THE SUBFIELDS OF THE SPLITTING FIELD OF A SOLVABLE QUINTIC TRINOMIAL

 $X^{5} + aX + b$

Blair K. Spearman

Laura Y. Spearman

Department of Mathematics Okanagan University College Kelowna, B.C. VIY 4X8 Canada City of Kelowna Information Services Department Kelowna, B.C. V1Y 1J4 Canada

Kenneth S. Williams

Department of Mathematics and Statistics Carleton University Ottawa, Ontario K1S 5B6 Canada

Let Q denote the field of rational numbers, and set $Q^* = Q \setminus \{0\}$. Let $a \in Q^*$ and $b \in Q^*$ be such that the quintic trinomial $f(X) = X^5 + aX + b$ is both irreducible and solvable. Polynomials of this type are characterized in [3, Theorem]. Let L denote the splitting field of f. Let r denote the unique retional root of the resolvent sextic of $X^5 + aX + b$ [3, eqn. (17)], and set

$$c = \left|\frac{3r - 16a}{4r + 12a}\right|, \quad \epsilon = sgn\left(\frac{3r - 16a}{4r + 12a}\right), \quad e = \frac{-5b\epsilon}{2r + 4a}, \quad (1)$$

so that c is a nonnegative rational number, $\epsilon = \pm 1$, and e is a nonzero rational number. It is shown in [3] that

$$a = \frac{5e^{4}(3 - 4\epsilon c)}{c^{2} + 1}, \quad b = \frac{-4e^{5}(11\epsilon + 2c)}{c^{2} + 1}.$$
 (2)

The Galois group G_t of f is the dihedral group D_s of order 10 if $5(c^2 + 1) \in Q^2$, and is the Frobenius group F_{20} of order 20 if $5(c^2 + 1) \notin Q^2$.

If $G_t = D_s$ then G_t has five subgroups of order 2, and one of order 5. The five quintic subfields of L are $Q(\theta_i)$, i = 1,2,3,4,5, where

^{*} Research supported by Natural sciences and Engineering Research Council of Canada Grant A-7233.

$$\begin{aligned} \theta_{1} &= \mathbf{e}(\mathbf{w}^{1}\mathbf{u}_{1} + \mathbf{w}^{31}\mathbf{u}_{3} + \mathbf{w}^{41}\mathbf{u}_{4}), \\ \mathbf{w} &= \mathbf{exp}(2\pi i/5), \\ \mathbf{u}_{1} &= \left(\frac{\mathbf{v}_{1}^{2}\mathbf{v}_{3}}{\mathbf{D}^{2}}\right)^{1/5}, \mathbf{u}_{2} &= \left(\frac{\mathbf{v}_{3}^{2}\mathbf{v}_{4}}{\mathbf{D}^{2}}\right)^{1/5}, \mathbf{u}_{3} &= \left(\frac{\mathbf{v}_{2}^{2}\mathbf{v}_{1}}{\mathbf{D}_{2}}\right)^{1/5}, \mathbf{v}_{4} &= \left(\frac{\mathbf{v}_{4}^{2}\mathbf{v}_{2}}{\mathbf{D}^{2}}\right)^{1/5}, \\ \mathbf{v}_{1} &= \sqrt{\mathbf{D}} + \sqrt{\mathbf{D}} - \epsilon \sqrt{\mathbf{D}}, \mathbf{v}_{2} &= -\sqrt{\mathbf{D}} - \sqrt{\mathbf{D}} + \epsilon \sqrt{\mathbf{D}}, \\ \mathbf{v}_{3} &= \sqrt{\mathbf{D}} + \sqrt{\mathbf{D}} + \epsilon \sqrt{\mathbf{D}}, \mathbf{v}_{4} &= \sqrt{\mathbf{D}} - \sqrt{\mathbf{D}} - \epsilon \sqrt{\mathbf{D}}, \\ \mathbf{D} &= \mathbf{c}^{2} + 1 \end{aligned}$$

see [3, Theorem]. It remains to determine the unique quadratic subfield K of L. This is done in the theorem below making use of the work of Dummit [1].

If $G_r = F_{20}$ then G_r has five subgraphs of order 2, five subgroups of order 4, one of order 5, and one of order 10. The unique quadratic subfield of L is

 $Q(\sqrt{\operatorname{disc}(f)}) = Q(\sqrt{4^{4}a^{5} + 5^{5}b^{4}}) = Q(\sqrt{5(c^{2}+1)}),$

see [2, eqn. (28)]. The five quintic subfields of L are $Q(\theta_1)$, i = 1,2,3,4,5, where θ_i is given above, and the five subfields of L of order 10 are $Q(\theta_1, \sqrt{5(c^2+1)})$. It remains to determine the unique quartic subfield K of L. This field is cyclic, and is given in the theorem below.

Theorem Let $f(X) = X^5 + aX + b \in Q[X]$ be a solvable, irreducible quintic trinomial with $ab \neq 0$. Define c, ϵ and e as in (1). Let L denote the splitting field of f, and let G_t denote the Galois group of f. Let

 $K = \begin{cases} \text{unique quadratic subfield of } L \text{ when } G_t = D_s, \\ \text{unique (cyclic) quartic subfield of } L \text{ when } G_t = F_{20}. \end{cases}$

Then

$$\mathbf{K} = \mathbf{Q}\left(\sqrt{-5 - (1 + 2\epsilon \mathbf{c})}\sqrt{\frac{5}{\mathbf{c}^2 + 1}}\right).$$

Proof By [1, Theorem 2], we have

 $K = Q(\sqrt{(T_1 + T_2 \Delta)^2 - 4(T_3 + T_4 \Delta)}) = Q(\sqrt{(T_1 - T_2 \Delta)^2 - 4(T_3 - T_4 \Delta)}),$ where T_1, T_2, T_3, T_4 are defined in (8.1'), (8.2'), (8.3'), (8.4') of [1] respectively, and $\Delta^2 = 4^4 a^5 + 5^5 b^4$. Each T_1 is a rational function of a, b, and r. From (1) and (2) we see that

$$r = \frac{20e^{4}(4+3\epsilon c)}{c^{2}+1}$$

Since the splitting fields of $X^5 + aX + b$ and $X^5 + (a/e^4)X + (b/e^5)$ are exactly the same field L, we can take e = 1 without loss of generality. Thus we have

$$a = \frac{5(3-4\epsilon c)}{c^2+1}, \ b = \frac{-4(11\epsilon+2c)}{c^2+1}, \ r = \frac{20(4+3\epsilon c)}{c^2+1},$$

and, putting these expressions into (8.1'), (8.2'), (8.3'), (8.4') of [1], we obtain the T_1 's as functions of c and ϵ . Also, by [2, eq. (28)], we may choose

$$\triangle = \frac{2^4 5^2}{(c^2 + 1^{-2})^2} (4\epsilon c^3 - 84c^2 - 37\epsilon c - 122) \sqrt{\frac{5}{c^2 + 1}}.$$

Then, using MAPLE to perform the algebric calculations, we obtain

$$(\mathbf{T}_{1}+\mathbf{T}_{2}\triangle)^{2}-4(\mathbf{T}_{3}+\mathbf{T}_{4}\triangle)$$

= $\frac{2^{2}5^{8}}{(c^{2}+1)^{2}}\left((-25-20\epsilon c-40c^{2})+(11+6\epsilon c+12c^{8}+8\epsilon c^{3})\sqrt{\frac{5}{c^{2}+1}}\right),$

showing that

$$\mathbf{K} = \mathbf{Q}\left(\sqrt{(-25 - 20\epsilon \mathbf{c} - 40c^2) + (11 + 6\epsilon \mathbf{c} + 12c^2 + 8\epsilon c^3)}\sqrt{\frac{5}{c^2 + 1}}\right)$$

If $\epsilon c = 2$ then $K = Q(\sqrt{-90}) = Q(\sqrt{-10}) = Q(\sqrt{-5 - (1 + 2\epsilon c)}\sqrt{\frac{5}{c^2 + 1}}).$

If $\epsilon c \neq 2$ the equality

$$(-25-20\epsilon c-40c^{2}) - (11+6\epsilon c+12c^{2}+8\epsilon c^{2})\sqrt{\frac{5}{c^{2}+1}} = \left(\frac{6c^{2}+\epsilon c+4-2(\epsilon c+1)\sqrt{5(c^{2}+1)}}{\epsilon c-2}\right)^{2} \left(-5-(1+2\epsilon c)\sqrt{\frac{5}{c^{2}+1}}\right)$$

shows that

$$K = Q\left(\sqrt{-5 - (1 + 2\epsilon c)}\sqrt{\frac{5}{c^2 + 1}}\right)$$

We close with a few examples.

X ^a +aX+b	r	c	e	c	Gt	К
¹ X ⁵ - 5X + 12	40	2.	1	-1	D _s	$Q(\sqrt{-10})$
X ⁵ +11X+44	88	2/11	. 1	-1	: D ₅ ·.	$Q(\sqrt{-2})$
X ⁵ +15X+12	0	4/3	- 1	1	F 20	$Q(\sqrt{-5+\sqrt{5}})$
$X^{5} - 40X + 64$	10	7	1	- 2	F ₂₀	$Q(\sqrt{-5-\frac{3}{4}}\sqrt{10})$
X ⁵ +15X+44	80	0	1	<u>-</u> 1	F ₂₀	$Q(\sqrt{-5+\sqrt{5}})$
X ⁵ +20X+32	40	1/2	-1	1	D ₅	$Q(\sqrt{-5})$
$X^{\delta} + \frac{J_{\Phi}}{2}X + 2$	-10	3.	-1	1	F20	$Q(\sqrt{-5+\sqrt{2}})$
X ⁵ -1900X-8800	8200	11/2	1	5	D ₅	$Q(\sqrt{-5})$

Jensen and Yui [2, Theorem II.3.6] have calculated the quadratic subfield K in certain cases when $G_t = D_s$.

REFERENCES

- 1. D. S. Dummit, Solving solvable quintics, Math. Comp. 57 (1991), 387-401.
- 2. C.U. Jensen and N. Yui, Polynomials with D_p as Galois group, J. Number Theory 15 (1982), 347-375.
- 3. Blair K. Spearman and Kenneth S. Williams, Characterization of solvable quintics X⁵+aX+b, Amer. Math. Monthly 101 (1994), 986-992.

18