j}!\right)}\right\} \\
& \times\left\{\sum_{b_{j+1}=0}^{a_{j+1}-1} \omega^{-s \operatorname{ind}_{g}\left(b_{j+1}!\left(a_{j+1}-1-b_{j+1}\right)!/ a_{j+1}!\right)}\right\} \\
& \times \prod_{r=1}^{p-1} B(r, s)^{n_{r}-\delta\left(r-a_{j}\right)-\delta\left(r-a_{j+1}\right)}
\end{aligned}
$$

Appealing to Lemma 2.1, we obtain
$N_{n}\left(t p, p^{2}\right)$

$$
\begin{aligned}
& =\frac{1}{p-1} \sum_{s=0}^{p-2} \omega^{-s \operatorname{ind}_{g}(-1)} \omega^{-s \text { ind }_{g} t} \\
& \quad \times \sum_{\substack{j=0 \\
a_{j} \leq p-2 \\
a_{j+1} \geq 1}}^{k-1}\left\{\omega^{-s \operatorname{ind}_{g}(-1)} \omega^{-s \text { ind }_{g}\left(a_{j}+1\right)} B\left(p-a_{j}-2,-s\right)\right\} \\
& \quad \times\left\{\omega^{s \operatorname{ind}_{g}\left(a_{j+1}\right)} B\left(a_{j+1}-1, s\right)\right\} \prod_{r=1}^{p-1} B(r, s)^{n_{r}-\delta\left(r-a_{j}\right)-\delta\left(r-a_{j+1}\right)} \\
& =\frac{1}{p-1} \sum_{s=0}^{p-2} \omega^{-s \operatorname{ind}_{g} t} \sum_{\substack{j=0 \\
a_{j} \leq p-2 \\
a_{j+1} \geq 1}}^{k-1} \omega^{s\left(\operatorname{ind}_{g} a_{j+1}-\operatorname{ind}_{g}\left(a_{j}+1\right)\right)}
\end{aligned}
$$

$$
\times B\left(p-a_{j}-2,-s\right) B\left(a_{j+1}-1, s\right) \prod_{r=1}^{p-1} B(r, s)^{n_{r}-\delta\left(r-a_{j}\right)-\delta\left(r-a_{j+1}\right)}
$$

$$
=\frac{1}{p-1} \sum_{s=0}^{p-2} \omega^{-s \operatorname{ind}_{g} t} \sum_{u=0}^{p-2} \sum_{v=1}^{p-1} \sum_{\substack{j=0 \\ d_{j}=u \\ a_{j}=1=v}}^{k-1} \omega^{s\left(\operatorname{ind}_{g} v-\text { ind }_{g}(u+1)\right)}
$$

$$
\times B(p-u-2,-s) B(v-1, s) \prod_{r=1}^{p-1} B(r, s)^{n_{r}-\delta(r-u)-\delta(r-v)}
$$

$$
=\frac{1}{p-1} \sum_{u=0}^{p-2} \sum_{v=1}^{p-1} n_{u v} \sum_{s=0}^{p-2} \omega^{-s\left(\text { ind }_{g} t+\operatorname{ind}_{g}(u+1)-\text { ind }_{g} v\right)}
$$

$$
\times B(p-2-u,-s) B(v-1, s) \prod_{r=1}^{p-1} B(r, s)^{n_{r}-\delta(r-u)-\delta(r-v)}
$$

4. Case $p=2$. Here $\omega=1$ and $g=1$. From (1.2) we obtain

$$
B(0, s)=1, \quad B(1, s)=2
$$

Taking $p=2$ and $t=1$ in the theorem, we deduce that

$$
N_{n}(2,4)=n_{01} B(0,0)^{2} B(1,0)^{n_{1}-1}=n_{01} 2^{n_{1}-1}
$$

This result is due to Davis and Webb [1, Theorem 7].
5. Case $p=3$. Here $\omega=-1$ and $g=2$. From (1.2) we have

$$
B(0, s)=1, \quad B(1, s)=2, \quad B(2, s)=2+(-1)^{s} .
$$

Taking $p=3$ and $t=1,2$ in the theorem, we obtain

$$
\begin{aligned}
N_{n}(3 t, 9)= & n_{01}\left(2^{n_{1}-1} 3^{n_{2}}-(-1)^{t} 2^{n_{1}-1}\right)+n_{02}\left(2^{n_{1}+1} 3^{n_{2}-1}+(-1)^{t} 2^{n_{1}+1}\right) \\
& +n_{11}\left(2^{n_{1}-3} 3^{n_{2}}+(-1)^{t} 2^{n_{1}-3}\right) \\
& +n_{12}\left(2^{n_{1}-1} 3^{n_{2}-1}-(-1)^{t} 2^{n_{1}-1}\right)
\end{aligned}
$$

This result is due to Huard, Spearman and Williams [3].
6. Concluding remarks. As

$$
\sum_{t=1}^{p-1} \omega^{-s \operatorname{ind}_{g} t}= \begin{cases}p-1 & \text { if } s=0 \\ 0 & \text { if } s \neq 0\end{cases}
$$

and

$$
B(r, 0)=r+1
$$

summing (1.1) and (1.3) over $t=1,2, \ldots, p-1$, we obtain

$$
n+1-N_{n}(0, p)=\sum_{t=1}^{p-1} N_{n}(t, p)=\prod_{r=1}^{p-1}(r+1)^{n_{r}}
$$

and

$$
\begin{aligned}
N_{n}(0, p)-N_{n}\left(0, p^{2}\right) & =\sum_{t=1}^{p-1} N_{n}\left(t p, p^{2}\right) \\
& =\sum_{i=0}^{p-2} \sum_{j=1}^{p-1} n_{i j}(p-1-i) j \prod_{r=1}^{p-1}(r+1)^{n_{r}-\delta(r-i)-\delta(r-j)}
\end{aligned}
$$

so that

$$
\begin{equation*}
N_{n}\left(0, p^{2}\right) \tag{6.1}
\end{equation*}
$$

$$
=n+1-\prod_{r=1}^{p-1}(r+1)^{n_{r}}-\sum_{i=0}^{p-2} \sum_{j=1}^{p-1} n_{i j}(p-1-i) j \prod_{r=1}^{p-1}(r+1)^{n_{r}-\sigma(r-i)-\delta(r-j)}
$$

We conclude this paper by observing that our theorem shows that $N_{n}\left(t p, p^{2}\right)(p \nmid t)$ depends only on $t, n_{i}(i=1,2, \ldots, p-1)$ and $n_{i j}(i=$ $0,1, \ldots, p-2 ; j=1,2, \ldots, p-1)$. This result should be compared to that of Webb [7, Theorem 3] for $N_{n}\left(t, p^{2}\right)(p \nmid t)$.

REFERENCES

[1] K. S. Davis and W. A. Webb, Pascal's triangle modulo 4, Fibonacci Quart. 29 (1991), 79-83.
[2] E. Hexel and H. Sachs, Counting residues modulo a prime in Pascal's triangle, Indian J. Math. 20 (1978), 91-105.
[3] J. G. Huard, B. K. Spearman and K. S. Williams, Pascal's triangle (mod 9), Acta Arith. 78 (1997), 331-349.
[4] G. S. Kazandzidis, Congruences on the binomial coefficients, Bull. Soc. Math. Grèce (N.S.) 9 (1968), 1-12.
[5] E. Lucas, Sur les congruences des nombres eulériens et des coefficients différentiels des fonctions trigonométriques, suivant un module premier, Bull. Soc. Math. France 6 (1877-8), 49-54.
[6] D. Singmaster, Notes on binomial coefficients I-a generalization of Lucas' congruence, J. London Math. Soc. (2) 8 (1974), 545-548.
[7] W. A. Webb, The number of binomial coefficients in residue classes modulo p and \boldsymbol{p}^{2}, Colloq. Math. 60/61 (1990), 275-280.

Department of Mathematics
Canisius College
Buffalo, New York 14208
U.S.A.

E-mail: huard@canisius.edu
Department of Mathematics and Statistics
Carleton University
Ottawa, Ontario
Canada K1S 5B6
E-mail: williams@math.carleton.ca

Received 27 June 1996;
revised 2 January 1997

[^0]: 1991 Mathematics Subject Classification: Primary 11A07.
 Key words and phrases: binomial coefficients.
 Research of the third author was supported by Natural Sciences and Engineering Research Council of Canada Grant A-7233.

