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A N  A R I T H M E T I C  A P P R O A C H  T O  THE 
DAVENPORT-HASSE RELATION O V E R  GF(p) 

JAMES G. HUARD, BLAIR K. SPEARMAN AND KENNETH S. WILLIAMS 

ABSTRACT. It is shown how the Davenport-Hesee relation 
for Gauss sums wer GF(p)  can be deduced from two simple 
arithmetic results. 

1. Introduction. In this paper we prove two simple arithmetic 
results and use them to given an elementary proof of the Davenport- 
Hasse relation (Theorem 3) for Gauss sums over a finite field with 
p elements, where p is an odd prime. Our first arithmetic result 
(Theorem 1) gives a congruence (modp) for a certain root of unity 
modulo p in terms of factorials. Hudson and Williams [2] deduced this 
congruence from the Davenport-Hasse relation [I] and a congruence of 
Yarnamoto [5] for Gauss sums. Here we take the reverse approach. 
We prove Theorem 1 by simple arithmetic manipulations and then 
use it as a key step in a new proof of the Davenport-Hasse relation; 
specifically, to determine the root of unity appearing in the relation. 
The second arithmetic result (Theorem 2) compares the number of 
integers satisfying two inequalities and is used to establish that the 
quotient of products of Gauss sums in the Davenport-Hasse relation is 
an algebraic integer. In addition to these two theorems we need only the 
basic properties of Gauss sums, Jacobi sums, and the ring of integers 
of a cyclotomic field. After proving the Davenport-Hasse relation we 
use it to show that the inequality proved in Theorem 2 is actually an 
equality. 

2. Two arithmetic results. In this section we prove the two results 
discussed in the introduction. 
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Theorem 1. Let f ,  m and n be integers with f 2 1, m 2-2, n 3 1, 
and p = mn f + 1 prime. Let t be an integer with 1 5 t 5 m - 1. Then 

(nt f)! n (mj f)!/ TI ((mj  + t) f)! E n(p-l)tlm(modp). 
j=1 j = O  

Proof. Consider the first mn f positive integers. Arrange these 
consecutively in mn rows each of length f .  Let Ah, h = 1, . . . , mn, 
be the product of the integers in the hth row, so that 

Next, arrange the first nt f positive integers in t f rows of length n. Let 
B1, 1 = 1,. . . , n, be the product of the integers in the lth column, so 
that 

B1 = l ( l+n ) . - . ( l+n ( t f  - I)). 

Multiplying each of the f factors of i = 1,. . . , t, j = 1,. . . , n-1, 
by n, we have 

nfAjm+i = (jmnf +nif  -nf  +n) . - . ( jmnf  +n i f )  

= (.(if - f +1) - j ) . . . (n i f  - j )  (modp), 

so that 

Multiplying both sides of this congruence by Bn = n(2n) . (t f n) = 
ntf (t f )!, we obtain 

that is, 

n- 1 

nntf (tf)! n ( ( m j  + t) f!/(mjf)!) = (ntf)!(modp), 
j=1 
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from which the assertion of the theorem follows. 

Before continuing, we note that since p = m n  f + 1, we have 

Am,-h+l = ((mn - h) f + 1) ((mn - h + 1)f) 
3 (-hf) - . - ( -h f  + f - l)(modp), 

for h = 1, .  . . ,mn;  that is, 

which we will use later in the proof of Theorem 3. 

We also introduce some notation. For a real number x, [XI denotes 
the greatest integer not exceeding x. For integers k ( 2  1) and a,  [aIk 
denotes the least nonnegative residue of a modulo k. The following two 
properties are immediate and will be used extensively in the proof of 
our next result: 

(3) [a]k = a - [a/k]k; 

(4) [akIrk = k[aIr, for any positive integer 1. 

Theorem 2. Let m and n be integers with m 2 2 and n 2 1. Let 1 
be an integer such that 

(1,mn) = 1 and 1 5 1 < mn. 

Let t be an integer such that 

( t , m ) = l  and 1 5 t < m .  

Let 

For any positive integer A, let 
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Then 

(a)  A(m,  n, 1 ,  t )  = n + n[l t /mn]  - [l t lm] - 1; 

and 

(b )  if tln, then B ( m , n ,  l , t ,  1)  5 A(m,n ,  1 ,  t ) .  

Proof. (a)  Set r = [ l t lmn] ,  so that by (3) ,  [It],, = It - rmn. Since 
l t l m  is not an integer, we have 

[imj]mn < mn - [It],, 
@ [ijln < n - ( ( l t l m )  - r n )  (by (4 ) )  
@ [ l j ] ,  5 n + r n  - ([ l t lm]  + I ) ,  

whose right side is less than n. As j runs through 1,. . . , n - 1, so does 
[I j] ,. Hence, 

A(m,n , l , t )  = # { j  E Z 11 5 j I n + r n -  [l t lm] - 1)  
= n + n[lt /mn] - [l t lm] - 1, 

as required. 

( b )  Suppose that tln, so that nl = n l t  is an integer. Let 11 = [l],,, . 
Since, by (4), the inequality [ltj],, < mn - [It],, is equivalent to  
[ I l  jlmnl < mnl - 11,  we have B ( m ,  n, 1,  t ,  1)  = B ( m ,  nl, 11,  1, t ) .  

Next define the integers j,, w = 1,2,.  . . , [ l l t /m] )  by j, = [wmnl / l l ] .  
Since rnnllll > 1, the j, 's are distinct. The j, 's satisfy the inequalities 

Furthermore, as wmnllll  is not an integer, we have (wmnl l l l )  - 1 < 
j, < wmnl / l l ,  from which we obtain 

0 < mnl - 1 1  < l l j ,  - ( w -  1)mnl < mnl. 
Thus we have shown that the j,'s, w = 1,. . . , [ l l t /m] ,  belong to  the 
set { j  = 1 , .  . . ,n - 1 I [llj],,, # mnl - [11],,,). Hence, 

B(m,n , l , t ,  1) = B ( m , n l , h ,  1 , t )  
5 n - 1 - [ l l t /m]  

= n - 1 - [ ( 1  - [ l /mnl ]mnl ) t /m]  (by (3 ) )  
= n - 1 - [ltlm] + [llrnnlln 

= n - 1 - [ltlm] + n[lt /mn] 

= A(m,  n ,  1 ,  t )  (by (a)). 
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In fact, we will see later from the Davenport-Hasse relation that 
B(m, n, 1, t ,  1) = A(m, n, 1, t), where the condition tln in (b) has been 
removed. 

3. Jacobi sums and Gauss sums. For any positive integer k, set 
Pk = exp(27rilk). Let K denote the cyclotomic field Q(Pmn), where 
m ( 2  2) and n ( 2  1) are integers. Let p be a prime with p r l(mod mn) 
and set f = ( p  - 1)lmn. Let OK denote the ring of integers of K 
and let P be a prime ideal of OK dividing the prime p. Choose a 
primitive root g modulo p so that gf = Pmn(mod P). For any integer 
1 f O(modp), let ind,(l) be the least nonnegative integer for which 
gindo(') = l(modp). Then define the character ~ ( m o d p )  of order mn 
by ~ ( g )  = Pmn, SO that ~ ( 1 )  If (mod P). The Jacobi sum J(x',x") 
is defined for integers r and s by 

and is in OK. The Gauss sum G(x') is defined for an integer r by 

which is an integer of Q(Pmnp). The basic formula relating Jacobi sums 
and Gauss sums is 

Let ua be the automorphism of K given by ua(Pmn) = Pkn, where a = 
1,. . . , mn, (a, mn) = 1, and set Pa = ua(P), so that ~ O K  is the product 
of the Pa's. If r, s, r + s f O(mod mn), then J(xr, x') J(xr, x') = p, 
so that J (xr ,  x8)OK is a squarefree product of some of the Pa's. The 
congruence 
(7) 

O(mod Pk-I), if [kr],, + [ks],, < mn, 

J x r x  { - l ) k f l  ( [krlmnf )(mod ~ k - 1 )  otherwise, 
mn - [ksI mn ) f 
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(where k-' denotes the inverse of k modulo mn) follows from (5) by 
means of the binomial theorem. The argument is a straightforward 
modification of that given in [2] for Theorem 5.1. From (7), we see 
that 

(8) J ( X r , x B ) O ~  = Pk-1. 

A full discussion of Jacobi sums can be found, for example, in [3]. 

4. The Davenport-Hasse relation. We now give our new proof 
of the relation [I]. We state the relation in two equivalent forms, first 
using Gauss sums and then using Jacobi sums. 

Theorem 3 (Davenport-Hasse relation). Using the notation of 
Section 3, for t = 1 , .  . . , m - 1, 

equivalently, 

Proof. We first prove that equations (9) and (10) are equivalent by 
expressing the left side of (9) in terms of Jacobi sums: 
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We define p(m, n, t , ~ )  in K by 

It suffices to prove (10) under the assumption that (t,m) = 1, for if 
(t,m) = e, then t = etl, m = eml, (tl,ml) = 1 for some integers 

ntlind n 
tl and ml, and so (10) becomes p(ml,n,tl,xe) = Pmln '( ), where 
Xe(g)  = Rn =Pmln. 

Assume now that ( t ,  m) = 1. We show that we may also suppose 
that tin. To see this, let t' = (t,n), and let c be such that tc = 
t' (mod mn). As c is coprime with mnlt', there is an integer x such that 
a = c + (mn/tt)x is coprime with mn. Now apply the automorphism 
ua to (10) to obtain 

In the numerator of the left side we may change the product index 
j to aj .  After relabelling and using (11) we obtain p(m,n,tt,x) = 
p;edp (n) 

The next step is to show that p = p(m, n, t , ~ )  is a root of unity for 
t = 1,.  . . , m - 1, with (t,m) = 1 and tln. Now, by (8), 

that is, using the notation of Theorem 2,  

which is an integral ideal by Theorem 2(b). Hence, p E OK. The con- 
jugates of p are given by g a ( ~ ) ,  where a = 1,.  . . , mn, with (a ,  mn) = 1. 
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A typical conjugate has modulus 

Since p and all of its conjugates have modulus 1, by a classical result 
(see, for example, Lemma 11.6 in [4]), p is a root of unity in OK, SO 

that p = Phn for some integer u. 

In order to determine the value of u, we need a prime ideal Pk-I that 
does not divide any of the Jacobi sums occurring in p. By (12)) k = 
mn - 1 satisfies these conditions since (k, mn) = 1, [krnj],, + [kt],, = 
mn - m j  + (mn - t) 2 m + mn - t > mn, and [ktjlmn + [kt],, = 
(mn - t j )  + (mn - t) = 2mn - ( j  + l ) t  > mn. We next use Theorem 
1 and the properties of the Ah's introduced in its proof to compute 
p (mod Pk-1 ). Using (7) and ( l l ) ,  we see that 

(mod Pk-I) 

n-1 
- - ((mn - mj) f)!((mn - t j  - t) f)! 
- n ((mn - m j  - t) f)!((mn - t j )  f)! 

(mod Pk-I) 
j=1 

n-1 

E n Amj+l~mj+2 .Amj+t 
(-lItfAtj+lAtj+2 . . . Atj+t (modpk-1) (by (2)) 

j=l 
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n - ( ~ " ) ~ / ~ ( m o d  pk-1 ) (by Theorem 1). 

Therefore, 

But we also have p = En gkfu(mod pk-i), SO that gkfu = 
gnkt f indo (n) (mod p). This can occur only if k f u = nkt f in$ (n)) 
(mod ( p  - 1)); that is, u 1 ntind,(n)(modmn). Finally, we have 

nt ind n 
P = Pmn 0(  ) as required. 

Using Theorem 3, we may remove the condition tln in Theorem 2(b) 
and replace the inequality by an equality. 

Theorem 4. Using the notation of Theorem 2, we have 

(14) B(m, n, I, t, 1) = A(m, n, I, t). 

Proof. By (13), since p is a unit, we have (14). 

We have been unable to prove (14) in a purely arithmetic manner. 

5. Final remarks. The impediment to extending our method to 
prove the Davenport-Hasse relation for Gauss sums over an arbitrary 
finite field is that it is not always possible to find a prime ideal of OK 
that divides p but does not divide any of the Jacobi sums occurring 
in p. For example, consider m = 2, n = 2, K = Q(P4) = Q(i), 
q = 32 = l(mod4), where f = (q - l ) /mn = 2 and 3 0 ~  is a prime 
ideal. The group of units of the field G F ( ~ ~ )  = {x + iylx, y E GF(3)) 
is generated by 7 = 1 + 2i, where yf = (1 + 2i)2 = i ( m o d 3 0 ~ ) .  
We define the character X by ~ ( y )  = i and the Jacobi sum by 
J(xr, x') = CXEGF(Bz!),XZO,l xr(X)xB(l - X). For t = 1, we have 
p = J(x2,  x)/J(x, X) = 313 = 1, so that the only prime ideal dividing 
3 also divides each Jacobi sum occurring in p. 
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