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Abstract  

The range of validity of Dirichlet's formula for the number of primary representations 
of the positive integer n by a representative set of inequivalent, primitive, integral, 
binary quadratic forms of discriminant d is extended from gcd ( n, d ) = I to gcd ( n. 

8 = I, where f is the conductor of the discriminant d. 

Let n be a positive integer and let d be a nonsquare integer with d = 0 or 1 
2 2 (mod 4). Let V;.(x , y ) = a .  x + b.  x y + ci y I i = 1,2, ..., h ) be a representative set of 

inequivalent, primitive, integral, binary quadratic forms of discriminant d. Only 
positive-definite forms are taken if d < 0. Let N (n, d ) denote the number of primary 
representations of n by the forms4 ( x , y ) ( i = 1, 2, ..., h ) . For the necessary back- . 

ground m binary quadratic fimns, the reader is referred to [2, 5 11.4, $ 12.1-12.41. 
Dirichlet [1, p. 2291 showed in 1840 that if gcd (n, d ) = 1, then 

~ ( n , d ) = w ( d ) Z  
e l n  

runs through the positive divisors on n, and ( 4 )  is the Kronecker symbol. It is the 
\ 1 

purpose of this note to show that a simple argument extends the range of validity of 
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(1) from gcd (n, d )  = 1 to gcd (n, f )  = 1, where f is the conductor of d, that is, f is the 

largest positive integer such that f I d and d/f = 0 or 1 (mod 4). This fact seems to 
have been totally overlooked until recently. Our extension of Dirichlet's formula 
follows from ( I )  and the simple lemmas below. 

Lemma 1. Let p be a prime with pld and p -I- f . Then each 4 ( A ,  y ) 

(i = 1, 2, ..., h) can be taken in the form 

where p + aiciandp I bi. 

Proof. Replacing fi (x, y) by an equivalent form, we may suppose that p%ai. If 

p # 2 then as p I d and p4J we have p II d. We may choose an integer t such that 
2 bi = 2 a, t + b, = 0 (mod p). Then fi (x , y ) is equivalent to the form ai x + b; x y 

. ~ . ,  ', 
2 + c; y2 , where E; = ai t + bi t +'Ci , which is of the required type as p ll c; since 

I fp=2then  , a s 2  Idand 24f, weseethat2 1 b i anddn80r  12 (mod 16). I fci= 

2 (mod 4) then fi (x , y ) is already of the required type. If ci # 2 (mod 4), from 

d = b; - 4 oi ci , we deduce that c, 3 1 (mod 2) and ai  + bi + c, 2 (mod 4). Replacing 

4 by the equivalent form a, x2 + ( 24 + bi ) x y + (ai + b, + ci ) y2 , we have 4 in the 

required form. 

Lemma 2. With the notation of Lemma 1, 

is a representative system of inequivalent, primitive, integral binary quadratic forms 
of discriminant d . 

2 Proof. We have only to check that a ip  x2 + b, x y + ci y2 and a . p  x + b. x y 
J J 

2 + c.  y are inequivalent for i # j. Suppose not. Then there exist integers r, s, t, u with 
J 

ru - st = 1 such that 
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Hence 

2 2 c . .=a .ps  + b . s u + c . u  . 
' I  J 

As p-?aici,pIbi,p-+a.c , a n d p I b . ,  wesee thatpt-u a n d p l t .  Set t = p / a n d  
J J J 

s '=ps.Thenru-s'J= 1 and 

2 2 pci =a.s '  +b.s 'u+pc.u , 
I I J 

so that 

2 2 2 2 contradicting that a, x + b, x y + ci p y and a .  x + b. x y + c. p y are inequivalent for 
1 J J 

i # j. 

From now on we suppose that n is prime to f and we set 

so tha tgcd (n2 ,d )=  1. We have 

Lemma 3. 

N (n, d ) = N (n2, d ) . 

Proof. Let p be a prime with p I n, . As p Id and p.+f we can choose each 

representative fomf;: as in Lemma 1. For i = 1, ... h , let 

2 2 S, = set of primary solutions (x, y)  of a, x + b, x y + ci p y = n 
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2 2 Ti = set of primary solutions (x, y ) of ai p x + bi x y + ci y = n/p. 

It is easy to check that ( x , y ) + ( p x , y ) defines a bijection from Ti to Si . Hence, by 

Lemma 2, we have 

Applying this result to each prime p dividing n,, we obtain the result of Lemma 3. 

We can now complete the proof that Dirichlet's formula (1) holds for gcd (n, f )  

=1 . If e is a divisor of n such that e tn2then gcd (e , nl ) > I so that 

N(n ,d )  =N(n2 ,d )  (by Lemma 3) 

= w ( d ) z  [t] (by ( l )asgcd(n2 ,d)=  1) 
e l n  

2 

(by the preceding remark). 
e l n  

We remark that Dirichlet's formula ( 1 )  may not hold if gcd ( n , f )  > 1. To see 
this take d = - 1 6  and n=2.  Here f = 2 , w ( - 1 6 ) = 2 ,  and h=1 .  We can take the 
single representative primitive, positive-definite, integral, binary quadratic form of 

2 2 discriminant -16 as x + 4 y . Clearly this form does not represent 2 so that 
N ( 2 , -  16) =O.However 

When d < 0 a formula for N (n , d )  valid for all positive integers n has been given by 
Huard. Kaplan and Williams [3]. 
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