ON THE SET OF PRIMES p WHICH SPLIT $X^{3}+B$ MODULO p

James G. Huard ${ }^{1}$, Blair K. Spearman ${ }^{2}$ and
Kenneth S. Williams ${ }^{3}$
${ }^{1}$ Department of Mathematics, Canisius College, Buffalo, New York 14208, USA
${ }^{2}$ Department of Mathematics and Statistics, Okanagan University College, Kelowna, B.C., Canada, V1V $4 X 8$
${ }^{3}$ Department of Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada K1S 5B6

(Received 5 August 1994; after revision 24 November 1994; accepted 30 November 1994)

Let B denote an integer which is not a perfect cube. It is shown, using a theorem of Iwaniec on primes represented by quadratic polynomials in two variables, that the set of primes p which split the cubic $X^{3}+B$ modulo p cannot be characterized in terms of congruence conditions.

Let $f(x)$ be a monic polynomial with integer coefficients that is irreducible over the integers. The set of all primes p such that $f(X)$ splits completely into distinct linear factors modulo p is denoted by $\operatorname{Spl}(f(X))$. If there exists a positive integer m and positive integers a_{1}, \ldots, a_{s} (depending only on $f(X)$) lying in distinct residue classes $(\bmod m)$ coprime with m, such that, except for finitely many primes, we have

$$
p \in \operatorname{Spl}(f X)) \Leftrightarrow p=a_{1}, \ldots, a_{s}(\bmod m)
$$

then we say that $\operatorname{Spl}(f(X))$ is determined by congruence conditions. An abelian polynomial is a polynomial whose Galois group is abelian, that is, whose splitting field is an abelian extension of the rational number field Q. From class field theory (see for example Wyman ${ }^{11}$), it is known that the polynomials $f(X)$ for which $\operatorname{Spl}(f(X)$) can be described by congruence conditions are precisely the abelian polynomials. The simplest non-abelian polynomial is $X^{3}+B$, where the integer B is not a perfect cube. We show without appeal to class field theory that $\operatorname{Spl}\left(X^{3}+B\right)$ cannot be described by congruence conditions. The principal tool in the proof is a deep analytic theorem of Iwaniecs on primes represented by quadratic polynomials in two integral variables. In addition we use Weber's theorem ${ }^{10}$, as well as some results on cubic reciprocity.

[^0]We begin with a classical theorem which has its origins in the work of Gauss, Jacobi and Eisenstein on cubic reciprocity.

Proposition 1 - Let p be a prime such that $p=1(\bmod 3)$. Let L and M be the integers unique up to sign such that $4 p=L^{2}+27 M^{2}$. Then
(i) 2 is a cube modulo p if and only if 2 divides M;
(ii) 3 is a cube modulo p if and only if 3 divides M;
(iii) if $q>3$ is a prime divisor of M then q is a cube modulo p.

Proof : See Jacobi ${ }^{6}$.
By a form we mean a binary quadratic form $a X^{2}+b X Y+c Y^{2}$ with integer coefficients. Its discriminant is the integer $b^{2}-4 a c$. An integer n is said to be represented by the form $a X^{2}+b X Y+c Y^{2}$ if there exist integers u and v such that n $=a u^{2}+b u v+c v^{2}$. The form $a X^{2}+b X Y+c Y^{2}$ is said to be primitive if $\operatorname{GCD}(a, b, c)$ $=1$. It is positive-definite if and only if $a>0$ and $b^{2}-4 a c<0$. We shall only be concerned with forms which are both primitive and positive-definite.

Let $2^{t} \| B$ and set $B_{1}=B / 2^{t}$ so that B_{1} is the odd part of B. We now use Proposition 1 to show that all the primes represented by the principal form $f(X, Y)$ of discriminant $-108 B_{1}^{2}$ belong to $\mathrm{Spl}\left(X^{3}+B\right)$.

Proposition 2 - If p is a prime represented by the principal form $f(X, Y)=$ $X^{2}+27 B_{1}^{2} Y^{2}$ of discriminant $-108 B_{1}^{2}$ then $p \in \operatorname{Spl}\left(X^{3}+B\right)$.

Proof : Let p be a prime represented by the form $X^{2}+27 B_{1}^{2} Y^{2}$ so that $p=1$ $(\bmod 3)$ and $p \nmid B$. Proposition 1 ensures that every prime divisor of B is a cube modulo p, so that $X^{3}+B$ has at least one root $(\bmod p)$. But, as $p=1(\bmod 3)$, it must have three roots $(\bmod p)$, and so $p \in \operatorname{Spl}\left(X^{3}+B\right)$.

Let $g(X, Y)$ be a primitive, positive-definite quadratic form of discriminant - 108 B_{1}^{2} that represents a square modulo l for each odd prime l. dividing $108 B_{1}^{2}$. It then follows from the theory of genera of binary quadratic forms that $g(X, Y)$ belongs to the principal genus, see for example Hua^{4} (§12.6). The next result guarantees the existence of such a form $g(X, Y)$ which represents only primes which are not in $\operatorname{Spl}\left(X^{3}+B\right)$.

Proposition 3 - There is a primitive positive-definite form $g(X, Y)$ in the principal genus of discriminant $-108 B_{1}^{2}$ with the property that if p is a prime represented by $g(X, Y)$ then $p \notin \operatorname{Spl}\left(X^{3}+B\right)$.

Proof : We consider two cases according as B_{1} is a perfect cube or not.
(i) B_{1} is a perfect cube : In this case we take $g(X, Y)=4 X^{2}+2 B_{1} X Y+$ $7 B_{1}^{2} Y^{2}$, which is a primitive, positive-definite form of discriminant $-108 B_{1}^{2}$. Since $g(X, Y)$ represents $4, g(X, Y)$ is in the principal genus. Let p be a prime represented by $g(X, Y)$ so there are integers u and v such that $p=g(u, v)$. Then we have $4 p$ $=L^{2}+27 M^{2}$ with $L=4 u+B_{1} v, M=B_{1} v$. We note that $p=1(\bmod 3)$ and $p \nmid$ B_{r}. As M is odd, 2 is not a cube $(\bmod p)$ by Proposition $1(\mathrm{i})$, and thus B is not a cube $(\bmod p)$. Hence the congruence $x^{3}+B \equiv 0(\bmod p)$ is insolvable and so $p \notin \operatorname{Spl}\left(X^{3}+B\right)$.
(ii) B_{1} is not a perfect cube : In this case B_{1} has at least one odd prime divisor q for which $3 \nmid \alpha$ where $q^{\alpha} \| B_{1}$. We set $B_{2}=B_{1} / q^{\alpha}$ so that $q \nmid B_{2}$. We consider two subcases : (a) $q=3$ and (b) $q \neq 3$.
(a) $q=3$. Here we take

$$
g(X, Y)=3^{2 \alpha} X^{2}+2 \cdot 3^{\alpha} X Y+\left(1+27 B_{2}^{2}\right) Y^{2}
$$

which is a primitive, positive-definite form of discriminant $-108 B_{1}^{2}$. Since $g(X, Y)$ represents $3^{2 a}$ and $1+27 B_{2}^{2}, g$ is in the principal genus. If p is a prime represented by $g(X, Y)$ then there exist integers u and v such that $p=g(u, v)$. Then we have $4 p=L^{2}+27 M^{2}$ with $L=2 \cdot 3^{a} u+2 v, \quad M=2 B_{2} v$. We note that $p=1(\bmod 3)$, $p+B_{1}, 3 \nmid M$ and $2 B_{2} \mid M$. By Proposition 1, 3 is not a cube modulo p but every other prime divisor of B is a cube modulo p. Hence the congruence $x^{3}+B=0(\bmod$ p) is insolvable, and $p \notin \operatorname{Spl}\left(X^{3}+B\right)$.
(b) $q=3$. The number n_{q} of values of $s(\bmod q)$ for which the Legendre symbol $\left(\frac{s^{2}+27 B_{2}^{2}}{q}\right)$ has the value 1 is given by

$$
n_{q}=\sum_{\substack{s^{2}=0 \\ s^{2}+27 B_{2}^{*}(\bmod q)}}^{q-1} \frac{1}{2}\left(1+\left(\frac{s^{2}+27 B_{2}^{2}}{q}\right)\right) .
$$

Now the number of solutions $s(\bmod q)$ of $s^{2}=-27 B_{2}^{2}(\bmod q)$ is

$$
1+\left(\frac{-27 B_{2}^{2}}{q}\right)=1+\left(\frac{-3}{q}\right)
$$

and by a classical result (see for example Hua4, Theorem 8.2, p. 174)

$$
\sum_{s=0}^{q-1}\left(\frac{s^{2}+27 B_{2}^{2}}{q}\right)=-1
$$

so that

$$
n_{q}=\frac{1}{2}\left(q-\left(1+\left(\frac{-3}{q}\right)\right)+(-1)\right)= \begin{cases}(q-3) / 2, & \text { if } q=1(\bmod 3), \\ (q-1) / 2, & \text { if } q=2(\bmod 3) .\end{cases}
$$

Let $s_{1}, \ldots, s_{n_{q}}$ denote these n_{q} values of s.
We recall the definition of the cubic residue symbol : Let E be the ring of Eisenstein integers; that is, the ring of integers of the field $\underline{Q}(\sqrt{-3})$. If $q=2$ (mod 3), then q remains prime in E. If $q=1(\bmod 3)$, then $q=\lambda \bar{\lambda}$, where λ is a prime in E. Let μ be a prime in E dividing q and let $\alpha \in E$ with $\mu \nmid \alpha$. The cubic residue symbol $[\alpha / \mu]_{3}$ is the unique cube root of unity such that

$$
\alpha^{(N(\mu)-1) / 3}=[\alpha / \mu]_{3}(\bmod \mu),
$$

where the norm $N(\mu)=\mu \bar{\mu}$. If $q=1(\bmod 3)$, then $[\alpha / q]_{3}=[\alpha / \lambda]_{3}[\alpha / \lambda]_{3}$.
We show that at least one of the cubic residue symbols

$$
\left[\frac{s_{1}+3 B_{2} \sqrt{-3}}{q}\right]_{3}, \ldots,\left[\frac{s_{n_{q}}+3 B_{2} \sqrt{-3}}{q}\right]_{3}
$$

is not equal to 1 . Suppose on the contrary that

$$
\left[\frac{s_{j}+3 B_{2} \sqrt{-3}}{q}\right]_{3}=1, j=1,2, \ldots ., n_{q}
$$

Then the $n_{q}(q-1)$ Eisenstein integers

$$
k\left(s_{j}+3 B_{2} \sqrt{-3}\right), k=1,2, \ldots, q-1 ; j=1,2, \ldots, n_{q}
$$

are distinct modulo q and satisfy

$$
\left[\frac{k\left(s_{j}+3 B_{2} \sqrt{-3}\right)}{q}\right]_{3}=1
$$

The number R of reduced residue classes of Eisenstein integers $(\bmod q)$ is

$$
R= \begin{cases}(q-1)^{2}, & \text { if } q=1(\bmod 3), \\ q^{2}-1, & \text { if } q=2(\bmod 3),\end{cases}
$$

and there are exactly $\frac{1}{3} R$ residue classes $\lambda(\bmod q)$ 'for which $\left[\frac{\lambda}{q}\right]_{3}=1$. Therefore we have

$$
n_{q}(q-1) \leq \frac{1}{3} R,
$$

that is

$$
\left\{\begin{array}{l}
(q-3) / 2 \leq(q-1) / 3, \\
(q-1) / 2 \leq(q+1) / 3, \\
(f) q=2(\bmod 3), \\
\end{array}\right.
$$

equivalently

$$
\begin{cases}q \leq 7, & \text { if } q=1(\bmod 3), \\ q \leq 5, & \text { if } q=2(\bmod 3) .\end{cases}
$$

Hence for $q>7$ there exists an integer s such that

$$
\begin{equation*}
\left(\frac{s^{2}+27 B_{2}^{2}}{q}\right)=1,\left[\frac{s+3 B_{2} \sqrt{-3}}{q}\right]_{3}=1 . \tag{1}
\end{equation*}
$$

In fact (1) holds for $q=5$ and $q=7$ if we take $s=-3 B_{2}$. We now appeal to the Chinese remainder theorem to define an integer r by

$$
\begin{equation*}
r=4(\bmod 6), r=s(\bmod q), r=1\left(\bmod B_{2}\right) \tag{2}
\end{equation*}
$$

The congruences are consistent since if $3 \mid B_{2}$ the third congruence implies $r=1$ $(\bmod 3)$. Define the form $g(X, Y)$ of discriminant $-108 B_{1}^{2}$ by

$$
g(X, Y)=q^{2 a} X^{2}+2 q^{\alpha} r X Y+\left(r^{2}+27 B_{2}^{2}\right) Y^{2}
$$

Note that $g(X, Y)$ is primitive as $q \nmid r^{2}+27 B_{2}^{2}$ in view of (1) and (2). It is clearly positive-definite. As $g(X, Y)$ represents $q^{2 a}$ and $r^{2}+27 B_{2}^{2}$, by (1) and (2), $g(X, Y)$ is in the principal genus.

Let p be a prime represented by $g(X, Y)$ so that $p=1(\bmod 3)$ and $p \nmid B_{1}$, and there are integers u and v such that $p=g(u, v)$. Thus $p=\pi \bar{\pi}$, where π is the Eisenstein prime

$$
\pi=\left(q^{\alpha} u+r v\right)+3 B_{2} v \sqrt{-3}= \pm 1(\bmod 3) .
$$

Note that

$$
\pi=v\left(r+3 B_{2} \sqrt{-3}\right)=v\left(s+3 B_{2} \sqrt{-3}\right)(\bmod q) .
$$

Then, by Eisenstein's law of cubic reciprocity ${ }^{3}$, we have

$$
\left[\frac{q}{\pi}\right]_{3}=\left[\frac{\pi}{q}\right]_{3}=\left[\frac{v\left(s+3 B_{2} \sqrt{-3}\right)}{q}\right]_{3}=\left[\frac{s+3 B_{2} \sqrt{-3}}{q}\right]_{3}=1
$$

so that q is not cube modulo p. As $4 p=L^{2}+27 M^{2}$ with $L=2 q^{\alpha} u+2 r v$ and $M=\mathbf{2 B} \boldsymbol{Z}_{2}$, Proposition 1 shows that every prime divisor of B other than q is a cube modulo q. Hence the congruence $x^{3}+B=0(\bmod p)$ is insolvable and $p \notin \operatorname{Spl}\left(X^{3}+B\right)$.

Our next result relates the form $f(X, Y)=X^{2}+27 B_{1}^{2} Y^{2}$ of Proposition 2 and the form $g(X, Y)$ of Proposition 3.

Proposition 4 - Let $f(X, Y)$ and $g(X, Y)$ be the forms specified in Propositions 2 and 3. Then, for each positive integer m there exist integers r, s, t, u with $\operatorname{GCD}(r u$ $-s t, m)=1$ such that

$$
f(X, Y)=g(r X+s Y, t X+u Y)(\bmod m) .
$$

Proof : Since $f(X, Y)$ is the principal form of discriminant - $108 B_{1}^{2}$, it belongs to the principal genus. By Proposition 3, $g(X, Y)$ also belongs to the principal genus. Hence, by Theorem 3.21 (p. 58) of Cox^{2} or $\S 12.5$, Exercise 4 of Hua4, the assertion follows.

The next result is needed in order to apply a theorem of Iwaniecs ${ }^{\text {in }}$ the proof of our Theorem. Although Proposition 5 is stated for arbitrary forms $f(X, Y)$ and $g(X, Y)$ it will be applied with $f(X, Y)$ and $g(X, Y)$ as in Propositions 2, 3 and 4.

Proposition 5 - Let $f(X, Y)$ and $g(X, Y)$ be primitive, positive-definite, integral binary quadratic forms of the same discriminant D for which there exist integers r, s, t, u, m with m even and $\operatorname{GCD}(r u-s t, m)=1$ such that

$$
f(X, Y)=g(r X+s Y, t X+u Y)(\bmod m)
$$

Let x and y be integers such that

$$
\operatorname{GCD}(f(x, y), m)=1
$$

Set

$$
h(X, Y)=g(r x+s y+m X, t x+u y+m Y)
$$

Then $h(X, Y)$ is a quadratic polynomial in X and Y with coefficients such that
(i) $h(X, Y)$ is primitive,
(ii) $h(X, Y)$ is irreducible over Q,
(iii) $h(X, Y)$ represents arbitrarily large odd integers,
(iv) $\frac{\partial h}{\partial X}, \frac{\partial h}{\partial Y}$ are linearly independent over Q.

Proof : We set $G=r x+s y, H=r x+u y$.
(i) Clearly all the coefficients of $h(X, Y)$ are divisible by m except possibly the constant term $g(G, H)$. However $g(G, H)=f(x, y)(\bmod m)$ and so is coprime with m. Thus $h(X, Y)$ is primitive.
(ii) As $g(G, H)$ is coprime with m, not both of G and H are zero. If $G \neq 0$ (resp. $H \neq 0), h(0, Y)$ (resp. $h(X, 0)$) is irreducible over Q as its discriminant $G^{2} m^{2} D$ (resp. $\left.H^{2} m^{2} D\right)$ is negative, proving that $h(X, Y)$ is irreducible over Q.
(iii) $h(X, 0)$ has positive leading coefficient and so $h(k, 0)$ takes arbitrarily large integral values. These integers are odd as $h(k, 0)=g(G, H)=f(x, y)(\bmod m)$.
(iv) Suppose there exist $k, l \in Q$ (not both zero) such that $k \frac{\partial h}{\partial X}+l \frac{\partial h}{\partial Y}=0$. Then, as

$$
h(X, Y)=m^{2} g(X, Y)+m X \frac{\partial g}{\partial X}(G, H)+m Y \frac{\partial g}{\partial Y}(G, H)+g(G, H)
$$

we have

$$
m\left(k \frac{\partial g}{\partial X}+l \frac{\partial g}{\partial Y}\right)+\left(k \frac{\partial g}{\partial X}(G, H)+l \frac{\partial g}{\partial Y}(G, H)\right)=0
$$

As $\frac{\partial g}{\partial X}, \frac{\partial g}{\partial Y}$ are linear forms in X, Y, and $1, X, Y$ are linearly independent over Q, we see that

$$
k \frac{\partial g}{\partial X}+l \frac{\partial g}{\partial Y}=0
$$

contradicting that g genuinely depends on both X and Y. Hence $\frac{\partial h}{\partial X}$ and $\frac{\partial h}{\partial Y}$ are linearly independent over \boldsymbol{Q}.

We are now ready to prove the main result of this paper. The proof follows ideas used in Spearman and Williams ${ }^{9}$.

Theorem - If B is an integer which is not a perfect cube then $\operatorname{Spl}\left(X^{3}+B\right)$ cannot be described by congruence conditions.

Proof : We suppose that $\operatorname{Spl}\left(X^{3}+B\right)$ can be described by congruence conditions, that is, there exist positive integers $s, a_{1}, \ldots, a_{s}, m$ with $\operatorname{GCD}\left(a_{i}, m\right)=1$ and the a_{i} lying in distinct residue classes modulo m such that, except for finitely many primes p,

$$
\begin{equation*}
p \in \operatorname{Spl}\left(X^{3}+B\right) \Leftrightarrow p=a_{1}, \ldots, a_{s}(\bmod m) \tag{3}
\end{equation*}
$$

In addition, by enlarging the set of exceptional primes to include the prime 2 if necessary, we may take m to be even, since for m odd each congruence $p=a_{i}(\bmod$ $m)$ is equivalent to $p=a_{i}^{\prime}(\bmod 2 m)$, where $a_{i}^{\prime}=a_{i}$ if a_{i} is odd, $a_{i}^{\prime}=a_{i}+m$, if a_{i} is even. By Weber's theorem ${ }^{10}$ the form $X^{2}+27 B_{1}^{2} Y^{2}$ represents infinitely many primes. (An elementary proof of Weber's theorem is given in Briggs ${ }^{1}$.) We choose one of these primes p_{0} which is not exceptional. By Proposition 2 we have $p_{0} \in \operatorname{Spl}\left(X^{3}+B\right)$, and so by (3) $p_{0}=a_{i}(\bmod m)$ for some i, with $1 \leq i \leq s$, that is p_{0} belongs to the arithmetic progression $A\left(a_{i}, m\right)=\left\{a_{i}+k m: k=0,1,2, \ldots\right\}$. Let $g(X, Y)$ be the form given in Proposition 3. By Proposition 4 there exist integers r, s, t, u with $\operatorname{GCD}(r u-s t, m)=1$ such that $f(X, Y)=g(r X+s Y, t X+u Y)(\bmod m)$. Let x and y be integers such that $p_{0}=f(x, y)$. Set $h(X, Y)=g(r x+s y+m X, t x+u y+$ $m Y$). Then, by Proposition $5, h(X, Y)$ is primitive, irreducible over Q, represents arbitrairly large odd integers, and genuinely depends on both X and Y, so that by Iwaniec's theorem $h(X, Y)$ represents infinitely many primes. Choose p_{1} to be one of these which is not exceptional. Thus $p_{1} \in A\left(a_{i}, m\right)$. However, as p_{1} is represented by $g(X, Y)$, by Proposition $2, p_{1} \notin \operatorname{Spl}\left(X^{3}+B\right)$, contradicting (3).

We next use the Theorem to exhibit without class field theory a wider class of cubic polynomials $c(X)$ for which $\operatorname{Spl}(c(X)$) cannot be described by congruence conditions.

Corollary - Let A and B be integers such that $X^{3}+A X+B$ is an irreducible cubic polynomial for which there is a nonzero integer C such that $-4 A^{3}-27 B^{2}=-3 C^{2}$. Then $\operatorname{Spl}\left(X^{3}+A X+B\right)$ cannot be described by congruence conditions.

PrOOF : We begin by recalling the Stickelberger parity theorem (Narkiewicz ${ }^{8}$, Theorem 4.5, p. 153). Let $f(X)$ be a monic irreducible polynomial of degree n with integer coefficients. Let p denote an odd prime not dividing the discriminant D of $f(X)$, and suppose

$$
f(X)=f_{1}(X) \ldots f_{r}(X)(\bmod p),
$$

where the $f(X)$ are polynomials with integer coefficients which are irreducible $(\bmod p)$.

Then

$$
\begin{equation*}
\left(\frac{D}{p}\right)=(-1)^{n-r} \tag{4}
\end{equation*}
$$

We are now ready to prove the Corollary. Let H be the splitting field of $\boldsymbol{f}(\boldsymbol{X})$ $=X^{3}+A X+B$ and $r_{1}, r_{2}, r_{3} \in H$ the roots of $f(X)$. As $D=\left(\left(r_{1}-r_{2}\right)\left(r_{2}-r_{3}\right)\right.$ $\left.\left(r_{3}-r_{1}\right)\right)^{2}=-3 C^{2}$ we see that $Q(\sqrt{-3}) \subseteq H$ and $[H: Q(\sqrt{-3})]=3$.

Next we show that if $p \in \operatorname{Spl}(f(X))$ then $p=1(\bmod 3)$. As $p \in \operatorname{Spl}(f(X))$ we have $p \nmid 3 C$ and by (4) $\left(\frac{-3 C^{2}}{p}\right)-(-1)^{3-3}=1$, so $p=1(\bmod 3)$.

As $D=-3 C^{2}<0, f(X)$ has exactly one real root, say r_{1}, so that the other roots r_{2}, r_{3} form a conjugate pair, say r_{2}, \bar{r}_{2} and we set $s=r_{1}+r_{2} \omega+r_{3} \omega^{2}$. The real number s is called a Lagrange resolvent and generates H over $Q(\sqrt{-3})$ (Jacobson ${ }^{7}$, Lemma 3, p. 245). The minimal polynomial of s over $Q(\sqrt{-3})$ is $X^{3}-s^{3}$, so that $s^{3} \in Q(\sqrt{-3}), s \notin Q(\sqrt{-3})$. As s^{3} is a real algebraic integer, s^{3} must in fact be a rational integer M, and H is the splitting field of $X^{3}-M$. Then, for $p \nmid-3 C^{2} M$, we have
$p \in \operatorname{Spl}\left(X^{3}+A X+B\right)$
$\Leftrightarrow p=1(\bmod 3)$ and $X^{3}+A X+B=0(\bmod p)$ has three distinct solutions
$\Leftrightarrow x^{3}+A x+B=0(\bmod \pi)$ has three distinct solutions where π is an Eisenstein prime with $\pi \bar{\pi}=p$
\Leftrightarrow in the ring of integers of H, the ideal generated by π is the product of three distinct prime ideals and $p=\pi \bar{\pi}$
$\Leftrightarrow x^{3}-M=0(\bmod \pi)$ has three distinct solutions and $p=\pi \bar{\pi}$
$\Leftrightarrow x^{3}-M=0(\bmod p)$ has three distinct solutions (as residue classes $(\bmod \pi)$ can be taken to be integers).
Hence $\operatorname{Spl}\left(X^{3}+A X+B\right)=\operatorname{Spl}\left(X^{3}-M\right)$ except possibly for a finite set of primes. The result now follows from the Theorem.

References

1. W. E. Briggs, Canad J. Math 6(1954), 353-63.
2. D. A. Cox, Primes of the Form $x^{2}+n y^{2}$, John Wiley \& Sons, New York, 1989.
3. G. Eisenstein, J. Reine Angew. Math. 27 (1844), 289-310.
4. L- K. Hua, Introduction to Number Theory, Springer-Verlag, Berlin, Heidelberg and New York, 1982.
5. H. Iwaniec, Acta Arith. 24 (1974), 435-59.
6. C. G. J. Jacobi, J. Reine Angew. Math. 2 (1827), 66-69.
7. N. Jacobson, Basic Algebra, I, W.H. Freeman and Company, San Fransisco, California, 1974.
8. W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, Springer-Verlag, New York, 1990.
9. B. K. Spearman and K. S. Williams, Amer. Math. Monthly 99 (1992), 423-26.
10. H. Weber, Math. Annalen 20 (1882), 301-29.
11. B. F. Wyman, Amer. Math. Monthly 79 (1972), 571-86.

[^0]: ${ }^{*}$ Research supported by Natural Sciences and Engineering Research Council of Canada Grant A-7233.

