ON THE SET OF PRIMES p WHICH SPLIT $X^3 + B$ MODULO p

JAMES G. HUARD¹, BLAIR K. SPEARMAN² AND KENNETH S. WILLIAMS³

¹Department of Mathematics, Canisius College, Buffalo, New York 14208, USA

²Department of Mathematics and Statistics, Okanagan University College, Kelowna, B.C., Canada, V1V 4X8

³Department of Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada K1S 5B6

(Received 5 August 1994; after revision 24 November 1994; accepted 30 November 1994)

Let B denote an integer which is not a perfect cube. It is shown, using a theorem of lwaniec on primes represented by quadratic polynomials in two variables, that the set of primes p which split the cubic $X^3 + B$ modulo p cannot be characterized in terms of congruence conditions.

Let f(x) be a monic polynomial with integer coefficients that is irreducible over the integers. The set of all primes p such that f(X) splits completely into distinct linear factors modulo p is denoted by Spl(f(X)). If there exists a positive integer mand positive integers $a_1, ..., a_s$ (depending only on f(X)) lying in distinct residue classes (mod m) coprime with m, such that, except for finitely many primes, we have

 $p \in \operatorname{Spl}(f(X)) \Leftrightarrow p = a_1, ..., a_s \pmod{m},$

then we say that Spl(f(X)) is determined by congruence conditions. An abelian polynomial is a polynomial whose Galois group is abelian, that is, whose splitting field is an abelian extension of the rational number field Q. From class field theory (see for example Wyman¹¹), it is known that the polynomials f(X) for which Spl(f(X))can be described by congruence conditions are precisely the abelian polynomials. The simplest non-abelian polynomial is $X^3 + B$, where the integer B is not a perfect cube. We show without appeal to class field theory that $Spl(X^3 + B)$ cannot be described by congruence conditions. The principal tool in the proof is a deep analytic theorem of Iwaniec⁵ on primes represented by quadratic polynomials in two integral variables. In addition we use Weber's theorem¹⁰, as well as some results on cubic reciprocity.

^{*}Research supported by Natural Sciences and Engineering Research Council of Canada Grant A-7233.

We begin with a classical theorem which has its origins in the work of Gauss, Jacobi and Eisenstein on cubic reciprocity.

Proposition 1 — Let p be a prime such that $p \equiv 1 \pmod{3}$. Let L and M be the integers unique up to sign such that $4p = L^2 + 27M^2$. Then

(i) 2 is a cube modulo p if and only if 2 divides M;

(ii) 3 is a cube modulo p if and only if 3 divides M;

(iii) if q > 3 is a prime divisor of M then q is a cube modulo p.

PROOF : See Jacobi⁶.

By a form we mean a binary quadratic form $aX^2 + bXY + cY^2$ with integer coefficients. Its discriminant is the integer $b^2 - 4ac$. An integer *n* is said to be represented by the form $aX^2 + bXY + cY^2$ if there exist integers *u* and *v* such that $n = au^2 + buv + cv^2$. The form $aX^2 + bXY + cY^2$ is said to be primitive if GCD(*a*, *b*, *c*) = 1. It is positive-definite if and only if a > 0 and $b^2 - 4ac < 0$. We shall only be concerned with forms which are both primitive and positive-definite.

Let $2^t || B$ and set $B_1 = B/2^t$ so that B_1 is the odd part of B. We now use Proposition 1 to show that all the primes represented by the principal form f(X, Y) of discriminant $-108B_1^2$ belong to Spl $(X^3 + B)$.

Proposition 2 — If p is a prime represented by the principal form $f(X, Y) = X^2 + 27 B_1^2 Y^2$ of discriminant $-108B_1^2$ then $p \in \text{Spl}(X^3 + B)$.

PROOF: Let p be a prime represented by the form $X^2 + 27B_1^2 Y^2$ so that $p = 1 \pmod{3}$ and $p \not \mid B$. Proposition 1 ensures that every prime divisor of B is a cube modulo p, so that $X^3 + B$ has at least one root (mod p). But, as $p = 1 \pmod{3}$, it must have three roots (mod p), and so $p \in \text{Spl}(X^3 + B)$.

Let g(X, Y) be a primitive, positive-definite quadratic form of discriminant – 108 B_1^2 that represents a square modulo l for each odd prime l dividing $108B_1^2$. It then follows from the theory of genera of binary quadratic forms that g(X, Y) belongs to the principal genus, see for example Hua⁴ (§12.6). The next result guarantees the existence of such a form g(X, Y) which represents only primes which are not in $Spl(X^3 + B)$.

Proposition 3 — There is a primitive positive-definite form g(X, Y) in the principal genus of discriminant $-108B_1^2$ with the property that if p is a prime represented by g(X, Y) then $p \notin Spl(X^3 + B)$.

PROOF: We consider two cases according as B_1 is a perfect cube or not.

(i) B_1 is a perfect cube : In this case we take $g(X, Y) = 4X^2 + 2B_1XY + 7B_1^2 Y^2$, which is a primitive, positive-definite form of discriminant $-108B_1^2$. Since g(X, Y) represents 4, g(X, Y) is in the principal genus. Let p be a prime represented by g(X, Y) so there are integers u and v such that p = g(u, v). Then we have $4p = L^2 + 27M^2$ with $L = 4u + B_1 v, M = B_1 v$. We note that $p = 1 \pmod{3}$ and $p \neq B_1$. As M is odd, 2 is not a cube (mod p) by Proposition 1(i), and thus B is not a cube (mod p). Hence the congruence $x^3 + B = 0 \pmod{p}$ is insolvable and so $p \notin \text{Spl}(X^3 + B)$.

(ii) B_1 is not a perfect cube : In this case B_1 has at least one odd prime divisor q for which $3 \neq \alpha$ where $q^{\alpha} || B_1$. We set $B_2 = B_1/q^{\alpha}$ so that $q \neq B_2$. We consider two subcases : (a) q = 3 and (b) q = 3.

(a) q = 3. Here we take

$$g(X, Y) = 3^{2\alpha} X^2 + 2 \cdot 3^{\alpha} XY + (1 + 27 B_2^2) Y^2,$$

which is a primitive, positive-definite form of discriminant $-108B_1^2$. Since g(X, Y) represents $3^{2\alpha}$ and $1 + 27B_2^2$, g is in the principal genus. If p is a prime represented by g(X, Y) then there exist integers u and v such that p = g(u, v). Then we have $4p = L^2 + 27M^2$ with $L = 2 \cdot 3^{\alpha} u + 2v$, $M = 2B_2v$. We note that $p = 1 \pmod{3}$, $p + B_1$, 3 + M and $2B_2 \mid M$. By Proposition 1, 3 is not a cube modulo p but every other prime divisor of B is a cube modulo p. Hence the congruence $x^3 + B = 0 \pmod{p}$ is insolvable, and $p \notin Spl(X^3 + B)$.

(b) $q \neq 3$. The number n_q of values of $s \pmod{q}$ for which the Legendre symbol $\left(\frac{s^2 + 27B_2^2}{q}\right)$ has the value 1 is given by

$$n_q = \sum_{\substack{s=0\\s^2 + 27B_2 \neq 0 \pmod{q}}}^{q-1} \frac{1}{2} \left(1 + \left(\frac{s^2 + 27B_2^2}{q} \right) \right).$$

Now the number of solutions s (mod q) of $s^2 = -27B_2^2 \pmod{q}$ is

$$1 + \left(\frac{-27B_2^2}{q}\right) = 1 + \left(\frac{-3}{q}\right),$$

and by a classical result (see for example Hua⁴, Theorem 8.2, p. 174)

$$\sum_{s=0}^{q-1} \left(\frac{s^2 + 27B_2^2}{q} \right) = -1,$$

so that

$$n_q = \frac{1}{2} \left(q - \left(1 + \left(\frac{-3}{q} \right) \right) + (-1) \right) = \begin{cases} (q-3)/2, & \text{if } q = 1 \pmod{3}, \\ (q-1)/2, & \text{if } q = 2 \pmod{3}. \end{cases}$$

Let $s_1, ..., s_{n_q}$ denote these n_q values of s.

We recall the definition of the cubic residue symbol : Let *E* be the ring of Eisenstein integers; that is, the ring of integers of the field $Q(\sqrt{-3})$. If $q = 2 \pmod{3}$, then q remains prime in *E*. If $q = 1 \pmod{3}$, then $q = \lambda \lambda$, where λ is a prime in *E*. Let μ be a prime in *E* dividing q and let $\alpha \in E$ with $\mu \neq \alpha$. The cubic residue symbol $[\alpha/\mu]_3$ is the unique cube root of unity such that

$$\alpha^{(N(\mu)-1)/3} = [\alpha/\mu]_3 \pmod{\mu},$$

where the norm $N(\mu) = \mu \overline{\mu}$. If $q = 1 \pmod{3}$, then $[\alpha/q]_3 = [\alpha/\lambda]_3 [\alpha/\lambda]_3$.

We show that at least one of the cubic residue symbols

$$\left[\frac{s_1+3B_2\sqrt{-3}}{q}\right]_3, \dots, \left[\frac{s_{n_q}+3B_2\sqrt{-3}}{q}\right]_3$$

is not equal to 1. Suppose on the contrary that

$$\left[\frac{s_j + 3B_2\sqrt{-3}}{q}\right]_3 = 1, \ j = 1, \ 2, \ \dots, \ n_q$$

Then the $n_q(q-1)$ Eisenstein integers

$$k(s_j + 3B_2\sqrt{-3}), k = 1, 2, ..., q - 1; j = 1, 2, ..., n_q$$

are distinct modulo q and satisfy

$$\left[\frac{k(s_j+3B_2\sqrt{-3})}{q}\right]_3 = 1.$$

The number R of reduced residue classes of Eisenstein integers (mod q) is

$$R = \begin{cases} (q-1)^2, & \text{if } q = 1 \pmod{3}, \\ q^2 - 1, & \text{if } q = 2 \pmod{3}, \end{cases}$$

3.4

and there are exactly $\frac{1}{3}R$ residue classes $\lambda \pmod{q}$ for which $\left[\frac{\lambda}{q}\right]_3 = 1$. Therefore we have

$$n_q(q-1) \leq \frac{1}{3}R,$$

that is

$$\begin{cases} (q-3)/2 \le (q-1)/3, & \text{if } q \equiv 1 \pmod{3}, \\ (q-1)/2 \le (q+1)/3, & \text{if } q \equiv 2 \pmod{3}, \end{cases}$$

equivalently

$$\begin{cases} q \le 7, & \text{if } q = 1 \pmod{3}, \\ q \le 5, & \text{if } q = 2 \pmod{3}. \end{cases}$$

Hence for q > 7 there exists an integer s such that

$$\left(\frac{s^2 + 27B_2^2}{q}\right) = 1, \left[\frac{s + 3B_2\sqrt{-3}}{q}\right]_3 = 1.$$
 ... (1)

In fact (1) holds for q = 5 and q = 7 if we take $s = -3B_2$. We now appeal to the Chinese remainder theorem to define an integer r by

$$r = 4 \pmod{6}, r = s \pmod{q}, r = 1 \pmod{B_2}.$$
 ... (2)

The congruences are consistent since if $3 | B_2$ the third congruence implies $r = 1 \pmod{3}$. Define the form g(X, Y) of discriminant $-108B_1^2$ by

$$g(X, Y) = q^{2\alpha} X^2 + 2q^{\alpha} r XY + (r^2 + 27B_2^2) Y^2.$$

Note that g(X, Y) is primitive as $q + r^2 + 27B_2^2$ in view of (1) and (2). It is clearly positive-definite. As g(X, Y) represents $q^{2\alpha}$ and $r^2 + 27B_2^2$, by (1) and (2), g(X, Y) is in the principal genus.

Let p be a prime represented by g(X, Y) so that $p = 1 \pmod{3}$ and $p \nmid B_1$, and there are integers u and v such that p = g(u, v). Thus $p = \pi \pi$, where π is the Eisenstein prime

$$\pi = (q^{\alpha}u + rv) + 3B_2v\sqrt{-3} = \pm 1 \pmod{3}.$$

Note that

$$\pi = v(r + 3B_2\sqrt{-3}) = v(s + 3B_2\sqrt{-3}) \pmod{q}.$$

Then, by Eisenstein's law of cubic reciprocity³, we have

$$\left[\frac{q}{\pi}\right]_3 = \left[\frac{\pi}{q}\right]_3 = \left[\frac{\nu(s+3B_2\sqrt{-3})}{q}\right]_3 = \left[\frac{s+3B_2\sqrt{-3}}{q}\right]_3 = 1,$$

so that q is not cube modulo p. As $4p = L^2 + 27M^2$ with $L = 2q^a u + 2rv$ and $M = 2B_2v$, Proposition 1 shows that every prime divisor of B other than q is a cube modulo q. Hence the congruence $x^3 + B = 0 \pmod{p}$ is insolvable and $p \notin \operatorname{Spl}(X^3 + B)$.

Our next result relates the form $f(X, Y) = X^2 + 27B_1^2 Y^2$ of Proposition 2 and the form g(X, Y) of Proposition 3.

Proposition 4 — Let f(X, Y) and g(X, Y) be the forms specified in Propositions 2 and 3. Then, for each positive integer *m* there exist integers *r*, *s*, *t*, *u* with GCD(*ru* - *st*, *m*) = 1 such that

$$f(X, Y) = g(rX + sY, tX + uY) \pmod{m}.$$

PROOF: Since f(X, Y) is the principal form of discriminant $-108B_1^2$, it belongs to the principal genus. By Proposition 3, g(X, Y) also belongs to the principal genus. Hence, by Theorem 3.21 (p. 58) of Cox² or §12.5, Exercise 4 of Hua⁴, the assertion follows.

The next result is needed in order to apply a theorem of Iwaniec⁵ in the proof of our Theorem. Although Proposition 5 is stated for arbitrary forms f(X, Y) and g(X, Y) it will be applied with f(X, Y) and g(X, Y) as in Propositions 2, 3 and 4.

Proposition 5 — Let f(X, Y) and g(X, Y) be primitive, positive-definite, integral binary quadratic forms of the same discriminant D for which there exist integers r, s, t, u, m with m even and GCD(ru - st, m) = 1 such that

$$f(X, Y) = g(rX + sY, tX + uY) \pmod{m}.$$

Let x and y be integers such that

$$\mathrm{GCD}(f(x, y), m) = 1.$$

Set

$$h(X, Y) = g(rx + sy + mX, tx + uy + mY).$$

Then h(X, Y) is a quadratic polynomial in X and Y with coefficients such that (i) h(X, Y) is primitive,

- (ii) h(X, Y) is irreducible over Q,
- (iii) h(X, Y) represents arbitrarily large odd integers,
- (iv) $\frac{\partial h}{\partial X}$, $\frac{\partial h}{\partial Y}$ are linearly independent over Q.

PROOF : We set G = rx + sy, H = tx + uy.

(i) Clearly all the coefficients of h(X, Y) are divisible by *m* except possibly the constant term g(G, H). However $g(G, H) = f(x, y) \pmod{m}$ and so is coprime with *m*. Thus h(X, Y) is primitive.

(ii) As g(G, H) is coprime with m, not both of G and H are zero. If $G \neq 0$ (resp. $H \neq 0$), h(0, Y) (resp. h(X, 0)) is irreducible over Q as its discriminant $G^2 m^2 D$ (resp. $H^2 m^2 D$) is negative, proving that h(X, Y) is irreducible over Q.

(iii) h(X, 0) has positive leading coefficient and so h(k, 0) takes arbitrarily large integral values. These integers are odd as $h(k, 0) = g(G, H) = f(x, y) \pmod{m}$.

(iv) Suppose there exist k, $l \in Q$ (not both zero) such that $k \frac{\partial h}{\partial X} + l \frac{\partial h}{\partial Y} = 0$.

Then, as

$$h(X, Y) = m^2 g(X, Y) + mX \frac{\partial g}{\partial X}(G, H) + mY \frac{\partial g}{\partial Y}(G, H) + g(G, H),$$

we have

$$m\left(k\frac{\partial g}{\partial X}+l\frac{\partial g}{\partial Y}\right)+\left(k\frac{\partial g}{\partial X}(G,H)+l\frac{\partial g}{\partial Y}(G,H)\right)=0.$$

As $\frac{\partial g}{\partial X}$, $\frac{\partial g}{\partial Y}$ are linear forms in X, Y, and 1, X, Y are linearly independent over Q, we see that

$$k\frac{\partial g}{\partial X}+l\frac{\partial g}{\partial Y}=0,$$

contradicting that g genuinely depends on both X and Y. Hence $\frac{\partial h}{\partial X}$ and $\frac{\partial h}{\partial Y}$ are linearly independent over Q.

We are now ready to prove the main result of this paper. The proof follows ideas used in Spearman and Williams⁹.

Theorem — If B is an integer which is not a perfect cube then $Spl(X^3 + B)$ cannot be described by congruence conditions.

PROOF: We suppose that $Spl(X^3 + B)$ can be described by congruence conditions, that is, there exist positive integers $s, a_1, ..., a_s, m$ with $GCD(a_i, m) = 1$ and the a_i lying in distinct residue classes modulo m such that, except for finitely many primes p,

$$p \in \operatorname{Spl}(X^3 + B) \Leftrightarrow p \equiv a_1, ..., a_s \pmod{m}.$$
 (3)

In addition, by enlarging the set of exceptional primes to include the prime 2 if necessary, we may take m to be even, since for m odd each congruence $p = a_i \pmod{p}$ m) is equivalent to $p = a'_i \pmod{2m}$, where $a'_i = a_i$ if a_i is odd, $a'_i = a_i + m$, if a_i is even. By Weber's theorem¹⁰ the form $X^2 + 27B_1^2 Y^2$ represents infinitely many primes. (An elementary proof of Weber's theorem is given in Briggs¹.) We choose one of these primes p_0 which is not exceptional. By Proposition 2 we have $p_0 \in \text{Spl}(X^3 + B)$, and so by (3) $p_0 = a_i \pmod{m}$ for some *i* with $1 \le i \le s$, that is p_n belongs to the arithmetic progression $A(a_i, m) = \{a_i + km : k = 0, 1, 2, ...\}$. Let g(X, Y) be the form given in Proposition 3. By Proposition 4 there exist integers r, s, t, u with GCD(ru - st, m) = 1 such that $f(X, Y) = g(rX + sY, tX + uY) \pmod{m}$. Let x and y be integers such that $p_0 = f(x, y)$. Set h(X, Y) = g(rx + sy + mX, tx + uy + mX)mY). Then, by Proposition 5, h(X, Y) is primitive, irreducible over Q, represents arbitrairly large odd integers, and genuinely depends on both X and Y, so that by Iwaniec's theorem⁵ h(X, Y) represents infinitely many primes. Choose p_1 to be one of these which is not exceptional. Thus $p_1 \in A(a_i, m)$. However, as p_1 is represented by g(X, Y), by Proposition 2, $p_1 \notin \text{Spl}(X^3 + B)$, contradicting (3).

We next use the Theorem to exhibit without class field theory a wider class of cubic polynomials c(X) for which Spl(c(X)) cannot be described by congruence conditions.

Corollary — Let A and B be integers such that $X^3 + AX + B$ is an irreducible cubic polynomial for which there is a nonzero integer C such that $-4A^3 - 27B^2 = -3C^2$. Then $Spl(X^3 + AX + B)$ cannot be described by congruence conditions.

PROOF: We begin by recalling the Stickelberger parity theorem (Narkiewicz⁸, Theorem 4.5, p. 153). Let f(X) be a monic irreducible polynomial of degree *n* with integer coefficients. Let *p* denote an odd prime not dividing the discriminant *D* of f(X), and suppose

$$f(X) = f_1(X) \dots f_r(X) \pmod{p},$$

where the $f_i(X)$ are polynomials with integer coefficients which are irreducible (mod p).

Then

We are now ready to prove the Corollary. Let H be the splitting field of $f(X) = X^3 + AX + B$ and $r_1, r_2, r_3 \in H$ the roots of f(X). As $D = ((r_1 - r_2) (r_2 - r_3) (r_3 - r_1))^2 = -3C^2$ we see that $Q(\sqrt{-3}) \subseteq H$ and $[H : Q(\sqrt{-3})] = 3$.

Next we show that if $p \in \operatorname{Spl}(f(X))$ then $p \equiv 1 \pmod{3}$. As $p \in \operatorname{Spl}(f(X))$ we have $p \neq 3C$ and by (4) $\left(\frac{-3C^2}{p}\right) = (-1)^{3-3} \equiv 1$, so $p \equiv 1 \pmod{3}$.

As $D = -3C^2 < 0$, f(X) has exactly one real root, say r_1 , so that the other roots r_2 , r_3 form a conjugate pair, say $r_2, \overline{r_2}$ and we set $s = r_1 + r_2\omega + r_3\omega^2$. The real number s is called a Lagrange resolvent and generates H over $Q(\sqrt{-3})$ (Jacobson⁷, Lemma 3, p. 245). The minimal polynomial of s over $Q(\sqrt{-3})$ is $X^3 - s^3$, so that $s^3 \in Q(\sqrt{-3})$, $s \notin Q(\sqrt{-3})$. As s^3 is a real algebraic integer, s^3 must in fact be a rational integer M, and H is the splitting field of $X^3 - M$. Then, for $p \not - 3C^2M$, we have

 $p \in \operatorname{Spl}(X^3 + AX + B)$

- \Rightarrow p = 1 (mod 3) and X³ + AX + B = 0 (mod p) has three distinct solutions
- $\Rightarrow x^3 + Ax + B = 0 \pmod{\pi}$ has three distinct solutions where π is an Eisenstein prime with $\pi \overline{\pi} = p$
- \Leftrightarrow in the ring of integers of *H*, the ideal generated by π is the product of three distinct prime ideals and $p = \pi \overline{\pi}$
- $\Rightarrow x^3 M = 0 \pmod{\pi}$ has three distinct solutions and $p = \pi \pi$
- $\Rightarrow x^3 M = 0 \pmod{p}$ has three distinct solutions (as residue classes (mod π) can be taken to be integers).

Hence $Spl(X^3 + AX + B) = Spl(X^3 - M)$ except possibly for a finite set of primes. The result now follows from the Theorem.

REFERENCES

- 1. W. E. Briggs, Canad. J. Math 6(1954), 353-63.
- 2. D. A. Cox, Primes of the Form $x^2 + ny^2$, John Wiley & Sons, New York, 1989.
- 3. G. Eisenstein, J. Reine Angew. Math. 27 (1844), 289-310.
- 4. L.- K. Hua, Introduction to Number Theory, Springer-Verlag, Berlin, Heidelberg and New York, 1982.
- 5. H. Iwaniec, Acta Arith. 24 (1974), 435-59.
- 6. C. G. J. Jacobi, J. Reine Angew. Math. 2 (1827), 66-69.
- 7. N. Jacobson, Basic Algebra, I, W.H. Freeman and Company, San Fransisco, California, 1974.
- 8. W. Narkiewicz, *Elementary and Analytic Theory of Algebraic Numbers*, Springer-Verlag, New York, 1990.
- 9. B. K. Spearman and K. S. Williams, Amer. Math. Monthly 99 (1992), 423-26.
- 10. H. Weber, Math. Annalen 20 (1882), 301-29.
- 11. B. F. Wyman, Amer. Math. Monthly 79 (1972), 571-86.