B.K. SPEARMAN AND K.S. WILLIAMS KODAI MATH. J. 19 (1996), 293-307

NORMAL RELATIVE INTEGRAL BASES FOR QUARTIC FIELDS OVER QUADRATIC SUBFIELDS

BLAIR K. SPEARMAN AND KENNETH S. WILLIAMS*

Abstract

Let L be a quartic number field with a quadratic subfield K. In 1986 Kawamoto gave a necessary and sufficient condition for L to have a normal relative integral basis (NRIB) over K. In this paper the authors explicitly construct a NRIB for L/K when such exists using their previous work on relative integral bases. The special cases when L is bicyclic, cyclic and pure are examined in detail.

1. Introduction

Let L be a quartic number field with quadratic subfield $K=Q(\sqrt{c})$, where Q denotes the rational number field. Then $L=Q(\sqrt{c}, \sqrt{a+b\sqrt{c}})$, where $a+b\sqrt{c}$ is not a square in $Q(\sqrt{c})$, and where a, b and c may be taken to be integers with both c and the greatest common divisor (a, b) squarefree. Let O_L (resp. O_K) denote the ring of integers of L (resp. K). In this paper we assume that L has a relative integral basis (RIB) over K, and determine when L has a normal relative integral basis (NRIB) over K. Those L which have a relative integral basis (RIB) over K have been characterized in [9]. It is shown in [9, Theorem 2] that such L have a RIB over K of the form $\{1, \kappa\}$, where

(1.1)
$$\kappa = \frac{\theta}{2} + \frac{\sqrt{\mu}}{2\gamma} \in O_L,$$

(1.2)
$$\theta = 0, 1, \sqrt{c}, 1 + \sqrt{c}, \frac{1 + \sqrt{c}}{2} \text{ or } \frac{-1 + \sqrt{c}}{2}$$

depending on congruence conditions involving a, b, c,

$$(1.3) \qquad \mu = a + b\sqrt{c},$$

* Research supported by Natural Sciences and Engineering Research Council of Canada Grant A-7233.

1991 Mathematics Subject Classification: 11R16, 11R04.

Key words and phrases. quartic fields with quadratic subfields, normal relative integral basis.

Received August 3, 1994; revised March 22, 1996.

294 BLAIR K. SPEARMAN AND KENNETH S. WILLIAMS

(1.4)
$$\mu O_K = RS^2$$
, where R and S are

integral ideals of O_K with R squarefree,

(1.5)
$$d(L/K) = RT^{2}, \text{ where } T^{2} = O_{K}, 2O_{K},$$
$$4O_{K}, \left\langle 2, \frac{1}{2}(1+\sqrt{c}) \right\rangle^{2} \text{ or } \left\langle 2, \frac{1}{2}(1-\sqrt{c}) \right\rangle^{2}$$

depending on congruence conditions involving a, b, c,

(1.6)
$$S = T \langle \gamma \rangle$$
, where $\gamma \in K \setminus \{0\}$.

It is convenient to define the nonnegative integer r by

(1.7)
$$2^r \|a^2 - b^2 c$$
,

and the integers a' and b' by

(1.8)
$$\mu/\gamma^2 = \begin{cases} (a'+b'\sqrt{c})/2, & \text{if } c \equiv 1 \pmod{4}, \\ a'+b'\sqrt{c}, & \text{if } c \equiv 2, 3 \pmod{4}. \end{cases}$$

When $c \equiv 1 \pmod{4}$, as $\mu/\gamma^2 \in O_K$, a', b' are integers with $a' \equiv b' \pmod{2}$.

If c>0, we let ε_c denote the fundamental unit (>1) of $K=Q(\sqrt{c})$, and set

(1.9)
$$N(c) = \text{norm of } \varepsilon_c = \pm 1$$

and

(1.10)
$$F(c) = \begin{cases} +1, & \text{if } \varepsilon_c = (t+u\sqrt{c})/2 \text{ for odd integers } t \text{ and } u, \\ -1, & \text{if } \varepsilon_c = t+u\sqrt{c} & \text{ for integers } t \text{ and } u. \end{cases}$$

In Section 2 we prove the following theorem, which extends a theorem of Kawamoto [5, Theorem 7].

THEOREM 1. Let a, b, c be integers with (a, b) squarefree, c squarefree, and $a+b\sqrt{c}$ not a square in $Q(\sqrt{c})$. Set $L=Q(\sqrt{c}, \sqrt{a+b\sqrt{c}})$ and $K=Q(\sqrt{c})$. Suppose L has a relative integral basis over K. Define $\mu, \gamma, r, a', b', N(c), F(c), t$ and u as in (1.3)-(1.10). Then L possesses a NRIB over K only in the cases listed below. In each case an integer ω of K is given so that $\{\omega, \omega'\}$ is a NRIB. [For compactness we write $x \equiv y(m)$ for $x \equiv y \pmod{m}$.]

$$c \equiv 2(4)$$

(i)
$$a \equiv 1(2)$$
, $b \equiv 0(2)$, $a+b \equiv 1(4)$, $a' \equiv 1(4)$,
(ii) $a \equiv 1(2)$, $b \equiv 0(2)$, $a+b \equiv 1(4)$, $a' \equiv 3(4)$, $c > 0$, $N(c) = -1$,
(iii) $a \equiv 2(4)$, $b \equiv 0(4)$, $a+b \equiv c(8)$, $a' \equiv 1(4)$,
(iv) $a \equiv 2(4)$, $b \equiv 0(4)$, $a+b \equiv c(8)$, $a' \equiv 3(4)$, $c > 0$, $N(c) = -1$.
 $\omega = \frac{1}{2} + \frac{\sqrt{\mu}}{2\gamma}$ (i) (iii) $\omega = \frac{t+u\sqrt{c}}{2} + \frac{\sqrt{\mu}}{2\gamma}$ (ii) (iv)

$$\begin{split} c \equiv 3(4) \\ (i) & a \equiv 1(2), \ b \equiv 0(4), \ a' \equiv 1(4), \\ (ii) & a \equiv 1(2), \ b \equiv 0(4), \ a' \equiv 3(4), \ c = -1, \\ (iii) & a \equiv 1(2), \ b \equiv 0(4), \ a' \equiv 3(4), \ c > 0, \ t \equiv 0(2), \ u \equiv 1(2), \\ (iv) & a \equiv 0(4), \ b \equiv 2(4), \ a \equiv c + 1(8), \ a' \equiv 3(4), \ c = -1, \\ (v) & a \equiv 0(4), \ b \equiv 2(4), \ a \equiv c + 1(8), \ a' \equiv 3(4), \ c > 0, \ t \equiv 0(2), \ u \equiv 1(2). \\ & \omega = \frac{1}{2} + \frac{\sqrt{\mu}}{2\gamma} \ (i) \ (iv) \ \omega = \frac{\sqrt{c}}{2} + \frac{\sqrt{\mu}}{2\gamma} \ (ii) \ (v) \\ & \omega = \frac{t + u\sqrt{c}}{2} + \frac{\sqrt{\mu}}{2\gamma} \ (iii) \ (vi) \end{split}$$

 $c \equiv 5(8)$

(i)
$$a \equiv 1(2), b \equiv 0(2), a+b \equiv 1(4), a' \equiv b' \equiv 0(2),$$

(ii) $a \equiv 1(2), b \equiv 0(2), a+b \equiv 1(4), a' \equiv b' \equiv 1(2), c = -3,$
(iii) $a \equiv 1(2), b \equiv 0(2), a+b \equiv 1(4), a' \equiv b' \equiv 1(2), c > 0, F(c) = 1,$
(iv) $a \equiv 6(8), b \equiv 2(4), a-b-c \equiv 3 \text{ or } 15(16), c = -3,$
(v) $a \equiv 6(8), b \equiv 2(4), a-b-c \equiv 3 \text{ or } 15(16), c > 0, F(c) = 1.$
 $\omega = \frac{1}{2} + \frac{\sqrt{\mu}}{2\gamma}$ (i) $\omega = \frac{1+(-1)^{(1-b')/2}\sqrt{c}}{4} + \frac{\sqrt{\mu}}{2\gamma}$ (ii) (iv)
 $\omega = \frac{t+(-1)^{(t-b'u)/2}u\sqrt{c}}{4} + \frac{\sqrt{\mu}}{2\gamma}$ (iii) (v)

 $c \equiv 1(8)$

(i)
$$a \equiv 1(2), b \equiv 0(2), a+b \equiv 1(4),$$

(ii) $a \equiv 2(8), b \equiv 2(4), r (even) \ge 6, (a^2-b^2c)/2^r \equiv 1(4).$
 $\omega = \frac{1}{2} + \frac{\sqrt{\mu}}{2\gamma}$ (i) (ii)

In Sections 3, 4 and 5 we investigate the special cases when L is cyclic, bicyclic, and pure respectively. We determine when the existence of a RIB and a squarefree relative discriminant are both necessary and sufficient for the existence of a NRIB.

THEOREM 2. If L is a cyclic quartic field with quadratic subfield K, then L/K has a NRIB if and only if L/K has a RIB and d(L/K) is squarefree.

THEOREM 3. Let c be a squarefree integer, and set $K=Q(\sqrt{c})$. Let L be a bicyclic quartic field containing K. Then $L=Q(\sqrt{c}, \sqrt{a})$ for some squarefree integer a with $a \neq c$. As $L=Q(\sqrt{c}, \sqrt{ac/(a, c)^2})$, we can choose between a and $ac/(a, c)^2$ when $c \neq -1$ so that $c \nmid a$. If c=-3, -1, or c>0, N(c)=-1, then

L/K has a NRIB $\iff L/K$ has a RIB and d(L/K) is squarefree. If c < -3 then

L/K has a NRIB $\iff L/K$ has a RIB, d(L/K) is squarefree,

and $a \equiv 1 \pmod{4}$.

If c > 0 and N(c) = 1 then

L/K has a NRIB $\iff L/K$ has a RIB, d(L/K) is squarefree,

$$\begin{array}{c} (a, c) = 1, \ a \equiv 1 \pmod{4} \\ or \\ (a, c) = 1, \ c \equiv 3 \pmod{4}, \ a \equiv 3 \pmod{4}, \ t \equiv 0 \pmod{2}, \ u \equiv 1 \pmod{2} \\ or \\ (a, c) \neq 1, \ c \equiv 1 \pmod{4} \\ or \\ (a, c) \neq 1, \ c \equiv 1 \pmod{4}, \ \frac{at}{(a, c)} \equiv 1 \pmod{4}. \end{array}$$

THEOREM 4. If L is a pure quartic field then $L=Q(\sqrt{b\sqrt{c}})$, where b and c are squarefree integers with $(b, c)\neq (\pm 2, -1)$ and $c \nmid b$ if $c \neq -1$. Set $K=Q(\sqrt{c})$. Then

L/K has a NRIB $\iff L/K$ has a RIB and d(L/K) is squarefree.

Kawamoto [5, Propositions 10 and 11] has different formulations of Theorems 2 and 3. Massy [6], [7] has given a necessary and sufficient condition for a quadratic field K to be a subfield of a cyclic quartic field L possessing a NRIB over K.

2. Proof of Theorem 1

Let $L=Q(\sqrt{c}, \sqrt{a}+b\sqrt{c})$ and $K=Q(\sqrt{c})$, where *a*, *b*, *c* are integers such that (a, b) and *c* are squarefree, and $a+b\sqrt{c} \notin K^2$. We suppose that *L* possesses a RIB over *K*, and take the RIB in the form $\{1, \kappa\}$, where κ is given by (1.1).

Before proving Theorem 1, we prove four lemmas. We denote the group of units of O_K by U_K .

LEMMA 1. Let the fields L and K be as specified above. If the relative discriminant d(L/K) is not squarefree, then L/K does not possess a NRIB.

Proof. Let $\{1, \kappa\}$ be the RIB for L/K specified above, and suppose that L/K possesses a NRIB, say, $\{\alpha + \beta \kappa, \alpha + \beta \kappa'\}$, where $\alpha, \beta \in O_K$ and κ' denotes

the conjugate of κ over K. As $\{\alpha + \beta \kappa, \alpha + \beta \kappa'\}$ is a RIB for L/K, there exist $\lambda, \phi \in O_K$ with

(2.1)
$$1 = \lambda(\alpha + \beta \kappa) + \phi(\alpha + \beta \kappa').$$

Taking the conjugates of (2.1) over K, we obtain

(2.2)
$$1 = \lambda(\alpha + \beta \kappa') + \phi(\alpha + \beta \kappa).$$

From (2.1) and (2.2), we see that $\lambda = \phi$. Then (2.1) gives $1 = \lambda(2\alpha + \beta(\kappa + \kappa'))$, so that $2\alpha + \beta(\kappa + \kappa') \in U_K$. Next, we have

$$d(L/K) = \begin{vmatrix} \alpha + \beta \kappa & \alpha + \beta \kappa' \\ \alpha + \beta \kappa' & \alpha + \beta \kappa \end{vmatrix}^2 O_K$$

= $((\alpha + \beta \kappa)^2 - (\alpha + \beta \kappa')^2)^2 O_K$
= $\beta^2 (\kappa - \kappa')^2 (2\alpha + \beta (\kappa + \kappa'))^2 O_K$
= $\beta^2 (\kappa - \kappa')^2 O_K$.

Now suppose that d(L/K) is not squarefree. Thus there exists a prime ideal P of O_K with $P^2|d(L/K)$, so that

(2.3)
$$P^2 | \beta^2 (\kappa - \kappa')^2 O_K.$$

Let \mathcal{P} be a prime ideal in O_L lying above P. Then, from (2.3), we see that

$$\mathcal{P} \mid \boldsymbol{\beta}(\boldsymbol{\kappa} - \boldsymbol{\kappa}') O_L.$$

From (1.4) and (1.5), we deduce that $P|2O_K$, so that $\mathcal{P}|2O_L$. Hence we have

 $\mathcal{P}|(\beta(\kappa-\kappa')+2(\alpha+\beta\kappa'))O_L,$

contradicting that $2\alpha + \beta(\kappa + \kappa') \in U_K$.

LEMMA 2. Let the fields L and K be as specified above with relative integral basis $\{1, \kappa\}$, where κ is defined in (1.1). Then L/K has a NRIB if and only if there exists $\lambda \in U_K$ such that

where θ is given by (1.2). When (2.4) holds, a NRIB for L/K is

$$\left\{\frac{\lambda}{2}+\frac{\sqrt{\mu}}{2\gamma},\frac{\lambda}{2}-\frac{\sqrt{\mu}}{2\gamma}\right\}.$$

Proof. Suppose L/K has a NRIB, say, $\{\alpha + \beta \kappa, \alpha + \beta \kappa'\}$. Then, exactly as in the proof of Lemma 1, we deduce that $\varepsilon = 2\alpha + \beta(\kappa + \kappa') = 2\alpha + \beta\theta \in U_K$. As $\{\alpha \varepsilon^{-1} + \beta \varepsilon^{-1} \kappa, \alpha \varepsilon^{-1} + \beta \varepsilon^{-1} \kappa'\}$ is also a NRIB for L/K, we may take $\varepsilon = 1$ without loss of generality, so that

$$(2.5) 2\alpha + \beta\theta = 1.$$

As $\{\alpha + \beta \kappa, \alpha + \beta \kappa'\}$ is a RIB for L/K, there exist $\rho, \tau \in O_K$ such that

 $\kappa = \rho(\alpha + \beta \kappa) + \tau(\alpha + \beta \kappa'),$

and so, by (1.1), we have

(2.6)
$$\frac{\theta}{2} + \frac{\sqrt{\mu}}{2\gamma} = \rho \left(\alpha + \beta \frac{\theta}{2} + \beta \frac{\sqrt{\mu}}{2\gamma} \right) + \tau \left(\alpha + \beta \frac{\theta}{2} - \beta \frac{\sqrt{\mu}}{2\gamma} \right).$$

Equating coefficients of $\sqrt{\mu}/2\gamma$ in (2.6), we obtain $1 = (\rho - \tau)\beta$, showing that $\beta \in U_K$. We define $\lambda \in U_K$ by $\lambda = 1/\beta$, and, from (2.5), we deduce that $2|\lambda - \theta$, and a NRIB for L/K is

$$\begin{aligned} \{\lambda(\alpha+\beta\kappa), \ \lambda(\alpha+\beta\kappa')\} &= \{\lambda\alpha+\kappa, \ \lambda\alpha+\kappa'\} \\ &= \left\{\frac{\lambda-\theta}{2} + \frac{\theta}{2} + \frac{\sqrt{\mu}}{2\gamma}, \ \frac{\lambda-\theta}{2} + \frac{\theta}{2} - \frac{\sqrt{\mu}}{2\gamma}\right\} \\ &= \left\{\frac{\lambda}{2} + \frac{\sqrt{\mu}}{2\gamma}, \ \frac{\lambda}{2} - \frac{\sqrt{\mu}}{2\gamma}\right\}. \end{aligned}$$

Conversely suppose that $\lambda \in U_{\kappa}$ with $2|\lambda - \theta$. Then we have $\alpha = (\lambda - \theta)/2 \in O_{\kappa}$. We claim that $\{\lambda/2 + \sqrt{\mu}/2\gamma, \lambda/2 - \sqrt{\mu}/2\gamma\} = \{\alpha + \kappa, \alpha + \kappa'\}$ is a NRIB. This is clear as

$$1 = \frac{1}{\lambda} (\alpha + \kappa) + \frac{1}{\lambda} (\alpha + \kappa')$$

and

$$\kappa = \left(\frac{\lambda+\theta}{2\lambda}\right)(\alpha+\kappa) - \left(\frac{\lambda-\theta}{2\lambda}\right)(\alpha+\kappa').$$

The next lemma summarizes some elementary properties of the form of the units of O_K when c>0. The proof of the lemma is an easy exercise in elementary number theory.

LEMMA 3. Let c be a positive squarefree integer.

If $c \equiv 2 \pmod{4}$ then F(c) = -1, $N(c) = \pm 1$, and every unit of O_K is of the form $x + y\sqrt{c}$, where the integers x and y satisfy

 $x \equiv 1 \pmod{2}$, $y \equiv 0 \pmod{2}$, if $x^2 - cy^2 = 1$, $x \equiv 1 \pmod{2}$, $y \equiv 1 \pmod{2}$, if $x^2 - cy^2 = -1$.

If $c \equiv 3 \pmod{4}$ then F(c) = -1, N(c) = 1, and every unit of O_K is of the form $x + y\sqrt{c}$, where the integers x and y satisfy

298

$x \equiv 0 \pmod{2}, \quad y \equiv 1 \pmod{2}$

or

$$x \equiv 1 \pmod{2}, \quad y \equiv 0 \pmod{2}$$

If $c \equiv 5 \pmod{8}$ and F(c)=1, then $N(c)=\pm 1$ and every unit of O_K is of the form $(x+y\sqrt{c})/2$, where the integers x and y satisfy

2)

$$x \equiv y \equiv 1 \pmod{2}$$

or or

$$x \equiv 0 \pmod{4}, \quad y \equiv 2 \pmod{4}, \quad x^2 - cy^2 = -4,$$

 $x \equiv 2 \pmod{4}, \quad y \equiv 0 \pmod{4}, \quad x^2 - cy^2 = 4.$

If $c\equiv 5 \pmod{8}$ and F(c)=-1, then $N(c)=\pm 1$ and every unit of O_K is of the form $x+y\sqrt{c}$, where the integers x and y satisfy

or

$$x \equiv 0 \pmod{2}, y \equiv 1 \pmod{2}, \text{ if } x^2 - cy^2 = -1,$$

 $x \equiv 1 \pmod{2}, y \equiv 0 \pmod{2}, \text{ if } x^2 - cy^2 = 1.$

If $c \equiv 1 \pmod{8}$ then F(c) = -1, $N(c) = \pm 1$, and every unit of O_K is of the form $x + y\sqrt{c}$, where the integers x and y satisfy

$$x \equiv 1 \pmod{2}, \quad y \equiv 0 \pmod{4}, \quad if \quad x^2 - cy^2 = 1,$$

 $x \equiv 0 \pmod{4}, \quad y \equiv 1 \pmod{2}, \quad if \quad x^2 - cy^2 = -1.$

In Lemma 4 we make use of Lemma 3 to determine $\lambda \in U_K$ satisfying (2.4) when such λ exists.

LEMMA 4. Let c be a squarefree integer.

If $c \equiv 2 \pmod{4}$ then $\theta = 0, 1, \sqrt{c}$ or $1 + \sqrt{c}$, and there exists $\lambda \in U_K$ with $2|\lambda - \theta$ if and only if

$$\theta = 1$$
 ($\lambda = 1$)

or

$$\theta = 1 + \sqrt{c}, \quad c > 0, \quad N(c) = -1 \quad (\lambda = \varepsilon_c).$$

If $c \equiv 3 \pmod{4}$ then $\theta = 0, 1, \sqrt{c}$ or $1 + \sqrt{c}$, and there exists $\lambda \in U_K$ with $2|\lambda - \theta$ if and only if

$$\theta = 1 \quad (\lambda = 1)$$

or

$$\theta = \sqrt{c}, c > 0, t \equiv 0 \pmod{2}, u \equiv 1 \pmod{2} (\lambda = \varepsilon_c)$$

or

$$\theta = \sqrt{c}, \quad c = -1 \quad (\lambda = \sqrt{-1}).$$

If $c \equiv 5 \pmod{8}$ then $\theta = 0, 1$, or $(b' + \sqrt{c})/2$, and there exists $\lambda \in U_K$ with $2|\lambda - \theta$ if and only if

or

$$\theta = 1$$
 ($\lambda = 1$)

$$\theta = \frac{b' + \sqrt{c}}{2}, \quad c = -3 \quad \left(\lambda = \frac{1 + (-1)^{(1-b')/2}\sqrt{-3}}{2}\right)$$

or

$$\theta = \frac{b' + \sqrt{c}}{2}, \quad c > 0, \quad and \quad F(c) = 1 \quad \left(\lambda = \frac{t + (-1)^{(t-b'u)/2} u \sqrt{c}}{2}\right).$$

If $c \equiv 1 \pmod{8}$ then $\theta = 0, 1, (1 + \sqrt{c})/2$, or $(-1 + \sqrt{c})/2$, and there exists $\lambda \in U_K$ with $2|\lambda - \theta$ if and only if

$$\theta = 1$$
 ($\lambda = 1$).

Proof. The values of θ corresponding to the residue class of c modulo 4 or 8 follow from [9, Theorem 2]. The remaining assertions of the lemma follow easily from Lemma 3.

We are now ready to prove Theorem 1.

Proof of Theorem 1. Recall that we are assuming that L/K has the RIB $\{1, \kappa\}$. Suppose further that L/K has a NRIB. By Lemma 1 d(L/K) is squarefree. Appealing to [9, Theorem 1] a, b, c must fall into one of the following cases:

Case 1: $a \equiv 1 \pmod{2}$, $b \equiv 0 \pmod{2}$, $c \equiv 2 \pmod{4}$, $a+b \equiv 1 \pmod{4}$, Case 2: $a \equiv 2 \pmod{4}$, $b \equiv 0 \pmod{4}$, $c \equiv 2 \pmod{4}$, $a+b \equiv c \pmod{4}$, Case 3: $a \equiv 1 \pmod{2}$, $b \equiv 0 \pmod{4}$, $c \equiv 3 \pmod{4}$, Case 4: $a \equiv 0 \pmod{4}$, $b \equiv 2 \pmod{4}$, $c \equiv 3 \pmod{4}$, Case 5: $a \equiv 1 \pmod{2}$, $b \equiv 0 \pmod{4}$, $c \equiv 3 \pmod{4}$, Case 5: $a \equiv 1 \pmod{2}$, $b \equiv 0 \pmod{4}$, $c \equiv 5 \pmod{4}$, Case 6: $a \equiv 6 \pmod{4}$, $b \equiv 2 \pmod{4}$, $c \equiv 5 \pmod{4}$, Case 6: $a \equiv 6 \pmod{4}$, $b \equiv 2 \pmod{4}$, $c \equiv 5 \pmod{4}$, Case 7: $a \equiv 1 \pmod{2}$, $b \equiv 0 \pmod{2}$, $c \equiv 1 \pmod{4}$, Case 7: $a \equiv 1 \pmod{2}$, $b \equiv 0 \pmod{2}$, $c \equiv 1 \pmod{4}$, Case 8: $a \equiv 2 \pmod{4}$, $b \equiv 2 \pmod{4}$, $c \equiv 1 \pmod{4}$, Case 9: $a \equiv 2 \pmod{4}$, $b \equiv 6 \pmod{4}$, $c \equiv 1 \pmod{4}$, Case 9: $a \equiv 2 \pmod{4}$, $b \equiv 6 \pmod{4}$, $c \equiv 1 \pmod{4}$, Case 9: $a \equiv 2 \pmod{4}$, $b \equiv 6 \pmod{4}$, $c \equiv 1 \pmod{4}$, Case 9: $a \equiv 2 \pmod{4}$, $b \equiv 6 \pmod{4}$, $c \equiv 1 \pmod{4}$, Case 9: $a \equiv 2 \pmod{4}$, $b \equiv 6 \pmod{4}$, $c \equiv 1 \pmod{4}$, Case 9: $a \equiv 2 \pmod{4}$, $b \equiv 6 \pmod{4}$, $c \equiv 1 \pmod{4}$, Case 9: $a \equiv 2 \pmod{4}$, $b \equiv 6 \pmod{4}$, $c \equiv 1 \pmod{4}$, Case 9: $a \equiv 2 \pmod{4}$, $b \equiv 6 \pmod{4}$, $c \equiv 1 \pmod{4}$, Case 9: $a \equiv 2 \pmod{4}$, $b \equiv 6 \pmod{4}$, $c \equiv 1 \pmod{4}$, Case 9: $a \equiv 2 \pmod{4}$, $b \equiv 6 \pmod{4}$, $c \equiv 1 \pmod{4}$, Case 9: $a \equiv 2 \pmod{4}$, $b \equiv 6 \pmod{4}$, $c \equiv 1 \pmod{4}$, Case 9: $a \equiv 2 \pmod{4}$, $b \equiv 6 \pmod{4}$, $c \equiv 1 \pmod{4}$, Case 9: $a \equiv 2 \pmod{4}$, $b \equiv 6 \pmod{4}$, $c \equiv 1 \pmod{4}$, Case 9: $a \equiv 2 \pmod{4}$, $b \equiv 6 \pmod{4}$, $c \equiv 1 \pmod{4}$, Case 9: $a \equiv 2 \pmod{4}$, $b \equiv 6 \pmod{4}$, $c \equiv 1 \pmod{4}$, Case 9: $a \equiv 2 \pmod{4}$, $b \equiv 6 \pmod{4}$, $c \equiv 1 \pmod{4}$, Case 9: $a \equiv 2 \pmod{4}$, $b \equiv 6 \pmod{4}$, $c \equiv 1 \pmod{4}$, Case 9: $a \equiv 2 \pmod{4}$, $b \equiv 6 \pmod{4}$, $c \equiv 1 \pmod{4}$, Case 9: $a \equiv 2 \pmod{4}$, $b \equiv 6 \pmod{4}$, $c \equiv 1 \pmod{4}$, Case 9: $a \equiv 2 \pmod{4}$, $c \equiv 1 \pmod{4}$, Case 9: $a \equiv 2 \pmod{4}$, $c \equiv 1 \pmod{4}$, Case 9: $a \equiv 2 \pmod{4}$, $c \equiv 1 \pmod{4}$, Case 9: $a \equiv 2 \pmod{4}$, Case

We emphasize that if a, b, c do not satisfy one of Cases 1 to 9 then d(L/K) is not squarefree and L/K does not possess a NRIB. We now examine each of the above cases making use of Lemma 4 to determine the additional constraints on a, b, c in order for L/K to have a NRIB.

300

Cases 1 and 2. By [9, Theorem 2] we have

$$\theta = \begin{cases} 1, & \text{if } a' \equiv 1 \pmod{4}, \\ 1 + \sqrt{c}, & \text{if } a' \equiv 3 \pmod{4}. \end{cases}$$

Thus, by Lemmas 2 and 4, L/K has NRIB in this case if and only if

$$a' \equiv 1 \pmod{4}$$

$$a' \equiv 3 \pmod{4}, c > 0, N(c) = -1.$$

The NRIB's are respectively

$$\left\{\frac{1}{2} + \frac{\sqrt{\mu}}{2\gamma}, \frac{1}{2} - \frac{\sqrt{\mu}}{2\gamma}\right\}$$

and

$$\left\{\frac{t+u\sqrt{c}}{2}+\frac{\sqrt{\mu}}{2\gamma},\frac{t+u\sqrt{c}}{2}-\frac{\sqrt{\mu}}{2\gamma}\right\}.$$

Cases 3 and 4. By [9, Theorem 2] we have

$$\theta = \begin{cases} 1, & \text{if } a' \equiv 1 \pmod{4}, \\ \sqrt{c}, & \text{if } a' \equiv 3 \pmod{4}. \end{cases}$$

Then, by Lemmas 2 and 4, L/K has a NRIB in this case if and only if

$$a' \equiv 1 \pmod{4}$$

or

 $a' \equiv 3 \pmod{4}, c = -1,$

or

 $a' \equiv 3 \pmod{4}, c > 0, t \equiv 0 \pmod{2}, u \equiv 1 \pmod{2}.$

The NRIB's are respectively

$$\left\{\frac{\frac{1}{2}+\frac{\sqrt{\mu}}{2\gamma}, \frac{1}{2}-\frac{\sqrt{\mu}}{2\gamma}\right\},\\ \left\{\frac{\sqrt{c}}{2}+\frac{\sqrt{\mu}}{2\gamma}, \frac{\sqrt{c}}{2}-\frac{\sqrt{\mu}}{2\gamma}\right\},$$

and

$$\left\{\frac{t+u\sqrt{c}}{2}+\frac{\sqrt{\mu}}{2\gamma},\frac{t+u\sqrt{c}}{2}-\frac{\sqrt{\mu}}{2\gamma}\right\}.$$

Case 5. By [9, Theorem 2] we have

$$\theta = \begin{cases} 1, & \text{if } a' \equiv b' \equiv 0 \pmod{2}, \\ \frac{b' + \sqrt{c}}{2}, & \text{if } a' \equiv b' \equiv 1 \pmod{2}. \end{cases}$$

Then, by Lemmas 2 and 4, L/K has a NRIB in this case if and only if

$$a' \equiv b' \equiv 0 \pmod{2}$$

or

$$a' \equiv b' \equiv 1 \pmod{2}, c = -3$$

or

$$a' \equiv b' \equiv 1 \pmod{2}, \quad c > 0, \quad F(c) = 1.$$

The NRIB's are respectively

$$\begin{split} & \left\{ \frac{1}{2} + \frac{\sqrt{\mu}}{2\gamma}, \frac{1}{2} - \frac{\sqrt{\mu}}{2\gamma} \right\}, \\ & \left\{ \frac{1 + (-1)^{(1-b')/2}\sqrt{c}}{4} + \frac{\sqrt{\mu}}{2\gamma}, \frac{1 + (-1)^{(1-b')/2}\sqrt{c}}{4} - \frac{\sqrt{\mu}}{2\gamma} \right\}, \\ & \left\{ \frac{t + (-1)^{(t-b'u)/2}u\sqrt{c}}{4} + \frac{\sqrt{\mu}}{2\gamma}, \frac{t + (-1)^{(t-b'u)/2}u\sqrt{c}}{4} - \frac{\sqrt{\mu}}{2\gamma} \right\}. \end{split}$$

Case 6. By [9, Theorem 2] we have

$$\theta = \frac{b' + \sqrt{c}}{2}.$$

Thus, by Lemmas 2 and 4, L/K has a NRIB in this case if and only if

$$a' \equiv b' \equiv 1 \pmod{2}, c = -3$$

or

$$a' \equiv b' \equiv 1 \pmod{2}, \quad c > 0, \quad F(c) = 1.$$

The NRIB's are respectively

$$\left\{ \frac{1 + (-1)^{(1-b')/2}\sqrt{c}}{4} + \frac{\sqrt{\mu}}{2\gamma}, \frac{1 + (-1)^{(1-b')/2}\sqrt{c}}{4} - \frac{\sqrt{\mu}}{2\gamma} \right\}, \\ \left\{ \frac{t + (-1)^{(t-b'u)/2}u\sqrt{c}}{4} + \frac{\sqrt{\mu}}{2\gamma}, \frac{t + (-1)^{(t-b'u)/2}u\sqrt{c}}{4} - \frac{\sqrt{\mu}}{2\gamma} \right\}.$$

Cases 7, 8, 9. By [9, Theorem 2] we have $\theta = 1$. Thus, by Lemmas 2 and 4, L/K has a NRIB namely,

$$\left\{\frac{1}{2}+\frac{\sqrt{\mu}}{2\gamma}, \frac{1}{2}-\frac{\sqrt{\mu}}{2\gamma}\right\}.$$

3. L cyclic: Proof of Theorem 2

Let L be a cyclic quartic field with unique quadratic subfield K, and assume that L/K has a RIB. By Lemma 1 we know that if d(L/K) is not squarefree then L/K does not possess a NRIB. Thus to complete the proof it suffices to prove that if d(L/K) is squarefree then L/K has a NRIB. It is known (see

[8]) that L may be taken in the form $L=Q(\sqrt{A(D+B\sqrt{D})})$, where A is squarefree and odd, $D=B^2+C^2$ is squarefree (B>0, C>0), and (A, D)=1. Then, appealing to [8, Lemma 2], we see that d(L/K) squarefree implies

 $D \equiv 1 \pmod{4}$, $B \equiv 0 \pmod{2}$, $A + B \equiv 1 \pmod{4}$.

Further, by [8, Theorem 3], as L/K has a RIB, we can take the RIB as

$$\left\{1, \frac{1}{2}\left(1+\sqrt{A(D+B\sqrt{D})}\right)\right\}.$$

Thus L possesses a NRIB over K, namely,

$$\left\{\frac{1}{2}\left(1-\sqrt{A(D+B\sqrt{D})}\right), \frac{1}{2}\left(1+\sqrt{A(D+B\sqrt{D})}\right)\right\}.$$

4. L bicyclic: Proof of Theorem 3

If L/K has a NRIB then clearly L/K has a RIB and, by Lemma 1, d(L/K) is squarefree.

Now suppose that L/K has a RIB and d(L/K) is squarefree. There are nine possibilities for the pair $(c, a) \pmod{4}$. The second assumption by [9, Theorem 1] eliminates four of these and leaves only the five possibilities

$$(4.1) (c, a) \equiv (1, 1), (2, 1), (2, 2) \text{ (with } a \equiv c \pmod{8}), (3, 1), (3, 3) \pmod{4}.$$

Further, the first assumption by [9, Theorem 2] guarantees the existence of an element γ in O_K with $S = \gamma O_K$. Recalling that the only primes which ramify in K are the odd prime divisors of c and the prime 2 if $c \not\equiv 1 \pmod{4}$, we see from (1.4) that $S^2 = (a, c)O_K$. Thus

(4.2)
$$\gamma^2 = (a, c)\theta$$
, for some unit θ of O_K .

It is now convenient to treat cases.

c=-3. From (4.1) we have $a\equiv 1 \pmod{4}$, and by Theorem 1 ($c\equiv 5 \pmod{8}$, (i), (ii)) L/K has a NRIB.

c=-1. Here $\theta=\pm 1$ or $\pm i$. From (4.1) we have $a\equiv 1 \pmod{2}$. Further (a, c)=1 as $\gamma^2=(a, c)\theta$ cannot hold with $\theta=\pm i$. Thus $\theta=\pm 1$, $\gamma^2=\pm 1$, $a'+b'i=a/\gamma^2=\pm a$, so $a'\equiv 1 \pmod{2}$. Hence by Theorem 1 ($c\equiv 3 \pmod{4}$), (i), (ii)) L/K has a NRIB.

c>0, N(c)=-1. As N(c)=-1, we have $c \not\equiv 3 \pmod{4}$. Thus, by (4.1), we have $(c, a)\equiv(1, 1), (2, 1)$ or (2.2) (mod 4). Clearly, from (4.2), we see that we may assume without loss of generality that $\theta=\pm 1$ or $\theta=\pm \varepsilon_c$.

When $c \equiv 2 \pmod{4}$, θ is of the form $x + y\sqrt{c}$ with x odd, so from $a' + b'\sqrt{c} = a/((a, c)\theta)$, we see that a' is odd. Hence, by Theorem 1 ($c \equiv 2 \pmod{4}$, (i)-(iv)), L/K has a NRIB.

When $c \equiv 1 \pmod{8}$, we have $a \equiv 1 \pmod{4}$, and by Theorem 1 ($c \equiv 1 \pmod{8}$, (i)) L/K has a NRIB.

When $c \equiv 5 \pmod{8}$ we must examine θ more closely. Clearly $\theta = \gamma^2/(a, c) > 0$ so that $\theta = 1$ or ε_c . Further

$$N(\theta) = N(\gamma)^2/(a, c)^2 > 0$$

so that $\theta \neq \varepsilon_c$ as $N(\varepsilon_c) = -1$. Hence $\theta = 1$, and $\gamma^2 = (a, c)$. As $\gamma \in O_K$ we have $\gamma = (r + s\sqrt{c})/2$, where r, s are integers with $r \equiv s \pmod{2}$. Thus

$$r^2 + s^2 c = 4(a, c), \quad 2rs = 0.$$

If r=0 then $s^2c=4(a, c)$ so $c \mid a$, a contradiction. If s=0 then $r^2=4(a, c)$ so $(r/2)^2=(a, c)$. But (a, c) is squarefree, so $r/2=\pm 1$, (a, c)=1, and $\gamma^2=1$. Thus $(a'+b'\sqrt{c})/2=a$, so $a'\equiv b'\equiv 0 \pmod{2}$, and by Theorem 1 $(c\equiv 5 \pmod{8}, (i))$ L/K has a NRIB.

c < -3. Here $\theta = \pm 1$. From (4.2) we have $\gamma^2 = \pm (a, c)$. We show that the plus sign must hold and (a, c) = 1, for otherwise (remembering that c and (a, c) are squarefree) we have $[Q(\sqrt{\pm (a, c)}):Q]=2$ and $\sqrt{\pm (a, c)}=\gamma \in Q(\sqrt{c})$, so c = -(a, c) and thus $c \mid a$, a contradiction. Hence $\gamma^2 = (a, c) = 1$. Note that this rules out the case $c \equiv a \equiv 2 \pmod{4}$. (There is no RIB in this case.) Now by (1.8) we have

$$a'+b'\sqrt{c} = \begin{cases} a, & \text{if } c \equiv 1 \pmod{4}, \\ 2a, & \text{if } c \equiv 1 \pmod{4}. \end{cases}$$

From Theorem 1 (examining cases), we see that L/K possesses a NRIB only when $a \equiv 1 \pmod{4}$.

c>0, N(c)=1. From (4.2) we see without loss of generality that $\theta=\pm 1$ or $\theta=\pm\varepsilon_c$. As $\theta=\gamma^2/(a, c)>0$, we have $\theta=1$ or $\theta=\varepsilon_c$. If $(a, c)\neq 1$ we show that $\theta=\varepsilon_c$ Otherwise $\theta=1$, $[Q(\sqrt{(a, c)}):Q]=2$ and $\sqrt{(a, c)}=\gamma\in Q(\sqrt{c})$, so (a, c)=c contradicting $c \nmid a$. If (a, c)=1 we show that $\theta=1$. Otherwise $\theta=\varepsilon_c=\gamma^2$, contradicting that ε_c is a fundamental unit.

If (a, c)=1 then $\theta=1$ and $\gamma^2=1$. Hence, by (1.8), we have

$$a'+b'\sqrt{c} = \begin{cases} a, & \text{if } c \equiv 1 \pmod{4}, \\ 2a, & \text{if } c \equiv 1 \pmod{4}. \end{cases}$$

From Theorem 1 (examining cases) we see that L/K possesses a NRIB only when

 $a \equiv 1 \pmod{4}$

or

 $c \equiv 3 \pmod{4}$, $a \equiv 3 \pmod{4}$, $t \equiv 0 \pmod{2}$, $u \equiv 1 \pmod{2}$.

If $(a, c) \neq 1$ then $\theta = \varepsilon_c$ and $\gamma^2 = (a, c)\varepsilon_c$. Hence, by (1.8), (1.10) and Lemma 3, we have

$$a'+b'\sqrt{c} = \begin{cases} \frac{a}{(a, c)}(t-u\sqrt{c}), & \text{if } c \not\equiv 1 \pmod{4}, \\ & \text{or} \\ c \equiv 5 \pmod{8}, \ F(c) = 1, \\ \frac{2a}{(a, c)}(t-u\sqrt{c}), & \text{if } c \equiv 5 \pmod{8}, \ F(c) = -1 \text{ or } c \equiv 1 \pmod{8}. \end{cases}$$

Again by Theorem 1, after an examination of cases, we see that L/K possesses a NRIB only when

$$c \equiv 1 \pmod{4}$$
 or $c \not\equiv 1 \pmod{4}$, $\frac{at}{(a, c)} \equiv 1 \pmod{4}$.

We note that Theorem 3 extends work of Brinkhuis [1] and Gras [2].

5. L pure: Proof of Theorem 4

Let L be a pure quartic field so that $L=Q(\sqrt{b}\sqrt{c})$, where b and c are squarefree integers with $(b, c)\neq (\pm 2, -1)$ and $c \neq b$ if $c\neq -1$. Set $K=Q(\sqrt{c})$. Suppose L/K has a RIB and that d(L/K) is squarefree. By Theorem 1 of [9] and the tables in [3] or [4] the latter assumption implies that

$$c \equiv 7 \pmod{8}, \quad b \equiv 2 \pmod{4}.$$

The first assumption guarantees the existence of $\gamma \in O_K$ and $\theta \in U_K$ such that

$$2(b, c) = \gamma^2 \theta$$

We show that $\theta = \pm 1$ is impossible. Suppose $\theta = \pm 1$ then $a'+b'\sqrt{c} = b\sqrt{c}/\pm 2(b, c)$ so a'=0. As L/K possesses a RIB, by Theorem 2 of [9], we see that a' is odd, a contradiction.

We now treat two cases according as c<0 or c>0. If c<0 we must have c=-1, $\theta=\pm i$. Thus $a'=\pm b/2\equiv 1 \pmod{2}$ and L/K has a NRIB by Theorem 1. If c>0 we have without loss of generality $\theta=\pm\varepsilon_c$. Further $\theta=2(b, c)/\gamma^2>0$ so $\theta=\varepsilon_c$. Also $N(\varepsilon_c)=N(\theta)=4(b, c)^2/N(\gamma)^2>0$ so $N(\varepsilon_c)=1$. Hence a'=bcu/2(b, c). As L/K possesses a RIB, by Theorem 2 of [9], a' is odd, so that $u\equiv 1 \pmod{2}$, and thus $t\equiv 0 \pmod{2}$. By Theorem 1 ($c\equiv 3 \pmod{4}$, (iv), (vi)) L/K has a NRIB.

6. Examples

We conclude this paper with some examples.

Example 1. We consider $L=Q(\sqrt{-17+18\sqrt{5}})$. The quadratic subfield of L is $K=Q(\sqrt{5})$. It was shown in [9, Example 2] that L/K possesses a RIB. Here a=-17, b=18, c=5, $\mu=-17+18\sqrt{5}=((-1+3\sqrt{5})/2)^3$, $R=S=((-1+3\sqrt{5})/2)^3$. /2), T=(1), $\gamma=(-1+3\sqrt{5})/2$, $\varepsilon_5=(1+\sqrt{5})/2$, t=u=1, F(5)=1, $(a'+b'\sqrt{c})/2=\mu/\gamma^2=(-1+3\sqrt{5})/2$, a'=-1, b'=3. Thus by Theorem 1 ($c\equiv 5 \pmod{8}$, (iii)) L/K has a NRIB, which can be taken as

$$\left\{\frac{1-\sqrt{5}}{4} + \frac{1}{2}\sqrt{\frac{-1+3\sqrt{5}}{2}}, \frac{1-\sqrt{5}}{4} - \frac{1}{2}\sqrt{\frac{-1+3\sqrt{5}}{2}}\right\}$$

Example 2. We take $L=Q(\sqrt{-5}, \sqrt{-1})$ and $K=Q(\sqrt{-5})$. Here a=-1, b=0, c=-5, $\mu=-1$, $R=S=T=O_K$, $\gamma=1$, L/K has a RIB by [9, Theorem 2], and d(L/K) is squarefree. However, $a \not\equiv 1 \pmod{4}$ so, by Theorem 3, L/K does not possess a NRIB.

Example 3. Let *a* and *b* be integers with (a, b) squarefree and a+bi not a square in K=Q(i). Then $L=Q(\sqrt{a+bi})$ possesses a NRIB over K if and only if

$$a \equiv 1 \pmod{2}, \quad b \equiv 0 \pmod{4}$$

or

$$a \equiv 0 \pmod{8}, \quad b \equiv 2 \pmod{4}.$$

Example 4. Let *a* and *b* be integers with (a, b) squarefree and $a+b\sqrt{-3}$ not a square in $K=Q(\sqrt{-3})$. Then $L=Q(\sqrt{a+b\sqrt{-3}})$ possesses a NRIB over *K* if and only if

$$a \equiv 1 \pmod{2}, \quad b \equiv 0 \pmod{2}, \quad a + b \equiv 1 \pmod{4}$$

or

$$a \equiv 6 \pmod{8}, b \equiv 2 \pmod{4}, a - b \equiv 0, 12 \pmod{16}$$

Example 5. $L=Q(\sqrt{-7}, \sqrt{5})$ has a NRIB over $K=Q(\sqrt{-7})$, namely,

$$\left\{\frac{1+\sqrt{5}}{2}, \frac{1-\sqrt{5}}{2}\right\}.$$

Example 6. This example was considered by Kawamoto [5, Remark 12]. $L=Q(\sqrt{3+2\sqrt{6}})$ has a RIB over $K=Q(\sqrt{6})$, namely

$$\left\{1, \frac{1}{2}\left(1+\sqrt{6}+\sqrt{3+2\sqrt{6}}\right)\right\},$$

but, by Theorem 1, L does not have a NRIB over K. Compare Sze [10, Theorem 1].

References

[1] J. BRINKHUIS, Embedding problems and Galois modules, Doctoral Thesis, University of Leiden (1981).

- [2] M.-N. GRAS, Bases d'entiers dans les extensions cycliques de degré 4 de Q, Seminar on Number Theory, 1982-1983, Exp. No. 11, 11 pp.
- [3] J.G. HUARD, B.K. SPEARMAN AND K.S. WILLIAMS, Integral bases for quartic fields with quadratic subfields, Carleton University Centre for Research in Algebra and Number Theory Mathematical Research Series, No. 4, 1991, 44 pp.
- [4] J.G. HUARD, B.K. SPEARMAN AND K.S. WILLIAMS, Integral bases for quartic fields with quadratic subfields, J. Number Theory, 51 (1995), 87-102.
- [5] F. KAWAMOTO, Normal integral bases and divisor polynomials, Ph.D. Thesis, Gakushuin University (1986).
- [6] R. MASSY, Formules de construction de bases normales d'entiers relatives, C.R. Acad. Sci. Paris Sér. I Math., 313 (1991), 477-482.
- [7] R. MASSY, Bases normales d'entiers relatives quadratiques, J. Number Theory, 38 (1991), 216-239.
- [8] B.K. SPEARMAN AND K.S. WILLIAMS, Cyclic quartic fields with relative integral bases over their quadratic subfields, Proc. Amer. Math. Soc., 103 (1988), 687-694.
- [9] B.K. SPEARMAN AND K.S. WILLIAMS, Relative integral bases for quartic fields over quadratic subfields, Acta Math. Hungar., 70 (1996), 185-192.
- [10] A. SZE, A normal integral basis theorem, J. Algebra, 66 (1980), 544-549.

DEPARTMENT OF MATHEMATICS AND STATISTICS OKANAGAN UNIVERSITY COLLEGE KELOWNA, BRITISH COLUMBIA, CANADA V1V 1V7 e-mail: bkspearm@okanagan.bc.ca

DEPARTMENT OF MATHEMATICS AND STATISTICS CARLETON UNIVERSITY OTTAWA, ONTARIO, CANADA K1S 5B6 e-mail: williams@math.carleton.ca