THE SUBFIELDS OF THE SPLITTING FIELD OF A SOLVABLE QUINTIC TRINOMIAL

$$
\mathbf{X}^{5}+\mathbf{a X}+b
$$

Blair K. Spearman
Department of Mathematics
Okanagan University College
Kelowna, B.C. VIY 4X8
Canada

Laura Y. Spearman
City of Kelowna Information
Services Department
Kelowna, B.C. V1Y IJ4
Canada

Kenneth S. Williams
Department of Mathematics and Statistics
Carleton University
Ottawa, Ontario K1S 5B6
Canada

Let Q denote the field of rational numbers, and set $Q^{*}=Q \backslash(0\}$. Let a $\in Q^{*}$ and $b \in Q^{*}$ be such that the quintic trinomial $f(X)=X^{5}+a X+b$ is both irreducible and solvable. Polynomials of this type are characterized in [3, Theorem]. Let L denote the splitting field of f. Lét r denote the unique retional root of the resolvent sextic of $X^{5}+a X+b$ [3, eqn. (17)]; and set

$$
\begin{equation*}
c=\left|\frac{3 r-16 a}{4 r+12 a}\right|, \quad \epsilon=\operatorname{sgn}\left(\frac{3 r-16 a}{4 r+12 a}\right), \quad e=\frac{-5 b \epsilon}{2 r+4 a}, \tag{1}
\end{equation*}
$$

so that c is a nonnegative rational number, $\epsilon= \pm 1$, and e is a nonzero rational number. It is shown in [3] that

$$
\begin{equation*}
a=\frac{5 e^{4}(3-4 \epsilon c)}{c^{2}+1}, \quad b=\frac{-4 e^{5}\left(11 \epsilon^{4}+2 c\right)}{c^{2}+1} \tag{2}
\end{equation*}
$$

The Galois group G_{8} of $f_{\text {i }}$ is the dibedral group D_{8} of order 10 if $5\left(c^{2}+1\right) \epsilon Q^{2}$, and is the Frobenius group $\mathrm{F}_{\mathrm{g} 0}$ of order 20 if $\mathbf{5}\left(\mathrm{c}^{2}+1\right) \notin \mathrm{Q}^{2}$.

If $G_{s}=D_{s}$ then G_{g} has five subyroups of order 2 , and one of order 5 . The five quintic subfields of L are $Q\left(\theta_{1}\right), i=1,2,3,4,5$, where

$$
\begin{aligned}
& \theta_{1}=e\left(w^{1} u_{1}+w^{21} u_{1}+w^{31} u_{3}+w^{4 i} u_{4}\right) \\
& w=\exp (2 \pi i / 5), \\
& u_{1}=\left(\frac{v_{1}^{2} v_{3}}{D^{2}}\right)^{1 / 5}, u_{2}=\left(\frac{v_{3}^{2} v_{4}}{D^{2}}\right)^{1 / 5}, u_{3}=\left(\frac{v_{2}^{2} v_{1}}{D_{2}}\right)^{1 / 5}, v_{4}=\left(\frac{v_{4}^{2} v_{2}}{D^{2}}\right)^{1 / 5}, \\
& v_{1}=\sqrt{D}+\sqrt{D-\epsilon \sqrt{D},} v_{2}=-\sqrt{D}-\sqrt{D+\epsilon \sqrt{D}}, \\
& v_{3}=\sqrt{D}+\sqrt{D+\epsilon \sqrt{D},} v_{4}=\sqrt{D}-\sqrt{D-\epsilon \sqrt{D}} \\
& D=c^{2}+1
\end{aligned}
$$

see [3, Theorem]. It remains to determine the unique quadratic subfield K of L. This is done in the theorem below making use of the work of Dummit [1].

If $G_{p}=F_{20}$ then G_{q} has five subgraphs of order 2 , five subgroups of order 4 , one of order 5 , and one of order 10. The unique quadratic subfield of L is

$$
Q(\sqrt{\operatorname{disc}(f)})=Q\left(\sqrt{4^{4} a^{5}+5^{5} b^{4}}\right)=Q\left(\sqrt{5\left(c^{2}+1\right)}\right)
$$

see [2, eqn. (28)]. The five quintic subfields of L are $Q\left(\theta_{1}\right), j=1,2,3,4,5$, where θ_{i} is given above, and the five subfields of L of order 10 are $Q\left(\theta_{1}, \sqrt{5\left(c^{2}+1\right)}\right)$. It remains to determine the unique quartic subfield K of L. This field is cyclic, and is given in the theorem below.

Theorem Let $f(X)=X^{5}+\mathrm{AX}+\mathrm{b} \in \mathrm{Q}[\mathrm{X}]$ be a solvable, irreducible quintic trinomial with $a b \neq 0$. Define c, ϵ and e as in (1). Let L denote the splitting field of f, and let G_{t} denote the Galois group of f. Let

$$
K=\left\{\begin{array}{l}
\text { unique quadratic subfield of } L \text { when } G_{1}=D_{s} \\
\text { unique (cyclic) quartic subfield of } L \text { when } G_{t}=F_{20}
\end{array}\right.
$$

Then

$$
K=Q\left(\sqrt{-5-(1+2 \epsilon c) \sqrt{\frac{5}{c^{2}+1}}}\right)
$$

Proof By [1, Theorem 2], we have

$$
K=Q\left(\sqrt{\left(T_{1}+T_{2} \Delta\right)^{2}-4\left(T_{3}+T_{4} \Delta\right)}\right)=Q\left(\sqrt{\left(T_{1}-T_{2} \Delta\right)^{2}-4\left(T_{3}-T_{4} \Delta\right)}\right),
$$

where $T_{1}, T_{2}, T_{3}, T_{4}$ are defined in (8.1'), (8 2^{\prime}), (8.3^{\prime}), (8.4') of [1] respectively, and $\Delta^{2}=4^{4} a^{5}+5^{5} b^{4}$. Each T_{1} is a rational function of a, b, and r. From (1) and (2) we see that

$$
r=\frac{20 e^{4}(4+3 \epsilon c)}{c^{2}+1}
$$

Since the splitting fields of $X^{5}+a X+b$ and $X^{5}+\left(a^{\prime} / e^{4}\right) X+\left(b / e^{5}\right)$ are exactly the same field L, we can take $e=1$ without loss of generality. Thus we have

$$
a=\frac{5(3-4 c c)}{c^{2}+1}, b=\frac{-4(11 \varepsilon+2 c)}{c^{2}+1}, r=\frac{20(4+3 \epsilon c)}{c^{2}+1},
$$

and, putting these expressions into $\left(8.1^{\prime}\right),\left(8.2^{\prime}\right),\left(8.3^{\prime}\right),\left(8.4^{\prime}\right)$ of [1], we obtain the T_{i} 's as functions of c and ϵ. Also, by [2, eq. (28)], we may choose

$$
\Delta=\frac{2^{4} 5^{2}}{\left(c^{2}+1^{2}\right.}\left(4 \epsilon c^{3}-84 c^{2}-37 \epsilon c-122\right) \sqrt{\frac{5}{c^{2}+1}} .
$$

Then, using MAPLE to perform the algebric calculations, we obtain

$$
\begin{aligned}
& \left(T_{1}+T_{2} \triangle\right)^{8}-4\left(T_{3}+T_{4} \triangle\right) \\
& =\frac{2^{2} 5^{8}}{\left(c^{2}+1\right)^{2}}\left(\left(-25-20 \epsilon c-40 c^{2}\right)+\left(11+6 \epsilon c+12 c^{2}+8 \epsilon c^{3}\right) \sqrt{\frac{5}{c^{2}+1}}\right)
\end{aligned}
$$

showing that

$$
K=Q\left(\sqrt{\left(-25-20 \epsilon c-40 c^{2}\right)+\left(11+6 \epsilon c+12 c^{2}+8 \epsilon c^{3}\right) \sqrt{\frac{5}{c^{2}+1}}}\right)
$$

If $\epsilon C=2$ then $K=Q(\sqrt{-90})=Q(\sqrt{-10})=Q\left(\sqrt{-5-(1+2 \epsilon c) \sqrt{\frac{5}{c^{2}+1}}}\right)$.

If $\epsilon c \neq 2$ the equality

$$
\begin{aligned}
& \left(-25-20 c-40 c^{2}\right)-\left(11+6 \epsilon c+12 c^{2}+8 \epsilon c^{2}\right) \sqrt{\frac{5}{c^{2}+1}} \\
& =\left(\frac{6 c^{2}+\epsilon c+4-2(\epsilon c+1) \sqrt{5\left(c^{2}+1\right)}}{\epsilon c-2}\left(-5-(1+2 \epsilon c) \sqrt{\frac{.5}{c^{2}+1}}\right)\right.
\end{aligned}
$$

shows that

$$
K=Q\left(\sqrt{-5-(1+2 \epsilon c) \sqrt{\frac{5}{c^{2}+1}}}\right)
$$

We close with a few examples.

$\mathbf{X}^{5}+\mathrm{aX}+\mathrm{b}$	r	c	ϵ	e	G_{t}	K
${ }^{3} \mathrm{X}^{5}-5 \mathrm{X}+12{ }^{\text {a }}$	40	2	1	-1	D*	$\mathrm{Q}(\sqrt{-10})$
$\mathrm{X}^{5}+11 \mathrm{x}+44$	88	2/11	1	-1	Ds	$Q(\sqrt{-2})$
$\mathrm{X}^{5}+15 \mathrm{X}+12$	0	4/3	-1	1	F_{20}	$Q(\sqrt{-5+\sqrt{5}})$
$\mathrm{X}^{5}-40 \mathrm{X}+64$	10	.7	1	-2	$\mathrm{F}_{\mathbf{2 0}}$	$\mathrm{Q}(\sqrt{-5-3} \sqrt{10})$
$\mathrm{X}^{5}+15 \mathrm{X}+44$	80	0	1	-1	F_{20}	$Q(\sqrt{-5+\sqrt{5}})$
$\mathrm{X}^{5}+20 \mathrm{X}+32$	40:	1/2	-1	1	D_{5}	$Q(\sqrt{-5})$
$\mathrm{X}^{5}+\frac{1}{2} 8 \mathrm{C}+2$	-10	3	-1	1	F_{20}	Q($\sqrt{-5+5 \sqrt{2}})$
X ${ }^{\text {b }}$-1900X-8800	8200	11/2	1	5	D_{5}	$Q(\sqrt{-5})$

Jensen and Yui' $[2$, Theorem II.3.6] have calculated the quadratic subfield K in certain cases when $G_{t}=D_{8}$.

REFERENCES

1. D. S. Dummit, Solving solvable quintics, Math. Comp. 57 (1991), 387-401.
2. C.U. Jensen and N. Yui, Polynomials with D_{p} as Galois group, J. Number Theory 15 (1982), 347-375.
3. Blair K. Spearman and Kenneth S. Williams, Characterization of solvable quintics $\mathrm{X}^{s}+\mathrm{aX}+\mathrm{b}$, Amer: Math. Monthly 101 (1994), 986-992.
