Pascal's triangle (mod 9)

by

JAMES G. HUARD (Buffalo, N.Y.), BLAIR K. SPEARMAN (Kelowna, B.C.) and KENNETH S. WILLIAMS (Ottawa, Ont.)

1. Introduction. Let n denote a nonnegative integer. The nth row of Pascal's triangle consists of the n + 1 binomial coefficients

 $\begin{pmatrix} n \\ 0 \end{pmatrix} \begin{pmatrix} n \\ 1 \end{pmatrix} \begin{pmatrix} n \\ 2 \end{pmatrix} \cdots \begin{pmatrix} n \\ n \end{pmatrix}$.

We denote by $N_n(t, m)$ the number of binomial coefficients in the *n*th row of Pascal's triangle which are congruent to t modulo m, where t and m are integers with $m \ge 2$. Explicit formulae for $N_n(t,m)$ for certain values of t and m have been given by a number of authors, for example m = 2 (Glaisher [3]), m = 3 (Hexel and Sachs [5]), m = 4 (Davis and Webb [2], Granville [4]), m = 5 (Hexel and Sachs [5]), m = 8 (Granville [4], Huard, Spearman and Williams [6]), and m = p (prime) (Hexel and Sachs [5], Webb [10]).

In this paper we treat the case m = 9. We determine explicit formulae for $N_n(t,9)$ for t = 0, 1, 2, ..., 8; see the Theorem in Section 2.

We use throughout the 3-ary representation of n, namely,

(1.1)
$$n = a_0 + a_1 3 + a_2 3^2 + \ldots + a_l 3^l = a_0 a_1 a_2 \ldots a_l,$$

where $l \ge 0$, each $a_i = 0, 1$ or 2, and $a_l = 1$ or 2 unless n = 0 in which case l = 0 and $a_0 = 0$. We denote by r an arbitrary integer between 0 and n inclusive, and we suppose that the 3-ary representation of r is (with additional zeros at the right hand end if necessary) $r = b_0 b_1 \dots b_l$. From a theorem of Kummer [8, Lehrsatz, pp. 115–116] (proved in 1852), we can

¹⁹⁹¹ Mathematics Subject Classification: Primary 11A07.

Key words and phrases: binomial coefficients.

Research of the third author was supported by Natural Sciences and Engineering Research Council of Canada Grant A-7233.

deduce the exact power of 3 dividing $\binom{n}{r}$, namely,

(1.2)
$$3^{c(n,r)} \parallel \binom{n}{r},$$

where c(n,r) is the number of carries when adding the 3-ary representations of r and n-r in base 3. A special case of a theorem of Lucas [9, p. 52] (proved in 1878) gives the residue of $\binom{n}{r}$ modulo 3, namely,

(1.3)
$$\binom{n}{r} \equiv \binom{a_0}{b_0} \binom{a_1}{b_1} \dots \binom{a_l}{b_l} \pmod{3},$$

with the usual interpretation that $\binom{a_i}{b_i} = 0$ if $b_i > a_i$. If $3 \nmid \binom{n}{r}$ (equivalently c(n,r) = 0) the residue of $\binom{n}{r}$ modulo 9 follows from a theorem of Granville [4, Proposition 2, p. 326] (proved in 1992), namely, if $3 \nmid \binom{n}{r}$ and $l \ge 1$ then

(1.4)
$$\binom{n}{r} \equiv \frac{\binom{a_0 + 3a_1}{b_0 + 3b_1} \binom{a_1 + 3a_2}{b_1 + 3b_2} \cdots \binom{a_{l-1} + 3a_l}{b_{l-1} + 3b_l}}{\binom{a_1}{b_1} \cdots \binom{a_{l-1}}{b_{l-1}}} \pmod{9},$$

with the convention that when l = 1 the denominator is the empty product = 1. Further, if $3 \| \binom{n}{r}$ (equivalently c(n, r) = 1), then a theorem of Kazandzidis [7] gives the residue of $\binom{n}{r}$ modulo 9, namely,

(1.5)
$$\binom{n}{r} \equiv -3 \frac{a_0! a_1! \dots a_l!}{b_0! b_1! \dots b_l! c_0! c_1! \dots c_l!} \pmod{9},$$

where $c_0c_1...c_l$ is the 3-ary representation of n-r. Both (1.4) and (1.5) also follow from an extension of Lucas' theorem given by Davis and Webb [1].

We conclude this introduction by giving the following formulae of Hexel and Sachs [5]: if n_1 denotes the number of 1's and n_2 the number of 2's in the string $a_0a_1 \ldots a_l$ then

$$N_n(0,3) = n + 1 - 2^{n_1} 3^{n_2},$$

$$N_n(1,3) = \frac{1}{2} (2^{n_1} 3^{n_2} + 2^{n_1}),$$

$$N_n(2,3) = \frac{1}{2} (2^{n_1} 3^{n_2} - 2^{n_1}).$$

2. Statement of results. If S is a string of 0's, 1's and 2's, we denote by $n_S = n_S(\mathbf{a})$ the number of occurrences of S in the string $\mathbf{a} = a_0 a_1 \dots a_l$. Thus, for example, if $a_0 a_1 \dots a_l = 01112010012$ then $n_{11} = 2$, $n_{12} = 2$, $n_{001} = 1$, and $n_{121} = 0$. Making use of the results (1.2)-(1.5), we prove

the following theorem in Sections 4 and 5. We note that for a nonnegative integer m,

$$0^m = \begin{cases} 1 & \text{if } m = 0, \\ 0 & \text{if } m > 0. \end{cases}$$

THEOREM.

$$N_n(0,9) = n + 1 - 2^{n_1} 3^{n_2} - n_{01} 2^{n_1} 3^{n_2} - n_{02} 2^{n_1+2} 3^{n_2-1} - n_{11} 2^{n_1-2} 3^{n_2} - n_{12} 2^{n_1} 3^{n_2-1}.$$

For t = 3, 6,

$$N_n(t,9) = n_{01}2^{n_1-1}(3^{n_2} - (-1)^t) + n_{02}2^{n_1+1}(3^{n_2-1} + (-1)^t) + n_{11}2^{n_1-3}(3^{n_2} + (-1)^t) + n_{12}2^{n_1-1}(3^{n_2-1} - (-1)^t).$$

For t = 1, 2, 4, 5, 7, 8,

$$N_{n}(t,9) = \frac{1}{6} \{ 2^{n_{1}} 3^{n_{2}} + (-1)^{\operatorname{ind}_{2} t} 2^{n_{1}} + (-1)^{\operatorname{ind}_{2} t + n_{11} + n_{122}} 2^{n_{1} - n_{11} + n_{122} + 1} \operatorname{Re}(X) + 0^{n_{122}} (-1)^{n_{11}} 2^{n_{1} - n_{11} + 1} 3^{n_{22} - n_{122}} \operatorname{Re}(Y) \},$$

where $\operatorname{ind}_2 t$ denotes the unique integer j such that $t \equiv 2^j \pmod{9}, 0 \leq j \leq 5$,

$$\begin{split} X &= \beta^{\operatorname{ind}_2 t - n_{11} - n_{12} + n_{121} - n_{122}} (2 - \beta)^{n_{21} - n_{121}} \\ &\times (3 + \beta)^{n_2 - n_{12} - n_{21} - n_{22} + n_{121} + n_{122}}, \\ Y &= \beta^{-\operatorname{ind}_2 t + n_{11}} (1 - \beta)^{n_{21} - n_{121}} (2 + \beta)^{n_2 - n_{21} - n_{22}} (1 + 2\beta)^{n_{121}}, \end{split}$$

and $\beta = \exp(2\pi i/3)$.

For n = 0, 1, ..., 8 Table 1 gives the values of the expressions involving $n, n_1, n_2, n_{01}, n_{02}, n_{11}, n_{12}, n_{21}, n_{22}, n_{121}, n_{122}$ occurring on the right hand sides of the formulae for $N_n(t, 9)$ given in the Theorem. Clearly $n_{121} = n_{122} = 0$ for n = 0, 1, ..., 8.

Table 1

											-			side for a				
n	n in base 3	n_1	n_2	n_{01}	n_{02}	n_{11}	n_{12}	n_{21}	n_{22}	0	1	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
1	1	1	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0
2	2	0	1	0	0	0	0	0	0	0	2	1	0	0	0	0	0	0
3	01	1	0	1	0	0	0	0	0	0	2	0	2	0	0	0	0	0
4	11	2	0	0	0	1	0	0	0	0	2	0	0	2	0	1	0	0
5	21	1	1	0	0	0	0	1	0	0	4	0	0	0	2	0	0	0
6	02	0	1	0	1	0	0	0	0	0	2	1	0	0	0	4	0	0
7	12	1	1	0	0	0	1	0	0	0	2	0	2	0	0	0	2	2
8	22	0	2	0	_ 0	0	0	0	1	0	4	2	0	0	0	0	1	2

The first nine rows of Pascal's triangle (mod 9) are

From this triangle we deduce easily the values of $N_n(t, 9)$ for $n = 0, 1, \ldots, 8$ and $t = 0, 1, \ldots, 8$. These values are in agreement with those in Table 1 so the Theorem holds for $n = 0, 1, \ldots, 8$. Thus in the proof of the Theorem in Sections 4 and 5, we may suppose that $n \ge 9$, so that $l \ge 2$.

In the next section we evaluate a sum which will be used in the determination of $N_n(t,9)$ $(3 \nmid t)$ in Section 4.

3. Evaluation of the sum $S(\mathbf{c}; \alpha)$. Let k be a positive integer. Let $\mathbf{c} = c_0c_1 \dots c_k$ be a string of length $k + 1 \ (\geq 2)$ with each $c_i = 0, 1, 2$. Let $\mathbf{d} = d_0d_1 \dots d_k$ be a string of length k + 1 with each $d_i = 0, 1, 2$ and $d_i \leq c_i$. As $0 \leq d_i \leq c_i \leq 2$ $(i = 0, 1, \dots, k)$ we have

$$\begin{pmatrix} c_i \\ d_i \end{pmatrix}
ot \equiv 0 \pmod{3} \quad (i = 0, \dots, k)$$

and by Lucas' theorem (see (1.3))

$$\begin{pmatrix} c_{i-1} + 3c_i \\ d_{i-1} + 3d_i \end{pmatrix} \equiv \begin{pmatrix} c_{i-1} \\ d_{i-1} \end{pmatrix} \begin{pmatrix} c_i \\ d_i \end{pmatrix} \not\equiv 0 \pmod{3} \quad (i = 1, \dots, k)$$

so that

$$\frac{\binom{c_0+3c_1}{d_0+3d_1}\binom{c_1+3c_2}{d_1+3d_2}\cdots\binom{c_{k-1}+3c_k}{d_{k-1}+3d_k}}{\binom{c_1}{d_1}\cdots\binom{c_{k-1}}{d_{k-1}}} \not\equiv 0 \pmod{3},$$

where the denominator is understood to be the empty product (= 1) when k = 1.

Thus we can define e(c, d) = 1, 2, 4, 5, 7, 8 by

(3.1)
$$e(\mathbf{c}, \mathbf{d}) \equiv \frac{\begin{pmatrix} c_0 + 3c_1 \\ d_0 + 3d_1 \end{pmatrix} \begin{pmatrix} c_1 + 3c_2 \\ d_1 + 3d_2 \end{pmatrix} \cdots \begin{pmatrix} c_{k-1} + 3c_k \\ d_{k-1} + 3d_k \end{pmatrix}}{\begin{pmatrix} c_1 \\ d_1 \end{pmatrix} \cdots \begin{pmatrix} c_{k-1} \\ d_{k-1} \end{pmatrix}} \pmod{9}.$$

We set

$$i(\mathbf{c}, \mathbf{d}) = 0, 1, 2, 3, 4, 5$$
 according as $e(\mathbf{c}, \mathbf{d}) = 1, 2, 4, 8, 7, 5,$

so that

(3.2)
$$i(\mathbf{c}, \mathbf{d}) = \operatorname{ind}_2(e(\mathbf{c}, \mathbf{d})).$$

Then, for any sixth root of unity α , we define the sum $S(\mathbf{c}; \alpha)$ by

(3.3)
$$S(\mathbf{c};\alpha) = \sum_{d_0=0}^{c_0} \dots \sum_{d_k=0}^{c_k} \alpha^{i(\mathbf{c},\mathbf{d})}.$$

The objective of this section is to evaluate the sum $S(\mathbf{c}; \alpha)$ explicitly. This evaluation will be used in Section 4 to determine $N_n(t, 9)$ for $3 \nmid t$.

We denote by \mathbf{c}' the substring of $\mathbf{c} = c_0 c_1 \dots c_k$ formed by removing the first term, that is, $\mathbf{c}' = c_1 \dots c_k$. Our first lemma relates $i(\mathbf{c}, \mathbf{d})$ and $i(\mathbf{c}', \mathbf{d}')$ modulo 6.

LEMMA 1. For $k \geq 2$ we have

$$i(\mathbf{c}, \mathbf{d}) \equiv \operatorname{ind}_2 \left\{ rac{\begin{pmatrix} c_0 + 3c_1 \\ d_0 + 3d_1 \end{pmatrix}}{\begin{pmatrix} c_1 \\ d_1 \end{pmatrix}}
ight\} + i(\mathbf{c}', \mathbf{d}') \pmod{6}.$$

Proof. From (3.1) we have

$$e(\mathbf{c}, \mathbf{d}) \equiv \frac{\begin{pmatrix} c_0 + 3c_1 \\ d_0 + 3d_1 \end{pmatrix}}{\begin{pmatrix} c_1 \\ d_1 \end{pmatrix}} e(\mathbf{c}', \mathbf{d}') \pmod{9}.$$

Thus

$$\begin{split} i(\mathbf{c}, \mathbf{d}) &= \operatorname{ind}_2(e(\mathbf{c}, \mathbf{d})) \\ &= \operatorname{ind}_2 \left(\frac{\begin{pmatrix} c_0 + 3c_1 \\ d_0 + 3d_1 \end{pmatrix}}{\begin{pmatrix} c_1 \\ d_1 \end{pmatrix}} e(\mathbf{c}', \mathbf{d}') \right) \\ &\equiv \operatorname{ind}_2 \left\{ \frac{\begin{pmatrix} c_0 + 3c_1 \\ d_0 + 3d_1 \end{pmatrix}}{\begin{pmatrix} c_1 \\ d_1 \end{pmatrix}} \right\} + \operatorname{ind}_2(e(\mathbf{c}', \mathbf{d}')) \pmod{6} \end{split}$$

$$\equiv \operatorname{ind}_{2}\left\{\frac{\begin{pmatrix}c_{0}+3c_{1}\\d_{0}+3d_{1}\end{pmatrix}}{\begin{pmatrix}c_{1}\\d_{1}\end{pmatrix}}\right\}+i(\mathbf{c}',\mathbf{d}') \pmod{6}. \bullet$$

Our second lemma gives a relationship between $S(\mathbf{c}; \alpha)$ and $S(\mathbf{c}'; \alpha)$ if $c_0c_1 \neq 12$ and between $S(\mathbf{c}; \alpha)$ and $S(\mathbf{c}''; \alpha)$ if $c_0c_1 = 12$, where $\mathbf{c}'' = (\mathbf{c}')' = c_2 \dots c_k$.

LEMMA 2. For $k \geq 2$, we have $S(\mathbf{c}; \alpha) = f(c_0c_1; \alpha)S(\mathbf{c}'; \alpha)$, where

(3.4)
$$f(c_0c_1;\alpha) = \begin{cases} 1 & \text{if } c_0 = 0, \\ 2 & \text{if } c_0c_1 = 10, \\ 1 + \alpha^2 & \text{if } c_0c_1 = 11, \\ 2 + \alpha & \text{if } c_0c_1 = 20, \\ 2 + \alpha^5 & \text{if } c_0c_1 = 21, \\ 2 + \alpha^3 & \text{if } c_0c_1 = 22. \end{cases}$$

For $k \geq 3$, we have $S(\mathbf{c}; \alpha) = g(c_0c_1c_2; \alpha)S(\mathbf{c}''; \alpha)$, where

(3.5)
$$g(c_0c_1c_2;\alpha) = \begin{cases} 2(1+\alpha^3+\alpha^4) & \text{if } c_0c_1c_2 = 120, \\ 2(1+\alpha+\alpha^4) & \text{if } c_0c_1c_2 = 121, \\ 2(1+\alpha^4+\alpha^5) & \text{if } c_0c_1c_2 = 122. \end{cases}$$

Proof. For $k \geq 2$ and any integer d_0 satisfying $0 \leq d_0 \leq c_0$, we define

(3.6)
$$F(d_0,\mathbf{c};\alpha) = \sum_{d_1=0}^{c_1} \dots \sum_{d_k=0}^{c_k} \alpha^{i(\mathbf{c},\mathbf{d})}.$$

Then

$$\sum_{d_0=0}^{c_0} F(d_0, \mathbf{c}; \alpha) = \sum_{d_0=0}^{c_0} \sum_{d_1=0}^{c_1} \cdots \sum_{d_k=0}^{c_k} \alpha^{i(\mathbf{c}, \mathbf{d})},$$

so that

(3.7)
$$S(\mathbf{c};\alpha) = \sum_{d_0=0}^{c_0} F(d_0,\mathbf{c};\alpha).$$

Also for $k \ge 2$ we have, by (3.6) and Lemma 1,

$$F(d_0, \mathbf{c}; \alpha) = \sum_{d_1=0}^{c_1} \dots \sum_{d_k=0}^{c_k} \alpha^{\operatorname{ind}_2\{\binom{c_0+3c_1}{d_0+3d_1}/\binom{c_1}{d_1}\}+i(\mathbf{c}', \mathbf{d}')}$$
$$= \sum_{d_1=0}^{c_1} \alpha^{\operatorname{ind}_2\{\binom{c_0+3c_1}{d_0+3d_1}/\binom{c_1}{d_1}\}} \sum_{d_2=0}^{c_2} \dots \sum_{d_k=0}^{c_k} \alpha^{i(\mathbf{c}', \mathbf{d}')},$$

that is,

(3.8)
$$F(d_0, \mathbf{c}; \alpha) = \sum_{d_1=0}^{c_1} \alpha^{\operatorname{ind}_2\{\binom{c_0+3c_1}{d_0+3d_1}/\binom{c_1}{d_1}\}} F(d_1, \mathbf{c}'; \alpha).$$

Next we define the $(c_0 + 1) \times 1$ matrix $A(\mathbf{c}; \alpha)$ by

(3.9)
$$A(\mathbf{c};\alpha) = \begin{bmatrix} F(0,\mathbf{c};\alpha) \\ \vdots \\ F(c_0,\mathbf{c};\alpha) \end{bmatrix}.$$

Then, from (3.8), we deduce that for $k \ge 2$,

(3.10)
$$A(\mathbf{c};\alpha) = M(c_0c_1;\alpha)A(\mathbf{c}';\alpha),$$

where $M(c_0c_1; \alpha)$ is the $(c_0+1) \times (c_1+1)$ matrix whose entry in the (i, j) place $(i = 0, 1, \ldots, c_0; j = 0, 1, \ldots, c_1)$ is

$$\alpha^{\operatorname{ind}_{2}\left\{\binom{c_{0}+3c_{1}}{i+3j}/\binom{c_{1}}{j}\right\}}$$

Thus

$$\begin{split} M(00;\alpha) &= [1], \qquad M(01;\alpha) = [1 \quad 1], \\ M(10;\alpha) &= \begin{bmatrix} 1\\1 \end{bmatrix}, \qquad M(11;\alpha) = \begin{bmatrix} 1 & \alpha^2\\\alpha^2 & 1 \end{bmatrix}, \\ M(20;\alpha) &= \begin{bmatrix} 1\\\alpha\\1 \end{bmatrix}, \qquad M(21;\alpha) = \begin{bmatrix} 1 & 1\\\alpha^5 & \alpha^5\\1 & 1 \end{bmatrix}, \\ M(02;\alpha) &= [1 \quad 1 \quad 1], \\ M(12;\alpha) &= \begin{bmatrix} 1 & \alpha^2 & \alpha^4\\\alpha^4 & \alpha^2 & 1 \end{bmatrix}, \\ M(22;\alpha) &= \begin{bmatrix} 1 & 1 & 1\\\alpha^3 & \alpha^3 & \alpha^3\\1 & 1 & 1 \end{bmatrix}. \end{split}$$

If $c_0c_1 \neq 12$ then the $c_1 + 1$ columns of the matrix $M(c_0c_1; \alpha)$ all have the same sum. Hence summing the rows in (3.9), and appealing to (3.7) and (3.10), we obtain

$$S(\mathbf{c};\alpha) = f(c_0c_1;\alpha)S(\mathbf{c}';\alpha),$$

where

$$f(c_0c_1;\alpha) = \begin{cases} 1 & \text{if } c_0c_1 = 00, \\ 2 & \text{if } c_0c_1 = 10, \\ 2 + \alpha & \text{if } c_0c_1 = 20, \\ 1 & \text{if } c_0c_1 = 01, \\ 1 + \alpha^2 & \text{if } c_0c_1 = 11, \\ 2 + \alpha^5 & \text{if } c_0c_1 = 21, \\ 1 & \text{if } c_0c_1 = 02, \\ 2 + \alpha^3 & \text{if } c_0c_1 = 22. \end{cases}$$

Now suppose that $c_0c_1 = 12$ and $k \ge 3$. By (3.10) we have

(3.11)
$$A(\mathbf{c};\alpha) = M(c_0c_1;\alpha)M(c_1c_2;\alpha)A(\mathbf{c}'',\alpha),$$

where $\mathbf{c}'' = (\mathbf{c}')' = c_2 \dots c_l$. Now

$$\begin{split} M(12;\alpha)M(20;\alpha) &= \begin{bmatrix} 1 & \alpha^2 & \alpha^4 \\ \alpha^4 & \alpha^2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ \alpha \\ 1 \end{bmatrix} = \begin{bmatrix} 1+\alpha^3+\alpha^4 \\ 1+\alpha^3+\alpha^4 \end{bmatrix}, \\ M(12;\alpha)M(21;\alpha) &= \begin{bmatrix} 1 & \alpha^2 & \alpha^4 \\ \alpha^4 & \alpha^2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ \alpha^5 & \alpha^5 \\ 1 & 1 \end{bmatrix} \\ &= \begin{bmatrix} 1+\alpha+\alpha^4 & 1+\alpha+\alpha^4 \\ 1+\alpha+\alpha^4 & 1+\alpha+\alpha^4 \end{bmatrix}, \end{split}$$

 and

$$\begin{split} M(12;\alpha)M(22;\alpha) &= \begin{bmatrix} 1 & \alpha^2 & \alpha^4 \\ \alpha^4 & \alpha^2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ \alpha^3 & \alpha^3 & \alpha^3 \\ 1 & 1 & 1 \end{bmatrix} \\ &= \begin{bmatrix} 1+\alpha^4+\alpha^5 & 1+\alpha^4+\alpha^5 & 1+\alpha^4+\alpha^5 \\ \\ 1+\alpha^4+\alpha^5 & 1+\alpha^4+\alpha^5 & 1+\alpha^4+\alpha^5 \end{bmatrix}. \end{split}$$

For each of these products, the column sums are the same. Hence summing the rows in (3.11), we obtain

$$S(\mathbf{c};\alpha) = g(c_0c_1c_2;\alpha)S(\mathbf{c}'';\alpha),$$

where

$$g(c_0c_1c_2;\alpha) = \begin{cases} 2(1+\alpha^3+\alpha^4) & \text{if } c_0c_1c_2 = 120, \\ 2(1+\alpha+\alpha^4) & \text{if } c_0c_1c_2 = 121, \\ 2(1+\alpha^4+\alpha^5) & \text{if } c_0c_1c_2 = 122. \end{cases}$$

We are now ready to use Lemma 2 to evaluate $S(\mathbf{c}; \alpha)$.

PROPOSITION. Let $\mathbf{c} = c_0 c_1 \dots c_k$ be a string of length $k + 1 \ge 2$ with each $c_i = 0, 1$ or 2. Denote by n_S the number of occurrences of the string S in \mathbf{c} . Let α be a sixth root of unity. Then

(3.12)
$$S(\mathbf{c};\alpha) = 2^{n_1 - n_{11}} (1 + \alpha^2)^{n_{11}} (2 + \alpha)^{n_2 - n_{12} - n_{22} + n_{121} + n_{122}} \times (2 + \alpha^5)^{n_{21} - n_{121}} (2 + \alpha^3)^{n_{22} - n_{122}} \times (1 + \alpha^3 + \alpha^4)^{n_{12} - n_{121} - n_{122}} (1 + \alpha + \alpha^4)^{n_{121}} \times (1 + \alpha^4 + \alpha^5)^{n_{122}}.$$

Proof. The proof of (3.12) is by induction on $k \ge 1$. When k = 1 we have

$$S(\mathbf{c};\alpha) = S(c_0c_1;\alpha) = \sum_{d_0=0}^{c_0} \sum_{d_1=0}^{c_1} \alpha^{\operatorname{ind}_2\binom{c_0+3c_1}{d_0+3d_1}}.$$

The values of this sum for $c_0c_1 = 00, 01, \ldots, 22$ are given in Table 2. The values of the expression on the right hand side of (3.12) when k = 1 are given in Table 3. These two tables show that the Proposition is true for k = 1.

	Table 2
$\overline{c_0c_1}$	$S(c_0c_1; lpha)$
00	1
01	2
02	2 + lpha
10	2
11	$2(1+lpha^2)$
12	$2(1+\alpha^3+\alpha^4)$
20	2 + lpha
21	$2(2+lpha^5)$
22	$(2+lpha)(2+lpha^3)$

Table	3
-------	---

c_0c_1	n_1^-	n_2	n_{11}	$\overline{n_{12}}$	n_{21}	$\overline{n_{22}}$	$\bar{n_{121}}$	n_{122}	Right side of (3.12)
00	0	0	0	0	0	0		0	1
01	1	0	0	0	0	0	0	0	2
02	0	1	0	0	0	0 ·	0	0	2 + lpha
10	1	0	0	0	0	0	0	0	2
11	2	0	1	0	0	0	0	0	$2(1+lpha^2)$
12	1	1	0	1	0	0	0	0	$2(1+lpha^3+lpha^4)$
20	0	1	0	0	0	0	0	0	2+lpha
21	1	1	0	0	1	0	0	0	$2(2+lpha^5)$
22	0	2	0	0	0	1	0	0	$(2+lpha)(2+lpha^3)$

When k = 2 we have

$$S(\mathbf{c};\alpha) = S(c_0c_1c_2;\alpha) = \sum_{d_0=0}^{c_0} \sum_{d_1=0}^{c_1} \sum_{d_2=0}^{c_2} \alpha^{\operatorname{ind}_2} \left\{ \frac{\binom{c_0+3c_1}{d_0+3d_1}\binom{c_1+3c_2}{d_1+3d_2}}{\binom{c_1}{d_1}} \right\}$$

Taking $c_0c_1c_2 = 000, 001, \ldots, 222$, and working out the sum in each case, we obtain the values of $S(c_0c_1c_2; \alpha)$ given in Table 4. The values of the expression on the right side of (3.12) when k = 2 are given in Table 5. Thus the Proposition is true for k = 2.

$c_0c_1c_2$	$\overline{S(c_0c_1c_2;\alpha)}$	$c_0 c_1 c_2$	$S(c_0c_1c_2; \alpha)$
000	1	112	$\overline{2(1+\alpha^2)(1+\alpha^3+\alpha^4)}$
001	2	120	$2(1+lpha^3+lpha^4)$
002	2 + lpha	121	$2^2(1+lpha+lpha^4)$
010	2	122	$2(2+\alpha)(1+\alpha^4+\alpha^5)$
011	$2(1+\alpha^2)$	200	2 + lpha
012	$2(1+lpha^3+lpha^4)$	201	2(2+lpha)
020	2 + lpha	202	$(2+lpha)^2$
021	$2(2+lpha^5)$	210	$2(2+lpha^5)$
022	$(2+lpha)(2+lpha^3)$	211	$2(2+lpha^5)(1+lpha^2)$
100	2	212	$2(2+\alpha^5)(1+\alpha^3+\alpha^4)$
101	2^2	220	$(2+lpha)(2+lpha^3)$
102	2(2+lpha)	221	$2(2+lpha^3)(2+lpha^5)$
110	$2(1+lpha^2)$	222	$(2+lpha)(2+lpha^3)^2$
111	$2(1 + \alpha^2)^2$		

Table 4

Table 5

$c_0c_1c_2$	n_1	n_2	n ₁₁	n_{12}	n_{21}	n_{22}	n_{121}	n_{122}	Right side of (3.12)
000	0	0	0	0	0	0	0	0	1
001	1	0	0	0	0	0	0	0	2
002	0	1	0	0	0	0	0	0	2 + lpha
010	1	0	0	0	0	0	0	0	2
011	2	0	1	0	0	0	0	0	$2(1+lpha^2)$
012	1	1	0	1	0	0	0	0	$2(1+lpha^3+lpha^4)$
020	0	1	0	0	0	0	0	0	2 + lpha
021	1	1	0	0	1	0	0	0	$2(2+lpha^5)$
022	0	2	0	0	0	1	0	0	$(2+lpha)(2+lpha^3)$
100	1	0	0	0	0	0	0	0	2
101	2	0	0	0	0	0	0	0	2^2
102	1	1	0	0	0	0	0	0	$2(2+\alpha)$

$c_0 c_1 c_2$	n_1	n_2	n_{11}	n_{12}	n_{21}	n_{22}	n_{121}	n_{122}	Right side of (3.12)
110	2	0.	1	0	0	0	0	0	$-\frac{1}{2(1+\alpha^2)}$
111	3	0	2	0	0	0	0	0	$2(1+lpha^2)^2$
112	2	1	1	1	0	0	0	0	$2(1+lpha^2)(1+lpha^3+lpha^4)$
120	1	1	0	1	0	0	0	0	$2(1+lpha^3+lpha^4)$
121 ·	2	1	0	1	1	0	1	0	$2^2(1+lpha+lpha^4)$
122	1	2	0	1	0	1	0	1	$2(2+lpha)(1+lpha^4+lpha^5)$
200	0	1	0	0	0	0	0	0	2+lpha
201	1	1	0	0	0	0	0	0	2(2+lpha)
202	0	2	0	0	0	0	0	0	$(2+lpha)^2$
210	1	1	0	0	1	0	0	0	$2(2+lpha^5)$
211	2	1	1	0	1	0	0	0	$2(1+lpha^2)(2+lpha^5)$
212	1	2	0	1	1	0	0	0	$2(2+\alpha^5)(1+\alpha^3+\alpha^4$
220	0	2	0	0	0	1	0	0	$(2+lpha)(2+lpha^3)$
221	1	2	0	0	1	1	0	0	$2(2+lpha^3)(2+lpha^5)$
222	0	3	0	0	0	2	0	0	$(2+lpha)(2+lpha^3)^2$

Table 5 (cont.)

We now make the inductive hypothesis (IH) that the Proposition is true for all strings of lengths $2, 3, \ldots, k$, where $k \geq 3$. We consider the string $\mathbf{c} = c_0 c_1 \ldots c_k$ of length k + 1. We set

$$\mathcal{B} = \{1, 2, 11, 12, 21, 22, 121, 122\},\$$

and, for $B \in \mathcal{B}$, $n_B = n_B(\mathbf{c})$, $n'_B = n_B(\mathbf{c}')$, $n''_B = n_B(\mathbf{c}'')$. Recall that if $\mathbf{c} = c_0 c_1 \dots c_k$ then $\mathbf{c}' = c_1 \dots c_k$ and $\mathbf{c}'' = (\mathbf{c}')'$. The information needed for the inductive step is provided in Table 6.

			Table 6	
	c ₀ c ₁	$n_B = n'_B$	$\overline{n_B = n_B' + 1}$	$S(\mathbf{c}; \alpha) / S(\mathbf{c}'; \alpha)$
·	00	all B		1
	01	all B		1
	02	all B		1
	10	all $B \neq 1$	1	2
	11	all $B \neq 1, 11$	1, 11	$1 + \alpha^2$
	20	all $B \neq 2$	2	2 + lpha
	21	all $B \neq 2,21$	2, 21	$2 + lpha^5$
	22	all $B \neq 2, 22$	2, 22	$2 + \alpha^3$
$0c_1c_2$		$n_B = n_B^{\prime\prime}$	$n_B = n_B'' +$	
120	11,	21, 22, 121, 122	1, 2, 12	$2(1 + \alpha^3 + \alpha^3 + \alpha^3)$
121		11, 22, 122	1, 2, 12, 21, 1	$121 2(1+\alpha + \alpha)$
122		11,21,121	1, 2, 12, 22, 1	122 $2(1 + \alpha^4)$

We just do the case $c_0c_1c_2 = 120$ in detail. We have

$$\begin{split} S(\mathbf{c};\alpha) &= 2(1+\alpha^3+\alpha^4)S(\mathbf{c}'';\alpha) \qquad \text{(by Lemma 2)} \\ &= 2(1+\alpha^3+\alpha^4)2^{n_1''-n_{11}''}(1+\alpha^2)^{n_{11}''} \\ &\times (2+\alpha)^{n_2''-n_{12}''-n_{22}''+n_{121}''+n_{122}''} \\ &\times (2+\alpha^5)^{n_{21}''-n_{121}''}(2+\alpha^3)^{n_{22}''-n_{122}''} \\ &\times (1+\alpha^3+\alpha^4)^{n_{12}''-n_{121}''-n_{122}''}(1+\alpha+\alpha^4)^{n_{121}''} \\ &\times (1+\alpha^4+\alpha^5)^{n_{122}''} \qquad \text{(by (IH))} \\ &= 2^{n_1-n_{11}}(1+\alpha^2)^{n_{11}}(2+\alpha)^{n_2-n_{12}-n_{21}-n_{22}+n_{121}+n_{122}} \\ &\times (2+\alpha^5)^{n_{21}-n_{121}}(2+\alpha^3)^{n_{22}-n_{122}} \\ &\times (1+\alpha^3+\alpha^4)^{n_{12}-n_{121}-n_{122}}(1+\alpha+\alpha^4)^{n_{121}}(1+\alpha^4+\alpha^5)^{n_{122}}, \end{split}$$

from Table 6. This completes the inductive step and the Proposition follows by the principle of mathematical induction. \blacksquare

4. Evaluation of $N_n(t,9)$ $(3 \nmid t)$. Let *n* be an integer with $n \geq 9$. Let $a_0a_1 \ldots a_l$ be the 3-ary representation of *n* so that $l \geq 2$. In this section n_1, n_2, n_{11}, \ldots refer to the string $a_0a_1 \ldots a_l$. Set $\omega = e^{2\pi i/6}$ and $\beta = \omega^2 = e^{2\pi i/3}$. We note that $\omega = -\beta^2$. For t = 1, 2, 4, 5, 7, 8 we have

$$N_{n}(t,9) = \sum_{\substack{r=0\\(r_{r})\equiv t \pmod{9}}}^{n} 1 = \sum_{\substack{r=0\\(r_{r})\equiv t \pmod{9}\\3\nmid \binom{n}{r}}}^{n} 1$$
(as $3\nmid t$)
$$= \sum_{\substack{r=0\\ind_{2}\binom{n}{r}\equiv ind_{2}t \pmod{6}\\3\nmid \binom{n}{r}}}^{n} 1 = \frac{1}{6} \sum_{\substack{r=0\\3\nmid \binom{n}{r}}}^{n} \sum_{\substack{s=0\\3\nmid \binom{n}{r}}}^{5} \omega^{s(ind_{2}\binom{n}{r})-ind_{2}t}$$
$$= \frac{1}{6} \sum_{s=0}^{5} \omega^{-s \operatorname{ind}_{2}t} \sum_{\substack{r=0\\3\nmid \binom{n}{r}}}^{n} \omega^{s \operatorname{ind}_{2}\binom{n}{r}}$$
$$= \frac{1}{6} \sum_{s=0}^{5} \omega^{-s \operatorname{ind}_{2}t} \sum_{\substack{r=0\\3\nmid \binom{n}{r}}}^{2} \cdots \sum_{\substack{b_{1}=0\\b_{0}+b_{1}3+\dots+b_{1}3^{l}\leq a_{0}+a_{1}3+\dots+a_{l}3^{l}}}^{2} \omega^{si(\mathbf{a},\mathbf{b})}$$
$$(by (1.3), (1.4), (3.1), (3.2))$$

$$= \frac{1}{6} \sum_{s=0}^{5} \omega^{-s \operatorname{ind}_{2} t} \sum_{b_{0}=0}^{a_{0}} \dots \sum_{b_{l}=0}^{a_{l}} \omega^{si(\mathbf{a},\mathbf{b})}$$

$$= \frac{1}{6} \sum_{s=0}^{5} \omega^{-s \operatorname{ind}_{2} t} S(\mathbf{a}; \omega^{s}) \qquad (by (3.3))$$

$$= \frac{1}{6} \sum_{s=0}^{5} \omega^{-s \operatorname{ind}_{2} t} 2^{n_{1}-n_{11}} (1+\omega^{2s})^{n_{11}} (2+\omega^{s})^{n_{2}-n_{12}-n_{21}-n_{22}+n_{121}+n_{122}}$$

$$\times (2+\omega^{5s})^{n_{21}-n_{121}} (2+\omega^{3s})^{n_{22}-n_{122}} (1+\omega^{3s}+\omega^{4s})^{n_{12}-n_{121}-n_{122}}$$

$$\times (1+\omega^{s}+\omega^{4s})^{n_{121}} (1+\omega^{4s}+\omega^{5s})^{n_{122}},$$

by the Proposition. The term in the sum with s = 0 is

$$2^{n_1-n_{11}}2^{n_{11}} \times 3^{n_2-n_{12}-n_{21}-n_{22}+n_{121}+n_{122}}3^{n_{21}-n_{121}}3^{n_{22}-n_{122}}3^{n_{12}-n_{121}-n_{122}}3^{n_{121}}3^{n_{122}} = 2^{n_1}3^{n_2}.$$

The term with s = 1 is

$$\begin{split} &\omega^{-\inf_2 t} 2^{n_1 - n_{11}} (1 + \omega^2)^{n_{11}} (2 + \omega)^{n_2 - n_{12} - n_{21} - n_{22} + n_{121} + n_{122}} \\ &\times (2 + \omega^5)^{n_{21} - n_{121}} (2 + \omega^3)^{n_{22} - n_{122}} \\ &\times (1 + \omega^3 + \omega^4)^{n_{12} - n_{121} - n_{122}} (1 + \omega + \omega^4)^{n_{121}} (1 + \omega^4 + \omega^5)^{n_{122}} \\ &= (-1)^{\inf_2 t} \beta^{\inf_2 t} 2^{n_1 - n_{11}} (1 + \beta)^{n_{11}} (2 - \beta^2)^{n_2 - n_{12} - n_{21} - n_{22} + n_{121} + n_{122}} \\ &\times (2 - \beta)^{n_{21} - n_{121}} 1^{n_{22} - n_{122}} \beta^{2n_{12} - 2n_{121} - 2n_{122}} 1^{n_{121}} (1 - \beta + \beta^2)^{n_{122}} \\ &= (-1)^{\inf_2 t} \beta^{\inf_2 t} 2^{n_1 - n_{11}} (-\beta^2)^{n_{11}} (3 + \beta)^{n_2 - n_{12} - n_{22} + n_{121} + n_{122}} \\ &\times (2 - \beta)^{n_{21} - n_{121}} \beta^{2n_{12} - 2n_{121} - 2n_{122}} (-2\beta)^{n_{122}} \\ &= (-1)^{\inf_2 t + n_{11} + n_{122}} 2^{n_1 - n_{11} + n_{122}} \beta^{\inf_2 t + 2n_{11} + 2n_{12} - 2n_{121} - n_{122}} \\ &\times (3 + \beta)^{n_2 - n_{12} - n_{21} - n_{22} + n_{121} + n_{122}} (2 - \beta)^{n_{21} - n_{121}} \\ &= (-1)^{\inf_2 t + n_{11} + n_{122}} 2^{n_1 - n_{11} + n_{122}} X. \end{split}$$

The term with s = 2 is

$$\begin{split} &\omega^{-2\operatorname{ind}_{2}t}2^{n_{1}-n_{11}}(1+\omega^{4})^{n_{11}}(2+\omega^{2})^{n_{2}-n_{12}-n_{21}-n_{22}+n_{121}+n_{122}} \\ &\times (2+\omega^{4})^{n_{21}-n_{121}}3^{n_{22}-n_{122}} \\ &\times (2+\omega^{2})^{n_{12}-n_{121}-n_{122}}(1+2\omega^{2})^{n_{121}}(1+\omega^{2}+\omega^{4})^{n_{122}} \\ &= \beta^{-\operatorname{ind}_{2}t}2^{n_{1}-n_{11}}(1+\beta^{2})^{n_{11}}(2+\beta)^{n_{2}-n_{12}-n_{21}-n_{22}+n_{121}+n_{122}} \\ &\times (2+\beta^{2})^{n_{12}-n_{121}}3^{n_{22}-n_{122}} \\ &\times (2+\beta)^{n_{12}-n_{121}-n_{122}}(1+2\beta)^{n_{121}}(1+\beta+\beta^{2})^{n_{122}} \end{split}$$

$$=\beta^{-\inf_2 t} 2^{n_1-n_{11}} 3^{n_{22}-n_{122}} (-\beta)^{n_{11}} (2+\beta)^{n_2-n_{12}-n_{21}-n_{22}+n_{121}+n_{122}} \times (1-\beta)^{n_{21}-n_{121}} (2+\beta)^{n_{12}-n_{121}-n_{122}} (1+2\beta)^{n_{121}} 0^{n_{122}} = 0^{n_{122}} (-1)^{n_{11}} \beta^{-\inf_2 t+n_{11}} 2^{n_1-n_{11}} 3^{n_{22}-n_{122}} \times (2+\beta)^{n_2-n_{21}-n_{22}} (1-\beta)^{n_{21}-n_{121}} (1+2\beta)^{n_{121}} = 0^{n_{122}} (-1)^{n_{11}} 2^{n_1-n_{11}} 3^{n_{22}-n_{122}} Y.$$

The term with s = 3 is

$$(-1)^{\operatorname{ind}_2 t} 2^{n_1 - n_{11}} 2^{n_{11}} = (-1)^{\operatorname{ind}_2 t} 2^{n_1}.$$

The term with s = 4 is the complex conjugate of the term with s = 2, and the term with s = 5 is the complex conjugate of the term with s = 1. Hence

$$\begin{split} N_n(t,9) &= \frac{1}{6} \{ 2^{n_1} 3^{n_2} + (-1)^{\operatorname{ind}_2 t + n_{11} + n_{122}} 2^{n_1 - n_{11} + n_{122}} X \\ &\quad + 0^{n_{122}} (-1)^{n_{11}} 2^{n_1 - n_{11}} 3^{n_{22} - n_{122}} Y \\ &\quad + (-1)^{\operatorname{ind}_2 t} 2^{n_1} \\ &\quad + 0^{n_{122}} (-1)^{n_{11}} 2^{n_1 - n_{11}} 3^{n_{22} - n_{122}} \overline{Y} \\ &\quad + (-1)^{\operatorname{ind}_2 t + n_{11} + n_{122}} 2^{n_1 - n_{11} + n_{122}} \overline{X} \} \\ &= \frac{1}{6} \{ 2^{n_1} 3^{n_2} + (-1)^{\operatorname{ind}_2 t} 2^{n_1} \\ &\quad + (-1)^{\operatorname{ind}_2 t + n_{11} + n_{122}} 2^{n_1 - n_{11} + n_{122} + 1} \operatorname{Re}(X) \\ &\quad + 0^{n_{122}} (-1)^{n_{11}} 2^{n_1 - n_{11} + 1} 3^{n_{22} - n_{122}} \operatorname{Re}(Y) \}, \end{split}$$

as asserted.

5. Evaluation of $N_n(t,9)$ (3 | t). Let n be an integer with $n \ge 9$. We recall that the 3-ary representations of n, r and n-r ($0 \le r \le n$) are

$$n = a_0 + a_1 3 + \ldots + a_l 3^l$$
, each $a_i = 0, 1, 2,$
 $r = b_0 + b_1 3 + \ldots + b_l 3^l$, each $b_i = 0, 1, 2,$
 $n - r = c_0 + c_1 3 + \ldots + c_l 3^l$, each $c_i = 0, 1, 2.$

As $n \ge 9$ we have $l \ge 2$. We first consider t = 3 and t = 6. By Kummer's theorem (see (1.2)), we have

 $3 \parallel \binom{n}{r} \Leftrightarrow$ there is a single carry when adding r and n - r in base 3.

If this carry occurs in the *j*th place $(0 \le j \le l-1)$ then

$$b_j + c_j = a_j + 3,$$

 $b_{j+1} + c_{j+1} = a_{j+1} - 1,$
 $b_i + c_i = a_i \quad (i \neq j, j + 1).$

Clearly

$$a_j \neq 2, \quad a_{j+1} \neq 0, \quad a_j < b_j \le 2, \quad 0 \le b_{j+1} < a_{j+1}.$$

Moreover, by Kazandzidis' theorem (see (1.5)), we have

$$\binom{n}{r} \equiv -3 \prod_{i=0}^{l} \frac{a_i!}{b_i!c_i!} \pmod{9},$$

that is,

$$\binom{n}{r} \equiv -3 \frac{a_j!}{b_j!(a_j+3-b_j)!} \cdot \frac{a_{j+1}!}{b_{j+1}!(a_{j+1}-1-b_{j+1})!} \prod_{\substack{i=0\\i \neq j, j+1}}^l \binom{a_i}{b_i} \pmod{9}.$$

 \mathbf{Set}

$$f(a_j, b_j, a_{j+1}, b_{j+1}) = rac{b_j!(a_j+3-b_j)!}{a_j!} \cdot rac{b_{j+1}!(a_{j+1}-1-b_{j+1})!}{a_{j+1}!},$$

so that

$$\binom{n}{r} \equiv t \pmod{9} \Leftrightarrow \prod_{\substack{i=0\\i \neq j, j+1}}^{l} \binom{a_i}{b_i} \equiv -\frac{t}{3}f(a_j, b_j, a_{j+1}, b_{j+1}) \pmod{3}.$$

Hence we have

$$N_{n}(t,9) = \sum_{\substack{r=0\\(n) \equiv t \pmod{9}}}^{n} 1 = \sum_{\substack{r=0\\3||\binom{n}{r}}}^{n} 1 \qquad (as \ t = 3, 6)$$

$$= \sum_{\substack{r=0\\c(n,r)=1\\(n) \equiv t \pmod{9}}}^{n} 1 = \sum_{\substack{j=0\\j=0}}^{l-1} \sum_{\substack{r=0\\c(n,r)=1\\carry \ in \ jth \ place\\(n) \equiv t \mod{9}}}^{n} 1$$

$$= \sum_{\substack{j=0\\j=0}}^{l-1} \sum_{b_{0}=0}^{a_{0}} \dots \sum_{b_{j-1}=0}^{a_{j-1}} \sum_{b_{j}=a_{j}+1}^{2} \sum_{\substack{b_{j+1}=0\\b_{j+1}=0}}^{a_{j+1}-1} \sum_{b_{j+2}=0}^{a_{j+2}} \dots \sum_{b_{l}=0}^{a_{l}} 1.$$

$$\prod_{\substack{i=0\\i\neq j, j+1}}^{l} \binom{a_{i}}{b_{i}} \equiv -\frac{i}{3} f(a_{j}, b_{j}, a_{j+1}, b_{j+1}) \pmod{3}$$

Now

$$\begin{split} \sum_{b_0=0}^{a_0} \dots \sum_{b_{j-1}=0}^{a_{j-1}} \sum_{b_{j+1}=0}^{a_{j+1}} \dots \sum_{b_l=0}^{a_l} 1 \\ \prod_{\substack{i=0\\i\neq j,j+1}}^{l} \binom{a_i}{b_i} \equiv -\frac{t}{3} f(a_j, b_j, a_{j+1}, b_{j+1}) \pmod{3} \\ = \sum_{\substack{s_0+s_13+\dots+s_l3^l \leq a_0+a_13+\dots+a_{j-1}3^{j-1}+a_{j+2}3^{j+2}+\dots+a_l3^l \\ =n-a_j3^j-a_{j+1}3^{j+1}} \binom{a_0}{s_0} \dots \binom{a_{j-1}}{s_{j-1}} \binom{0}{s_j} \binom{0}{s_{j+1}} \binom{a_{j+2}}{s_{j+2}} \dots \binom{a_l}{s_l} \equiv -\frac{t}{3} f(a_j, b_j, a_{j+1}, b_{j+1}) \pmod{3} \\ = \sum_{\substack{n-a_j3^j-a_{j+1}3^{j+1} \\ n-a_j3^j-a_{j+1}3^{j+1}} \equiv -\frac{t}{3} f(a_j, b_j, a_{j+1}, b_{j+1}), 3 \end{pmatrix}. \end{split}$$

Hence

(5.1)
$$N_n(t,9)$$

= $\sum_{j=0}^{l-1} \sum_{b_j=a_j+1}^2 \sum_{b_{j+1}=0}^{a_{j+1}-1} N_{n-a_j3^j-a_{j+1}3^{j+1}} \left(-\frac{t}{3}f(a_j,b_j,a_{j+1},b_{j+1}),3 \right).$

We recall from the introduction that for k = 1 and 2,

$$N_n(k,3) = \frac{1}{2} 2^{n_1(n)} (3^{n_2(n)} - (-1)^k).$$

In order to use this formula in (5.1) we consider four cases according as $a_j a_{j+1} = 01, 02, 11$ or 12.

Case (i):
$$a_j a_{j+1} = 01$$
 (so $b_j = 1$ or 2, $b_{j+1} = 0$). Here
 $n_1(n - a_j 3^j - a_{j+1} 3^{j+1}) = n_1 - 1$,
 $n_2(n - a_j 3^j - a_{j+1} 3^{j+1}) = n_2$,
 $f(a_j, b_j, a_{j+1}, b_{j+1}) = 2$,

so that

$$N_{n-a_j3^{j}-a_{j+1}3^{j+1}}\left(-\frac{t}{3}f(a_j,b_j,a_{j+1},b_{j+1}),3\right)=\frac{1}{2}2^{n_1-1}(3^{n_2}-(-1)^{t/3}).$$

.

Case (ii):
$$a_j a_{j+1} = 02$$
 (so $b_j = 1$ or 2, $b_{j+1} = 0$ or 1). Here
 $n_1(n - a_j 3^j - a_{j+1} 3^{j+1}) = n_1$,
 $n_2(n - a_j 3^j - a_{j+1} 3^{j+1}) = n_2 - 1$,
 $f(a_j, b_j, a_{j+1}, b_{j+1}) = 1$,

so that

$$N_{n-a_{j}3^{j}-a_{j+1}3^{j+1}}\left(-\frac{t}{3}f(a_{j},b_{j},a_{j+1},b_{j+1}),3\right)$$
$$=\frac{1}{2}2^{n_{1}}(3^{n_{2}-1}-(-1)^{3-t/3})=\frac{1}{2}2^{n_{1}}(3^{n_{2}-1}+(-1)^{t/3}).$$
Case (iii): $a_{j}a_{j+1}=11$ (so $b_{j}=2,b_{j+1}=0$). Here

Case (iii):
$$a_j a_{j+1} = 11$$
 (so $b_j = 2, b_{j+1} = 0$). Here
 $n_1(n - a_j 3^j - a_{j+1} 3^{j+1}) = n_1 - 2,$
 $n_2(n - a_j 3^j - a_{j+1} 3^{j+1}) = n_2,$
 $f(a_j, b_j, a_{j+1}, b_{j+1}) = 4,$

so that

$$N_{n-a_{j}3^{j}-a_{j+1}3^{j+1}}\left(-\frac{t}{3}f(a_{j},b_{j},a_{j+1},b_{j+1}),3\right)$$

= $\frac{1}{2}2^{n_{1}-2}(3^{n_{2}}-(-1)^{3-t/3}) = \frac{1}{2}2^{n_{1}-2}(3^{n_{2}}+(-1)^{t/3}).$
Case (iv): $a_{j}a_{j+1} = 12$ (so $b_{j} = 2, b_{j+1} = 0$ or 1). Here

$$n_1(n-a_j3^j-a_{j+1}3^{j+1})=n_1-1,\ n_2(n-a_j3^j-a_{j+1}3^{j+1})=n_2-1,\ f(a_j,b_j,a_{j+1},b_{j+1})=2,$$

so that

$$N_{n-a_j3^{j}-a_{j+1}3^{j+1}}\left(-\frac{t}{3}f(a_j,b_j,a_{j+1},b_{j+1}),3\right) = \frac{1}{2}2^{n_1-1}(3^{n_2-1}-(-1)^{t/3}).$$

Hence, using these evaluations in (5.1), we obtain

$$N_{n}(t,9) = \sum_{\substack{j=0\\a_{j}a_{j+1}=01}}^{l-1} 2 \cdot \frac{1}{2} 2^{n_{1}-1} (3^{n_{2}} - (-1)^{t/3}) + \sum_{\substack{j=0\\a_{j}a_{j+1}=02}}^{l-1} 2^{2} \cdot \frac{1}{2} 2^{n_{1}} (3^{n_{2}-1} + (-1)^{t/3}) + \sum_{\substack{j=0\\a_{j}a_{j+1}=11}}^{l-1} \frac{1}{2} 2^{n_{1}-2} (3^{n_{2}} + (-1)^{t/3})$$

$$+\sum_{\substack{j=0\\a_{j}a_{j+1}=12}}^{l-1} 2 \cdot \frac{1}{2} 2^{n_{1}-1} (3^{n_{2}-1} - (-1)^{t/3})$$

= $n_{01} 2^{n_{1}-1} (3^{n_{2}} - (-1)^{t}) + n_{02} 2^{n_{1}+1} (3^{n_{2}-1} + (-1)^{t}) + n_{11} 2^{n_{1}-3} (3^{n_{2}} + (-1)^{t}) + n_{12} 2^{n_{1}-1} (3^{n_{2}-1} - (-1)^{t}),$

which is the asserted formula.

Finally, we treat the case t = 0. We have

$$egin{aligned} N_n(3,9) + N_n(6,9) \ &= n_{01}2^{n_1}3^{n_2} + n_{02}2^{n_1+2}3^{n_2-1} + n_{11}2^{n_1-2}3^{n_2} + n_{12}2^{n_1}3^{n_2-1}, \end{aligned}$$

so that

$$\begin{split} N_n(0,9) &= N_n(0,3) - (N_n(3,9) + N_n(6,9)) \\ &= n + 1 - 2^{n_1} 3^{n_2} - n_{01} 2^{n_1} 3^{n_2} - n_{02} 2^{n_1+2} 3^{n_2-1} \\ &- n_{11} 2^{n_1-2} 3^{n_2} - n_{12} 2^{n_1} 3^{n_2-1}. \end{split}$$

6. Concluding comments. We remark that our formulae for $N_n(t, 9)$ when $3 \nmid t$ are consistent with the following result of Webb [10, Theorem 3].

If p is a prime and $p \nmid t$ then $N_n(t, p^2)$ depends only on t and the number of occurrences of each block of nonzero digits in the base p expansion of n and not on where they occur nor on the number of zeros in the expansion.

The formulae for $N_n(t, p^2)$ $(p \nmid t)$ for p = 2 and p = 3 suggest that perhaps only blocks of length at most p are needed.

When p is a prime and p || t we have shown (in a paper submitted for publication) that $N_n(t, p^2)$ depends only on t, n_1, \ldots, n_{p-1} and n_{ij} ($i = 0, 1, \ldots, p-2; j = 1, \ldots, p-1$). Our formulae for $N_n(3, 9)$ and $N_n(6, 9)$, as well as that of Davis and Webb [2] for $N_n(2, 4)$, are in conformity with this result. Compare this result with Webb's comment [10, sentence preceding first example on p. 278].

References

- K. S. Davis and W. A. Webb, Lucas' theorem for prime powers, European J. Combin. 11 (1990), 229-233.
- [2] -, -, Pascal's triangle modulo 4, Fibonacci Quart. 29 (1991), 79-83.
- [3] J. W. L. Glaisher, On the residue of a binomial-theorem coefficient with respect to a prime modulus, Quart. J. Math. 30 (1899), 150-156.
- [4] A. Granville, Zaphod Beeblebrox's brain and the fifty-ninth row of Pascal's triangle, Amer. Math. Monthly 99 (1992), 318-331.

- [5] E. Hexel and H. Sachs, Counting residues modulo a prime in Pascal's triangle, Indian J. Math. 20 (1978), 91-105.
- [6] J. G. Huard, B. K. Spearman and K. S. Williams, *Pascal's triangle* (mod 8), submitted for publication.
- [7] G. S. Kazandzidis, Congruences on the binomial coefficients, Bull. Soc. Math. Grèce (NS) 9 (1968), 1-12.
- [8] E. E. Kummer, Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen, J. Reine Angew. Math. 44 (1852), 93-146.
- E. Lucas, Sur les congruences des nombres eulériens et des coefficients différentiels des fonctions trigonométriques, suivant un module premier, Bull. Soc. Math. France 6 (1877-8), 49-54.
- [10] W. A. Webb, The number of binomial coefficients in residue classes modulo p and p^2 , Colloq. Math. 60/61 (1990), 275-280.

Department of Mathematics Canisius College Buffalo, New York 14208 E-mail: huard@canisius.edu Department of Mathematics and Statistics Carleton University Ottawa, Ontario K1S 5B6 Canada E-mail: williams@math.carleton.ca

Received on 20.3.1996

(2950)