ON A FORMULA OF DIRICHLET

PIERRE KAPLAN and KENNETH S. WILLIAMS

(Received October 30, 1996)

Submitted by K. K. Azad

Abstract

The range of validity of Dirichlet's formula for the number of primary representations of the positive integer n by a representative set of inequivalent, primitive, integral, binary quadratic forms of discriminant d is extended from $\operatorname{gcd}(n, d)=1$ to $\operatorname{gcd}(n$, $f=1$, where f is the conductor of the discriminant d.

Let n be a positive integer and let d be a nonsquare integer with $d \equiv 0$ or 1 $(\bmod 4)$. Let $\left(f_{i}(x, y)=a_{i} x^{2}+b_{i} x y+c_{i} y^{2} \mid i=1,2, \ldots, h\right\}$ be a representative set of inequivalent, primitive, integral, binary quadratic forms of discriminant d. Only positive-definite forms are taken if $d<0$. Let $N(n, d)$ denote the number of primary representations of n by the forms $f_{i}(x, y)(i=1,2, \ldots, h)$. For the necessary background on binary quadratic forms, the reader is referred to [2, § 11.4, § 12.1-12.4]. Dirichlet [$1, \mathrm{p} .229$] showed in 1840 that if $\operatorname{gcd}(n, d)=1$, then

$$
\begin{equation*}
N(n, d)=w(d) \sum_{e \mid n}\left(\frac{d}{e}\right) \tag{1}
\end{equation*}
$$

where $w(d)=1,2,4,6$ according as $d>0, d<-4, d=-4, d=-3$ respectively, e runs through the positive divisors on n, and $\left(\frac{d}{e}\right)$ is the Kronecker symbol. It is the purpose of this note to show that a simple argument extends the range of validity of 1991 Mathematics Subject Classification : 11 E16.

Key words and phrases : binary quadratic forms, Dirichlet's formula, number of representations.
(1) from $\operatorname{gcd}(n, d)=1$ to $\operatorname{gcd}(n, f)=1$, where f is the conductor of d, that is, f is the largest positive integer such that $f^{2} \mid d$ and $d / f^{2} \equiv 0$ or $1(\bmod 4)$. This fact seems to have been totally overlooked until recently. Our extension of Dirichlet's formula follows from (1) and the simple lemmas below.

Lemma 1. Let p be a prime with $p l d$ and $p+f$. Then each $f_{i}(\lambda, y)$ $(i=1,2, \ldots, h)$ can be taken in the form

$$
f_{i}(x, y)=a_{i} x^{2}+b_{i} x y+c_{i} p y^{2}
$$

where $p+a_{i} c_{i}$ and $p \mid b_{i}$.
Proof. Replacing $f_{i}(x, y)$ by an equivalent form, we may suppose that $p+a_{i}$. If $p \neq 2$ then as $p \mid d$ and $p \nmid f$, we have $p \| d$. We may choose an integer t such that $b_{i}^{\prime}=2 a_{i} t+b_{i} \equiv 0(\bmod p)$. Then $f_{i}(x, y)$ is equivalent to the form $a_{i} x^{2}+b_{i}^{\prime} x y$ $+c_{i}^{\prime} y^{2}$, where $c_{i}^{\prime}=a_{i} t^{2}+b_{i} t+c_{i}$, which is of the required type as $p \| c_{i}^{\prime}$ since $c_{i}^{\prime}=\left(b_{i}^{\prime 2}-d\right) /\left(4 a_{i}\right), p \| d$ and $p \mid b_{i}^{\prime}$.

If $p=2$ then, as $2 \mid d$ and $2 \nmid f$, we see that $2 \mid b_{i}$ and $d \equiv 8$ or $12(\bmod 16)$. If $c_{i} \equiv$ $2(\bmod 4)$ then $f_{i}(x, y)$ is already of the required type. If $c_{i} \neq 2(\bmod 4)$, from $d=b_{i}^{2}-4 a_{i} c_{i}$, we deduce that $c_{i} \equiv 1(\bmod 2)$ and $a_{i}+b_{i}+c_{i} \equiv 2(\bmod 4)$. Replacing f_{i} by the equivalent form $a_{i} x^{2}+\left(2 a_{i}+b_{i}\right) x y+\left(a_{i}+b_{i}+c_{i}\right) y^{2}$, we have f_{i} in the required form.

Lemma 2. With the notation of Lemma 1,

$$
\left\{a_{i} p x^{2}+b_{i} x y+c_{i} y^{2} \mid i=1,2, \ldots, h\right\}
$$

is a representative system of inequivalent, primitive, integral binary quadratic forms of discriminant d.

Proof. We have only to check that $a_{i} p x^{2}+b_{i} x y+c_{i} y^{2}$ and $a_{j} p x^{2}+b_{j} x y$ $+c_{j} y^{2}$ are inequivalent for $i \neq j$. Suppose not. Then there exist integers r, s, t, u with $r u-s t=1$ such that

$$
a_{i} p x^{2}+b_{i} x y+c_{i} y^{2}=a_{j} p(r x+s y)^{2}+b_{j}(r x+s y)(t x+u y)+c_{j}(t x+u y)^{2}
$$

Hence

$$
\begin{aligned}
a_{i} p & =a_{j} p r^{2}+b_{j} r t+c_{j} t^{2} \\
b_{i} & =2 a_{j} p r s+b_{j}(r u+s t)+2 c_{j} t u \\
c_{i} & =a_{j} p s^{2}+b_{j} s u+c_{j} u^{2}
\end{aligned}
$$

As $p \nmid a_{i} c_{i}, p \mid b_{i}, p \nmid a_{j} c_{j}$, and $p \mid b_{j}$, we see that $p \nmid u$ and $p \mid t$. Set $t=p t^{\prime}$ and $s^{\prime}=p s$. Then $r u-s^{\prime} t^{\prime}=1$ and

$$
\begin{aligned}
a_{i} & =a_{j} r^{2}+b_{j} r t^{\prime}+c_{j} p t^{\prime 2} \\
b_{i} & =2 a_{j} r s^{\prime}+b_{j}\left(r u+s^{\prime} t^{\prime}\right)+2 c j p t^{\prime} u \\
p c_{i} & =a_{j} s^{2}+b_{j} s^{\prime} u+p c_{j} u^{2}
\end{aligned}
$$

so that

$$
a_{i} x^{2}+b_{i} x y+c_{i} p y^{2}=a_{j}\left(r x+s^{\prime} y\right)^{2}+b_{j}\left(r x+s^{\prime} y\right)\left(t^{\prime} x+u y\right)+c_{j} p\left(t^{\prime} x+u y\right)^{2}
$$

contradicting that $a_{i} x^{2}+b_{i} x y+c_{i} p y^{2}$ and $a_{i} x^{2}+b_{j} x y+c_{j} p y^{2}$ are inequivalent for $i \neq j$.

From now on we suppose that n is prime to f and we set

$$
n=n_{1} n_{2}, \quad n_{1}=\prod_{p \mid d} p_{p}^{v(n)}, \quad n_{2}=\prod_{p+d} p_{p}^{v(n)}
$$

so that $\operatorname{gcd}\left(n_{2}, d\right)=1$. We have

Lemma 3.

$$
N(n, d)=N\left(n_{2}, d\right)
$$

Proof. Let p be a prime with $p \mid n_{1}$. As $p \mid d$ and $p \nmid f$ we can choose each representative form f_{i} as in Lemma 1 . For $i=1, \ldots h$, let

$$
S_{i}=\text { set of primary solutions }(x, y) \text { of } a_{i} x^{2}+b_{i} x y+c_{i} p y^{2}=n
$$

and

$$
T_{i}=\text { set of primary solutions }(x, y) \text { of } a_{i} p x^{2}+b_{i} x y+c_{i} y^{2}=n / p
$$

It is easy to check that $(x, y) \rightarrow(p x, y)$ defines a bijection from T_{i} to S_{i}. Hence, by Lemma 2, we have

$$
N(n, d)=\sum_{i=1}^{h} \operatorname{card}\left(S_{i}\right)=\sum_{i=1}^{n} \operatorname{card}\left(T_{i}\right)=N(n / p, d)
$$

Applying this result to each prime p dividing n_{1}, we obtain the result of Lemma 3.
We can now complete the proof that Dirichlet's formula (1) holds for gcd (n, f) $=1$. If e is a divisor of n such that $e+n_{2}$ then gcd $\left(e, n_{1}\right)>1$ so that $\left(\frac{d}{e}\right)=0$ and thus

$$
\begin{aligned}
N(n, d) & =N\left(n_{2}, d\right) & & \text { (by Lemma 3) } \\
& =w(d) \sum_{e \mid n_{2}}\left(\frac{d}{e}\right) & & \left(\text { by }(1) \text { as } \operatorname{gcd}\left(n_{2}, d\right)=1\right) \\
& =w(d) \sum_{e \mid n}\left(\frac{d}{e}\right) & & \text { (by the preceding remark). }
\end{aligned}
$$

We remark that Dirichlet's formula (1) may not hold if gcd (n, f) >1. To see this take $d=-16$ and $n=2$. Here $f=2, w(-16)=2$, and $h=1$. We can take the single representative primitive, positive-definite, integral, binary quadratic form of discriminant -16 as $x^{2}+4 y^{2}$. Clearly this form does not represent 2 so that $N(2,-16)=0$. However

$$
w(-16) \sum_{\mu \mid 2}\left(\frac{-16}{\mu}\right)=2\left(\left(\frac{-16}{1}\right)+\left(\frac{-16}{2}\right)\right)=2(1+0)=2 .
$$

When $d<0$ a formula for $N(n, d)$ valid for all positive integers n has been given by Huard, Kaplan and Williams [3].

References

[1] P. G. L. Dirichlet, Voriesungen über Zahlentheoric, Chelsea Publishing Co., New York, 1968.
[2] L. - K. Hua, Introduction to Number Theory, Springer-Verlag (Berlin, Heidelberg, Niew York), 1982.
[3] J. G. Huard, P. Kaplan and K. S. Williams, The Chowla-Selberg formula for genera, Acta Arithmetica 73 (1995), 271-301.

Départment de Mathématiques
Université de Nancy 1,
B. P. 239, 54506 Vandoeuvre lés Nancy Cédex

France
E-mail address: kaplan@iecn.u-nancy.fr

Centre for Research in Algebra and Number Theory
Department of Mathematics and Statistics
Carleton University
Ottawa, Ontario
Canada K1S 5B6
E-mail address: williams@math.carleton.ca

